
In the Proceedings of the Scalable High-Performance

Computing Conference pp 764{772, Knoxville, TN, 1994,

Performance evaluation of load balancing algorithms for parallel

single-phase iterative PDE solvers

Nikos Chrisochoides,� Nashat Mansoury and Geo�rey Fox�

�Northeast Parallel Architectures Center y Computer Science

Syracuse University Lebanese American University

111 College Place, Syracuse, NY, 13244-4100 Lebanon

Abstract

We review and evaluate the performances of six

data mapping algorithms used for parallel single-phase

iterative PDE solvers with irregular 2-dimensional

meshes on multicomputers. We provide a table that

compares the six algorithms for eight measures cover-

ing load balance, interprocessor communication,
exi-

bility, ease of use and speed. Based on the compar-

ison results, we recommend the use of the simplest

and fastest (P�Q) of the six algorithms considered

for sequential compile-time mapping of 2-dimensional

meshes.

1 Introduction

The data-parallel single-phase iterative Partial Dif-
ferential Equation (PDE) solvers considered in this
paper are based on mapping the discrete PDE op-
erator (i.e., a linear system of algebraic equations,
Ax=b) and the associated computations onto the P
processors of a multicomputer. With the (most com-
monly used) single program multiple data program-
ming model, processors execute the same program in-
dependently on parts of the linear system mapped on
to them. That is, processor Pi computes the unknowns
xi of the sub-system Aixi = bi and communicates
with other processors when nonlocal or global data are
needed. Thus, the execution time of the data-parallel
solver is given by

Tsolver = max
1�i�P

fT i
compute+T

i
communicate+T

i
synchronizeg

(1)
assuming that computation and communication do
not overlap. Equation (1) is particularly relevant for
the loosely synchronous class of iterative solvers con-
sidered in this work.

For parallel iterative PDE solvers, the data map-
ping problem can be formulated at two levels : (i) the

discrete geometrical data structures (element-meshes

or tensor-grids) associated with the PDE domain and
(ii) the linear system of algebraic equations associated
with some discretization of the PDE equations. In this
paper we evaluate data mapping strategies based on
geometrical data structures [7]. These strategies are
based on partitioning the mesh Dh representing the
PDE domain and allocating the resultant submeshes
to the multicomputer processors. The partitioning
results in splitting the discrete equations associated
with the mesh nodes and their interfaces. Figure 1
describes such a partitioning.

Interface points

Interior Point

Submesh

=

=

A x b

A x b

Local Unknowns

Non Local
(interface)

Unknowns

Figure 1: The components of the partitioned discrete
PDE problem based on the splitting of the mesh Dh

used numerically.

The minimization of the execution time, Tsolver,
of data-parallel iterative solvers requires equal distri-
bution of the computation workload and minimiza-
tion of overheads due to communication of nonlocal
unknowns, update of global parameters, and test of
convergence (synchronization). The problem of map-
ping data for minimizing Tsolver is an intractable opti-
mization problem. Thus, several algorithms have been
proposed for �nding good suboptimal mapping solu-

tions. Some algorithms are based on greedy schemes,
divide-and-conquer, or block partitioning. Examples
are nearest neighbor mapping, P�Q partitioning, re-
cursive coordinate bisection, recursive graph bisection,
recursive spectral bisection, CM Clustering, and scat-
tered decomposition [1], [7], [3], [20], [9], [26], [13],
[24], [27].

Other algorithms are based on deterministic opti-
mization, where local search techniques are used to
minimize cost functions related to Tsolver; examples
are Kernighan-Lin algorithm and geometry graph par-
titioning [18], [7]. Yet, another class of mapping algo-
rithms are based on physical optimization that em-
ploys techniques from natural sciences; examples are
neural networks, simulated annealing, and genetic al-
gorithms [16], [10], [11] [21], [28].

Although a good deal of work has been published on
data mapping, only a few attempts have been made at
comparing some algorithms using aggregate or a lim-
ited number of performance measures [7], [27], [22],
[28]. In this paper, we use several measures to eval-
uate and compare the performances of six data map-
ping algorithms for irregular iterative PDE computa-
tions. The algorithms considered are: (1) the P�Q
partitioning, (2) the recursive spectral bisection, (3)
the geometry graph partitioning, (4) a neural network
algorithm, (5) a simulated annealing, and (6) a ge-
netic algorithm. These algorithms have been chosen
since they are among the best known data mapping
algorithms in the literature. We report experimental
machine-dependent and machine-independent results,
obtained using DecTool [4] and Parallel ELLPACK,
[15], for the evaluation of their performance. The ex-
perimental results and the operation of the algorithms
are employed to produce a table that compares the
algorithms on eight measures: (a) load balance, (b)
submesh connectivity, (c) splitting of submeshes, (d)
message size, (e) interprocessor distance traveled by
messages, (f)
exibility, (g) dependence on parame-
ters, and (h) execution time. The comparison leads
us to recommend the use of the P�Q algorithm for
sequential mapping of 2-dimensional meshes for iter-
ative PDE solvers. A more detailed analysis of the
algorithms and discussion on the above measures ap-
pears in [8].

This paper is organized as follows. Section 2
presents objective functions and identi�es two ap-
proaches for the data mapping problem. Section 3
gives a review of the six mapping algorithms. Section
4 presents and discusses the experimental results. Sec-
tion 5 presents a summary of the �ndings. Section 6
concludes the paper.

2 Data Mapping

In this section, we present objective functions and a
number of criteria for the data mapping and describe
two approaches in addressing the mapping problem.
An objective function that re
ects the cost of mapping
a mesh Dh (with jDh

j = N) onto a multicomputer can
typically be formulated as:

OFtyp = max
1�i�P

f W (m(Dh
i)) +

X
Dh
j
2�

Dh
i

C(m(Dh
i);m(Dh

j)) g

(2)

where m : fDh
i g
P
i=1 ! fPig

P
i=1 is a function that

maps the nodes of submesh Dh
i to the processors;

W (m(Dh
i)) is the computational load of the proces-

sor m(Dh
i) per iteration, which is proportional to the

number of nodes in Dh
i ; C(m(Dh

i);m(Dh
j)) is the cost

of the communication required (per iteration) between
the processors m(Dh

i) and m(Dh
j); �nally, �Dh

i
is the

set of submeshes that are adjacent to Dh
i and its car-

dinality j�Dh
i
j is henceforth referred to as the sub-

mesh connectivity. The formulation of OFtyp assumes
that computation and communication do not over-
lap. OFtyp approaches its minimum if the computa-
tion load W (Pi) is near-evenly distributed among the
processors and the communication cost of the proces-
sors is minimum. Clearly, such conditions are also
necessary for minimizing Tsolver (equation 1). How-
ever, the synchronization term in Tsolver is not explic-
itly re
ected in OFtyp because synchronization cost is
a nonlinear function of communication, computation,
and communication-computation overlapping. Thus,
it is di�cult to express quantitatively. Nevertheless,
OFtyp is considered a reasonable measure for the qual-
ity of data mapping solutions and two approaches can
be identi�ed in the mapping literature for its mini-
mization.

The �rst mapping approach is based on the expan-
sion of the components of OFtyp and the use of explicit
machine-dependent and algorithm-dependent param-
eters. This approach is adopted in the physical op-
timization methods which are guided by an objective
function. However, OFtyp is not a smooth function
and its minimization gives rise to a minimax criterion
which is computationally expensive. To avoid these
two shortcomings, the following approximate objec-

tive function is used:

OFappr = �2
PX
i=1

jDh
i j
2 +�

PX
i=1

X
Dh
j
2�

Dh
i

C(m(Dh
i);m(Dh

j))

(3)

where � is a scaling factor expressing the relative im-
portance of the communication term with respect to
the computation term, and � is dependent on the
solver and is equal to the number of computation op-
erations per mesh node per iteration.

Although OFappr is not equivalent to OFtyp, it still
represents a good approximation to the cost of a map-
ping con�guration. Its �rst term is quadratic in the
deviation of computation loads from the average com-
putation load and is minimal when all deviations are

zero. A minimum of the second term occurs when
the sum of all interprocessor communication costs is
minimized.

The second mapping approach uses criteria that are
qualitatively derived from the mapping requirements
and addresses them in stages. It is based on splitting

the optimization problem into two distinct phases that
accomplish the partitioning and the allocation of the
mesh [6] and [27]. In the partitioning phase we de-
compose the mesh into P submeshes such that the
following criteria are approximately satis�ed:

(i) the maximum di�erence in the number of nodes
of the submeshes is minimum,

(ii) the ratio of the number of interface nodes to the
number of interior nodes for each submesh is min-
imum,

(iii) the number of submeshes that are adjacent to a
given submesh is minimum,

(iv) each submesh is a connected mesh.

In the allocation phase these submeshes are allocated
to the processors such that the following criterion is
satis�ed:

(v) the communication requirements of the underly-
ing computation between the processors of a given
architecture are minimum.

For a given mesh Dh with N nodes, the merit of a

partition into P non-overlapping submeshes fDh
i g
P
i=1

is characterized in terms of the set of geometrically ad-
jacent submeshes �Dh

i
to submesh Dh

i and the number

of interface mesh nodes, I(Dh
i ; D

h
j), shared by the sub-

meshes Dh
i and Dh

j . Then, the optimal partitioning,
as de�ned by criteria (i) to (iv), can be viewed as the
one which simultaneously minimizes :

max
1�i;j�P

j jDh
i j � jDh

j j j (6)

max
1�i�P

f

(
P

Dh
j
2�

Dh
i

I(Dh
i ; D

h
j))

jDh
i j

g (7)

max
1�i�P

j�Dh
i
j (8)

3 Data Mapping Algorithms

In this section we brie
y review six algorithms for
the solution of the data mapping problem, namely :
(1) the P�Q algorithm, (2) the recursive spectral bi-
section algorithm, (3) the geometry graph partition-
ing algorithm, (4) a neural network algorithm, (5) a
simulated annealing algorithm, and (6) a genetic algo-
rithm. The last three algorithms, which are physical
optimization algorithms, are based on the �rst map-
ping approach described in Section 2 while the �rst
three algorithms adopt the second approach.

3.1 P�Q Partitioning

A simple and attractive mapping method consid-
ered by many researchers (see [2], [10], and [6]) is
the so-called data strip or block partitioning heuristic.
This heuristic is referred under di�erent names, some
of them are : one-dimensional (1D) strip partition-
ing, two-dimensional (2D) strip partitioning, multi-
level load balanced method, median splitting, and sec-
tor splitting. Throughout this paper, we are referring
to this clustering algorithm as P�Q [7], where P is the
number of sub-meshes (blocks or strips) along the x-
axis, Q is the number of sub-meshes (blocks or strips)
along the y-axis, and P�Q = P (for 2D domains).
The algorithm based on two sorts of the node points
: (1) sort the node points along the x-coordinate axis
(2) group the node points into P subgroups, (3) sort
the points of each subgroup along the y-coordinate
axis, and (4) group the node points of each of the P
subgroups into Q subgroups. In [7] the algorithm is
generalized by using boundary-conforming curvilinear
coordinate systems.

3.2 Spectral Bisection

Recursive spectral bisection (RSB) utilizes the
spectral properties of the Laplacian matrix associated
with the mesh for bisecting it [27]. It recursively ap-
plies the bisection step log2P times and allocates the
generated 2-dimensional submeshes to the correspond-
ing subcubes in the multicomputer.

The Laplacian matrix L(M) is de�ned as:

Li;j(M) =

8<
:

+1 if e(i,j) exists
�degree(of vertex i) if i = j
0 otherwise

In each bisection step the eigenvector corresponding to
the second largest eigenvalue of the Laplacian matrix
is computed; this vector is called Fiedler vector and
can be computed using the Lanczos algorithm. The
components of this vector provide distance informa-
tion about the nodes of the mesh. Then, the nodes
are sorted according to the values of the eigenvector's
components. Using the sorted list, the nodes are split
to form two equal-size submeshes.

3.3 Geometry Graph Partitioning

The geometry graph partitioning (GGP) heuristic is
a local optimization algorithm. A local optimization
algorithm for given initial solution t and neighborhood
structure N (t) performs local search of the the neigh-
borhood N (t) and replaces the current solution t with
a neighbor solution u of t that optimizes (minimizes or
maximizes) the cost function f , [25]. This process is
repeated until no such better solution exists. At this
point a \locally optimal" solution has been identi�ed.
The GGP heuristic uses the geometrical properties of
the mesh graph (Euclidean graph) in order to deliver
quasi-uniform partitionings with the minimal diame-
ter.

The GGP algorithm's pro�t function is a weighted
combination of the KL algorithm's pro�t function and
of a function which is used in selecting pairs of node
points whose swapping reduces the diameter of the
subdomains. The GGP algorithm climbs out of local
minima of the cost function by swapping points that
might increase temporarily the value of the cost func-
tion but will decrease the diameter of the subdomains
by bringing their mass centers far apart.

3.4 Genetic Algorithms

In genetic algorithms a population of candidate solu-
tions, called individuals, evolve over successive genera-
tions, starting with random solutions. In every gener-
ation, individuals are selected for reproduction accord-
ing to their �tness, then genetic operators are applied
to the selected mates, and o�spring replace their par-
ents. In this process, �tness is gradually increased and
optimal solutions evolve by the propagation and the
combination of high-performance �t building blocks
[14]. The genetic algorithm for data mapping encodes
an individual as a string of N integers, where an inte-
ger refers to a processor and its position in the string
represents the mapped mesh node. The �tness of an

individual is the reciprocal of the value of the objec-
tive function, so that maximizing the �tness would
correspond to minimizing the objective function.

The reproduction scheme determines which individ-
uals survive and selects pairs of surviving individuals
for reproduction. The genetic operators employed in
GA are two-point crossover and mutation. Crossover
is accomplished by randomly selecting equal-length
substrings in the two parents and swapping them. Mu-
tation refers to randomly remapping a randomly cho-

sen mesh node. Crossover is applied to 70% of the
individuals in the population and the rate of muta-
tion used is 0.3%.

The last step in creating a new generation is a
greedy hill-climbing procedure applied to all o�spring
solutions for improving their structure. The proce-

dure considers all interface mesh nodes in a candidate
solution and allows remapping of interface nodes only
from overloaded to underloaded processors. That is,
remapping is invoked only if �OF is negative.

3.5 Simulated Annealing

The SA starts with an initial random mapping so-
lution which corresponds to a system in a high en-
ergy/temperature state, where the energy is given by
the objective function OFappr. The SA algorithm then
reduces the temperature of the system gradually to
a freezing point according to a cooling schedule. At
each temperature, regions in the solution space are
searched by the Metropolis algorithm [19]. An itera-
tion of the Metropolis algorithm starts with propos-
ing a random perturbation and evaluating the resul-
tant change in OFappr. A perturbation, or a move, is
accomplished by a random remapping of a randomly

chosen mesh node. A remapping that leads to a lower
objective function value corresponds to a downhill
move in the energy landscape and is always accepted.
An increase in objective function (uphill move) may
be accepted only with a temperature-dependent prob-
ability, e��OF=�.

Perturbations are repeated at each temperature un-
til thermal equilibrium. Equilibrium is reached when
the number of attempted or accepted perturbations is
equal to predetermined maximum numbers. Pertur-
bations followed by the computation of �OF occur in
every inner iteration of the SA algorithm. Hence, it is
important to compute �OF as e�ciently as possible.

3.6 Neural Network Algorithm

A Hop�eld-type Neural Network for data mapping,
described in [11] and [22], aims at quickly �nding low

minima for the objective function. The network is
represented by a matrix of neurons. Each row corre-
sponds to a mesh node v. The number of neurons per
row is equal to log

2
P. Each neuron is associated with

a neural variable n(v; i), where i refers to column i in
the network.

The NN starts with initial random neural values
and converges to a �xed point, after a number of
sweeps. The �xed point of the network is associated
with a minimum of the energy function, OFappr. The

NN repeats this procedure log
2
P times, each time de-

termining the bits in column i in the network and,
hence, the subcubes to which the mesh nodes are
mapped. After the last iteration, the mesh will be
partitioned into submeshes mapped to the P proces-
sors.

4 Performance Evaluation

In this section, we present and discus the machine-
independent and machine-dependent performance
analysis for the two data mapping approaches and the
following algorithms :

P�Q : Partitioning along the x and y direction.
RSB : Recursive Spectral Bisection.
GGP : Geometry Graph Partitioning.
GA : Genetic Algorithm.
SA : Simulated Annealing.
NN : Neural Network.

The evaluation of these data mapping algorithms is
performed on a Model Problem with a Poisson PDE
operator and Dirichlet boundary conditions (the data
mapping is independent of the PDE operator). The
domain of the Model Problem is an irregular non-

convex domain with two holes as shown in Figure 2.
The mesh , M13K, consists of 24,202 elements and
12,724 nodes and the PDE is approximated by a linear
system with 11,676 number of equations. The PDE is
discretized by a bilinear �nite element method and the
linear system is solved using a Jacobi Semi Iterative
(Jacobi-SI) method [5].

4.1 Machine-Independent Analysis

The machine-independent measures considered are
: (i) the submesh connectivity, (ii) the number of in-
terface nodes , (iii) the splitting of the submeshes, (iv)
the Hamming distance among communicating proces-
sors, and (v) the load balance. The analysis is based

Figure 2: Model Problem.

on the solutions for mappingM13K to nCUBE II with
8 to 128 processors. From these solutions the maxi-
mum values for the di�erent measures are computed

and plotted.

Figure 3 shows the maximum number of the total
submesh interface nodes; the length of the interfaces is
proportional to the the message size term of the com-
munication cost (equation 3). Figure 3 shows that
GGP and RSB yield the smallest number of interface
nodes. RSB minimizes node separators in the mesh
while GGP at the same time maximizes the inter-
center distance of submeshes, and thus reduces the size

of node separators even more. GA, SA and P�Q also
yield good number of interfaces, whereas NN yields
the largest number of interfaces. However, the graph
contraction pre-mapping step [23] used for speeding-
up the three physical optimization algorithms does in-
crease the length of the submesh interfaces due to the
ill-shaped (contracted) super-nodes it produces.

Figure 4 shows the maximum submesh connectiv-
ity; the total message latency is proportional to the
submesh connectivity. Figure 4 indicates that GA,
GGP and RSB yield very good connectivities. This is
expected for GA since its objective function explicitly
includes a signi�cant message latency cost The mini-
mum node separator requirement sought by GGP and
RSB seems to help in minimizing submesh connectiv-
ity for 2-D meshes.

Figure 5 shows the maximum distances for mes-
sages among communicating processors; longer dis-
tances for messages in circuit-switching machines in-
crease the probability of link-contention and thus in-
crease the communication time. SA nad NN show very
good distances since interprocessor distances are in-

cluded in their objective functions with a large weight
[22] P�Q, RSB, and GGP also show good distances,
whereas GA's distances are acceptable.

Figure 6 gives the standard deviation of the num-
ber of nodes per submesh of M13K ; M13K is par-
titioned into 6 submeshes. The deviation values il-

8 16 32 64 128
Number of Processors

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

220.0

M
ax

im
um

 In
te

rfa
ce

s

GA
NN
SA
RSB
PxQ
GGP

Figure 3: Maximumnumber of interface nodes for the
mapping solution of M13K.

8 16 32 64 128
Number of Processors

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

M
ax

im
um

 C
on

ne
ct

ivi
ty

GA
NN
SA
RSB
PxQ
GGP

Figure 4: Maximum connectivity of the submeshes for
the mapping solution of M13K .

8 16 32 64 128
Number of Processors

1.5

2.5

3.5

4.5

5.5

6.5

7.5

M
ax

im
um

 D
ist

an
ce

GA
NN
SA
RSB
PxQ
GGP

Figure 5: Maximum distances among the communi-
cating processors for the mapping solution of M13K.

lustrate how well-balanced is the computational load.
Clearly, P�Q, RSB and GGP produce mapping that
are perfectly load balanced since these algorithms �rst
optimize this criterion. The three physical algorithms
do not insist on perfect load balance. Instead, their
aim is to minimize the total sum of both the compu-
tational load and communication cost. Although they
do not produce mapping with large imbalances they
o�er a tradeo� between the computation load and the
communication cost of the individual processors for

the aim of minimizing the total workload of the slower
processors.

0.0 2.0 4.0 6.0
0.0

5.0

10.0

15.0

20.0

25.0
64 Processors
32 Processors

GA NN SA RSB PxQ GGP

Figure 6: Standard deviation of the number of nodes
per submesh for P = 32 and 64.

Figures 7 shows the submeshes produced by the
six data mapping algorithms. These solutions show
disconnected subdomains for NN, SA, GA and P�Q,
but not for GGP and RSB. GGP uses pro�t functions
that try to prevent disconnectedness.

4.2 Machine-Dependent Analysis

The machine-dependent measures are : the to-
tal elapsed execution time of the PDE solver
(Tsolver) and the interprocessor communication time
(Tcommunicate). We have run the solver for M13K us-
ing the mapping solutions on 32 and 64 processors.

Tables 1 and 2 present the maximum, mean, stan-
dart deviation values for Tsolver and Tcommunicate.
From these tables we observe the following : (1) The
di�erence in maximum Tsolver between the best and
worst values is 15%, except for the NN value on 64
processors (25%). (2) The processor with maximum
Tcommunicate is not always the processor with maxi-
mum Tsolver even for the algorithms with perfect load
balance. According to the model (see equation 2) that

Figure 7: 16 submeshes produced by the P�Q (top
left) RSB (top right), GGP algorithm (midle left) the
GA (midle right), the NN (bottom left) and SA (bot-
tom right) for the mesh M13K .

is usually adopted in the literature, the processor with
the maximum Tcommunicate is the slowest processor.
In our experiments we see a deviation from this logic
because of overheads due to imperfect work load (com-
putation & communication) balance and synchroniza-
tion.

The �rst observation, the machine-independent
analysis, and the fact that the P�Q's execution time
is only few seconds, while all the other algorithms'
execution time is between several minutes to several

hours indicate that the P�Q is the most suitable al-
gorithm for the sequential compile-time data map-
ping of 2-dimensional irregular meshes for the solu-
tion of PDE problems on distributed memory MIMD
machines. The second observation indicates that the
model (see equation 2) that is usually adopted in the

literature is not complete. This model ignores the ef-
fects of link-contention as well as blocking (idle) time
due to synchronization.

Table 1: Elapsed & Communication Time for the the
Model Problem on 32 processors.

Algs Elapsed Time Comm Time

max mean dev max mean dev

P�Q 3.433 3.428 0.003 0.606 0.511 0.105

RSB 3.421 3.415 0.004 0.844 0.517 0.160

GGP 3.403 3.398 0.004 0.826 0.499 0.162

NN 3.839 3.760 0.014 1.289 0.819 0.230

SA 3.697 3.687 0.006 1.347 0.778 0.294

GA 3.610 3.550 0.021 1.169 0.657 0.279

Table 2: Elapsed & Communication Time for the the
Model Problem on 64 processors.

Algs Elapsed Time Comm Time

max mean dev max mean dev

P�Q 2.13 1.95 0.044 0.777 0.470 0.080

RSB 1.94 1.93 0.002 0.734 0.465 0.101

GGP 1.90 1.89 0.002 0.669 0.423 0.108

NN 2.37 2.17 0.034 0.958 0.657 0.109

SA 1.95 1.94 0.002 0.755 0.473 0.104

GA 2.18 2.05 0.027 0.993 0.582 0.164

5 Summary of Results

Based on the results described in Section 4, Table
3 summarizes the major properties of the six mapping
algorithms. Note that the table re
ects the quality

and timings of the contracted graphs for NN, SA and
GA.

Algs P�Q RSB GGP NN SA GA

load bal. perf. perf. perf. v. g. v. g. v. g.

connect. good v. g. v. g. accpt. good v. g.

interf. good v. g. v. g. accpt. good good

dist. good good good v. g. v. g. accpt

comp. no no no limit. yes yes

-comm.

discon. likl. likl. less likl. likl. likl.

subdom. likl.

depend. no no no yes yes yes

on pp.

mapping very slow very fast extr. very

speed fast slow slow slow

Table 3: Summary of results, with v. g. meaning
very good, accpt. meaning acceptable, limit. meaning
limited, extr. meaning extremely, perf. meaning per-
fect, likl. meaning likely, pp meaning problem param-
eters, discon. meaning disconnected, and comp-comm
meaning computation to communication tradeo�. The
the speed of the mapping depends on the algorithm
implementation, data structures, optimizations, and
even compilers used, thus we prefer to present a rela-
tive comparison.

6 Summary and Conclusions

We have presented performance evaluation results
for six mapping algorithms used for PDE computa-
tions on irregular 2-dimensional meshes. The exper-
iment results are concerned with the performance of
the algorithms for eight measures. The properties of

the algorithms are summarized in table 3 which can be
used for selecting a mapping algorithm that suits dif-
ferent application requirements. For example, for ap-
plications where the same mesh is used many times,
mapping algorithms with slower execution time and
better solution quality can be chosen.

However, we have found that the machine-
dependent performances of the algorithms do not dif-
fer by a great amount. Further, Table 3 shows that
the algorithms that satisfy the mapping criteria to a
better degree are slow (eg. GGP, RSB) and/or involve
intricate parameter-dependence (eg. GA, SA). These
�ndings lead us to recommend that for sequential com-
pile time mapping of 2-dimensional meshes, the very
fast and simple P�Q partitioning algorithm should be
chosen.

Acknowledgements

The �rst author gratefully acknowledges the Alex
G. Nason Foundation for the Nason Prize Award that
supports him at NPAC. Also, the authors thank Horst
Simon for providing the RSB code. The 64 processor
nCUBE II at Purdue University was used for the per-
formance evaluation.

References

[1] M. Berger, S. Bokhari. A partitioning strategy for
nonuniform problems on multiprocessors. IEEE

Trans. Computers, C-36, 5 (May), pp. 570{580,
1987.

[2] Shahid H. Bokhari. On the mapping problem.
IEEE Transactions on Computers, (3):207 { 213,
1981.

[3] N. P. Chrisochoides, C. E. Houstis, and E. N.
Houstis. Geometry based mapping strategies for
PDE computation. In E. N. Houstis and D. Gan-
non, editors, Proceedings of International Con-

ference on Supercomputing, pages 115-127. ACM

Press, 1991.

[4] N. P. Chrisochoides, C. E. Houstis, P. N. Papa-
chiou E. N. Houstis, S. K. Kortesis, and J. R. Rice.
Domain decomposer: A software tool for mapping
PDE computations to parallel architectures. In
R. Glowinski et al., editors, Domain Decomposi-

tion Methods for Partial Di�erential Equations IV,
pages 341{357, SIAM Publications, 1991.

[5] N. P. Chrisochoides, E.N. Houstis, S.B. Kim, M.K.

Samartzis, and J.R. Rice. Parallel iterative meth-
ods. In Advances in Computer Methods for Par-

tial Di�erential Equations VII, (R. Vichnevetsky.
D. Knight and G. Richter, eds) IMACS, New
Brunswick, NJ, pages 134-141, 1992.

[6] N. P. Chrisochoides. On the Mapping of PDE

Computations to Distributed Memory MIMD Ma-

chines. CSD-TR-92-101, Computer Science De-
partment, Purdue University, W. Lafayette IN,
1992.

[7] N. P. Chrisochoides, Elias Houstis and John Rice.
Mapping Algorithms and Software Environment

for Data Parallel PDE Iterative Solvers To ap-
pear in the Special Issue of the Journal of Parallel
and Distributed Computing on Data-Parallel Al-
gorithms and Programming, Vol 21, No 1, April
1994.

[8] N. P. Chrisochoides, Nashat Mansour and Geof-
frey Fox. Performance evaluation of load balancing

algorithms for parallel single-phase iterative PDE

solvers Submitted to the Journal of Concurrency
Practice and Experience, SCCS-551, 1993.

[9] C. Farhat. A simple and e�cient automatic fem
domain decomposer. Computers and Structures,
28:579{602, 1988.

[10] J. Flower, S. Otto, and M. Salana. Optimal map-
ping of irregular �nite element domains to parallel
processors. Parallel Computers and Their Impact

on Mechanics, 86:239{250, 1988.

[11] G. C. Fox, W. Furmanski. Load balancing loosely

synchronous problems with a neural network. 3rd
Conf. Hypercube Concurrent Computers, and Ap-
plications, 241{278, 1988.

[12] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto,
J. Salmon and D. Walker Solving problems on

concurrent processors. Prentice Hall, New Jersey,
1988.

[13] G. C. Fox. A review of automatic load balancing
and decomposition methods for the hypercube. In
Proceedings of the IMA Institute (M. Schultz, edi-
tor), pages 63{76. Springer{Verlag, 1986.

[14] D. E. Goldberg. Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-
Wesley. 1989.

[15] E. N. Houstis, J. R. Rice, N. P. Chrisochoides,
H. C. Karathanasis, P. N. Papachiou, M. K.
Samartzis, E. A. Vavalis, Ko-Yang Wang, and
S. Weerawarana. //ELLPACK: A numerical

simulation programming environment for parallel
MIMD machines. In Proceedings of Supercomput-

ing '90 (J. Sopka, editor), pages 97{107. ACM
Press, 1990.

[16] E. N. Houstis, S. K. Kortesis, and H. Byun. A
workload partitioning strategy for PDEs by a gen-
eralized neural network. Technical Report CSD{
TR{934, Department of Computer Sciences, Pur-
due University, 1990.

[17] J. J. Hop�eld. Neural networks and physical sys-
tems with emergent collective computational abil-
ities. Proceedings of the National Academy of Sci-

ences,

[18] B. W. Kernighan and S. Lin. An e�cient heuristic
procedure for partitioning graphs. The Bell System
Technical Journal, Feb., 291 { 307, 1970.

[19] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Op-
timization by simulated annealing. Science,
220:671{680, 1983.

[20] S-Y Lee, J. K. Aggarwal. A mapping strategy for
parallel processing. IEEE Trans. on Computers,
Vol. C-36, No.4, April, 433{442. 1987.

[21] Nashat Mansour and Geo�rey Fox. A Hybrid Ge-
netic Algorithm for Task Allocation in Multicom-
puters. International Conference on Genetic Algo-

rithms, pp 466-473, July 1991, Morgan Kaufmann
Publishers.

[22] Nashat Mansour and Geo�rey Fox. Allocating
Data to Multicomputer Nodes by Physical Op-
timization Algorithms for Loosely Synchronous

Computations. Concurrency: Practice and Experi-
ence, Vol. 4, Number 7, pp 557-574, October 1992.

[23] N. Mansour, R. Ponnusamy, A. Choudhary, and
G. Fox. Graph Contraction for Physical Opti-
mization Methods: A Quality-Cost Tradeo� for
Mapping Data on Parallel Computers. Interna-

tional Supercomputing Conference, Japan, July
1993, ACM Press.

[24] R. Morrison and S. Otto. The scattered decom-
position for �nite elements. Journal of Scienti�c

Computing, 2:59{76, 1987.

[25] Christos H. Papadimitriou and Kenneth Steiglitz.
Combinatorial Optimization Algorithms and Com-

plexity. Prentice-Hall, Englewood Cli�s, NJ 07632,
1982.

[26] P. Sadayappan, F. Ercal. Nearest-neighbor
mapping of �nite element graphs onto processor
meshes. IEEE Trans. on Computers, vol. C-36,
no. 12, Dec., 1408-1424. 1987.

[27] D. Horst Simon. Partitioning of unstructured
problems for parallel processing. Technical Report
RNR-91-008, NASA Ames Research Center, Mof-
fet Field, CA, 94035, 1990.

[28] R. D. Williams. Performance of dynamic load
balancing algorithms for unstructured mesh cal-
culations. Concurrency Practice and Experience,
3(5), 457-481. 1991.

