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Abstract

We have measured the dynamical critical exponent z for the Swendsen-Wang and the Wol�

cluster update algorithms, as well as a number of variants of these algorithms, for the q = 2

and q = 3 Potts models in two dimensions. We �nd that although the autocorrelation times

di�er considerably between algorithms, the critical exponents are the same. For q = 2, we

�nd that although the data are better �tted by a logarithmic increase in the autocorrelation

time with lattice size, they are also consistent with a power law with exponent z � 0:25,

especially if there are non-negligible corrections to scaling.
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I. INTRODUCTION

Cluster update algorithms can greatly reduce critical slowing down in computer sim-

ulations of spin models. The original idea of Swendsen and Wang 1 (SW) was based on

the work of Fortuin and Kasteleyn 2 , which relates the Potts model 3 to a random bond

percolation model 4 . The q-state Potts model consists of a lattice of spins �i which can

take q di�erent values, and its Hamiltonian is

H = K

X

<i;j>

��i�j ; (1)

where K is a dimensionless coupling constant. By introducing bonds between neighboring

spins, with probability

p(�i; �j) = ��i�j (1 � e
�K); (2)

clusters of bonded spins are created. The SW algorithm consists of generating all such

clusters, then choosing a random spin value for each cluster and assigning it to all the

sites in that cluster. In the algorithm of Wol� 5 , a site is chosen at random and a single

cluster constructed around it. All the spins in this cluster are then 
ipped, i.e. changed

to a single new Potts state (di�erent from the current state of the cluster's spins) which is

chosen at random from the q � 1 possible values. Note that this is di�erent from the SW

update, which may leave the spins unchanged in some clusters. These algorithms, which

update whole clusters of spins at a time, result in a dramatic decrease in critical slowing

down over local algorithms which update only one spin at a time.

As shown by Wol� 6 , the SW and Wol� algorithms are both special cases of the

following general cluster update algorithm:

Step 1. The lattice is decomposed into Nc clusters ci, using the bond probabilities of

equation (2).

Step 2. A subset C of the ci is chosen using some speci�ed probability distribution, and

all of the clusters of spins in C are 
ipped independently.

The SW algorithm corresponds to including each cluster in C with probability (q � 1)=q,

while the Wol� algorithm amounts to picking a single cluster with probability proportional

to its size. Hence the only di�erences between the Wol� and SW algorithms are that the

SW algorithm 
ips more clusters per iteration, while the Wol� algorithm 
ips relatively

larger clusters. In order to investigate these di�erences further, we also studied some other

methods of choosing the clusters to be 
ipped, including the following :

(1) 
ip all the clusters (hereafter denoted by AC),

(2) 
ip one of the clusters, chosen at random with equal probability for each cluster

(denoted by RC), and
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(3) 
ip the largest cluster (denoted by LC).

Note that 
ipping all of the clusters will not work in the case of the Ising model (q = 2),

since it is equivalent to a global spin 
ip, and is thus highly non-ergodic! However for

q > 2 it is a perfectly acceptable algorithm.

II. SIMULATIONS

We have made a high statistics study of the above cluster algorithms for the q =

2 and q = 3 Potts models in two dimensions. Preliminary results have been reported

elsewhere 7 . We measured the autocorrelations in the energy E = �
P

<i;j> ��i�j and the

absolute magnetization jM j = j
P

j e
2�i�j=qj. The normalized autocorrelation function for

an operator A is

�A(t) =
< A(0)A(t) > � < A(0) >2

< A(0)A(0) > � < A(0) >2
: (3)

At large t this should decay as e�t=�exp , where �exp is the exponential autocorrelation time

(independent of A unless A is orthogonal to the slowest mode). The quantity which is

actually relevant to the error in A is the integrated autocorrelation time 8

�int;A =
1

2
+

1X

t=1

�A(t): (4)

The integrated and exponential autocorrelation times have associated exponents zint;A

and zexp governing critical slowing down. These are given by � (L) � L
z for both the

exponential and integrated autocorrelations, where LxL is the size of the lattice and � (L)

is measured at the in�nite volume critical point.

Autocorrelations are traditionally measured between each update of the entire lattice,

so for the single cluster updates, where only a fraction of the lattice sites are updated

at each iteration, the autocorrelation time needs to be scaled by a factor of the average

cluster size < jcj > divided by the lattice size, so that

� = �
0
< jcj > L

�d
; (5)

where � 0 is the unscaled autocorrelation time and d is the lattice dimension (here d =

2). For the Wol� algorithm, the average cluster size scales like the susceptibility, hence

< jcjW >� L

=� . The average cluster size for SW is (apart from �nite size e�ects)

independent of L, thus < jcjRC >� L
0. As in the percolation model 4, the maximum

cluster size (normalized to the size of the lattice) scales like the magnetization, so that

< jcjLC >� L
d��=�. From equation (5) and the de�nition of z we have that

zW = z
0

W � (d� 
=�)

zRC = z
0

RC � d

zLC = z
0

LC � �=�

(6)
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where z0 is the unscaled exponent, � 0(L) � L
z0

. In our calculations the scaled value of

z is actually obtained by scaling the autocorrelations by the average cluster size, but we

have checked that using equation (6) instead gives consistent answers for LC and Wol�.

For RC, however, there are large �nite size e�ects on the smaller lattices and the average

cluster size does not scale well.

Note that the computational requirement for the Wol� algorithm is proportional to the

average size of the clusters which are 
ipped 5, but for the other single cluster algorithms

(RC and LC) it is necessary to form all the clusters in order to choose the one to 
ip. Hence

the computational requirement for the RC and LC algorithms goes like Ld (the same as

for SW), and in that sense the above scaling is unwarranted. However it may be possible

to invent a clever algorithm which constructs single clusters with the required probability

distribution, and in any case the scaling is necessary to allow a sensible comparison with

the Wol� algorithm.

The autocorrelations were measured at the in�nite volume critical point (which is

known exactly for 2-d Potts models) over runs of typically 5 � 105 to 106 sweeps (106 to

107 sweeps for the RC algorithm), and 10 or 20 such runs were done for each of the di�erent

lattice sizes, from 82 up to 1282. The results from the multiple runs were averaged to give

the overall autocorrelation function �A(t). For the SW and Wol� algorithms, we also did

runs on a 2562 lattice. For SW we did a total of 7.5 million sweeps for q = 2 and 3.2 million

for q = 3, while for Wol� we did 7.5 million sweeps for q = 2 and 5 million for q = 3. For

the SW algorithm with q = 2 we also did a total of 5.6 million sweeps on a 5122 lattice.

In the SW case on these larger lattices we used a parallel cluster-�nding algorithm which

we have developed 9 .

The autocorrelation time �exp for an operator A was extracted from a �t to log �A(t)

in a region where it was linear, typically somewhere between �exp and 3�exp. �int;A was

calculated by summing �A(t) for t less than some cuto� value, and then using values

from the �t to approximate �A(t) for the remaining part of the sum, which is then just

a geometric series and so can be summed analytically. The cuto� was taken to be the

largest point used in the �t, which was usually between 2�exp and 3�exp. This method is

similar to that used by Wol� 10 . The above analysis was also done for each of the 10 or

20 multiple runs, which provided an estimate of the error in the autocorrelation times.

III. RESULTS

We found as expected that the energy and absolute magnetization have very similar

values of �exp, however jM j decorrelates faster than E, giving smaller values of both �int

and zint. Results for �int;E for the di�erent algorithms are shown in Figs. 1 and 2 for

q = 2 and q = 3 respectively, along with straight lines which represent chi-squared �ts to

a power law. The autocorrelation times as a function of L are given for the Wol� and SW

4



algorithms in Tables 1 and 2, for q = 2 and q = 3 respectively. The values of z from �ts

to all the data are given in Table 3. We have not given any values for the RC algorithm,

since the data are not good enough to reliably extract an exponent. The exponents for

all the other algorithms are approximately the same, and in particular it appears that

zSW = zWolff for q = 2 and q = 3 Potts models in two dimensions. The exponents for the

LC algorithm with q = 2 are rather high, however this is due to the fact that the value of

z tends to decrease slightly if the �ts are done at larger L. The SW and Wol� algorithms

also give z � 0:30 if the �ts are done only up to L = 128.

Although the exponents are the same, the autocorrelation times di�er substantially

between algorithms. The Wol� algorithm has values which are less than those of SW by a

factor of about 0.45 for q = 2 and 0.67 for q = 3. It is interesting to note that these ratios

are practically the same as the probabilities for 
ipping a cluster in the SW algorithm, so

that if the SW algorithm was scaled (like the single cluster algorithms) by the proportion

of spins which are actually changed in the update, then the Wol� and SW algorithms

would give nearly identical results. It therefore appears that (at least in two dimensions)

the main advantage of a single cluster algorithm such as Wol� is that the cluster is always


ipped. Notice however that 
ipping all the SW clusters (the AC algorithm) is actually

worse than the standard SW algorithm, and in d > 2 this argument does not hold since

the exponents (and not just the autocorrelation times) are di�erent for the Wol� and SW

algorithms 10; 11 .

Another proposed reason for the superiority of the Wol� algorithm over SW is that

the average cluster size is larger, and this is supported by the fact that the LC algorithm,

where the largest cluster is 
ipped, does slightly better than Wol�. It is therefore quite

surprising to see that the RC algorithm, where the average cluster size is approximately

the same as for SW, does even better than Wol� or LC. This suggests that (at least

in two dimensions) it is the single cluster nature of these updates, rather than the size

of the clusters, which is most important, and that successive clusters in a single cluster

update are somehow less correlated than the clusters in a full lattice update such as the

SW algorithm. The overlap between sites in successive clusters gives some indication of

how successive clusters are correlated, and thus should a�ect the autocorrelations. The

small RC clusters have a negligible average overlap, which is not the case for the Wol�

clusters in two dimensions. This overlap between successive clusters in the Wol� algorithm

was studied by Tamayo et al.
11 for the Ising model, and found to decrease markedly as

d increases. It seems likely that it is a combination of the e�ect of larger clusters, and

a small overlap between successive clusters, which results in the Wol� algorithm having

smaller dynamical critical exponents than the SW algorithm for d > 2.

We have also done a preliminary investigation, with a single run of 105 to 106 sweeps

for each lattice size, of another algorithm, for which all \large" clusters (those greater than
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a certain cuto� size) are 
ipped. In a study of the mean-�eld Ising model, this algorithm

was found to give the same value of z as SW, but the values of � were halved 12 . For

the 2-d Potts model we chose the cuto� to be L3=2, and found that the autocorrelation

times for this algorithm are decreased only slightly, giving values approximately midway

between those of SW and LC, with the same value of z.

A number of other studies have been made of the dynamical exponents of cluster

algorithms for Potts models. In their original paper 1, Swendsen and Wang measured

the autocorrelations on fairly small lattice sizes, and thus obtained a rather high value of

0:35(1) for z. Wol� 10 has compared his algorithm to SW for the 2-d and 3-d Ising models,

and his results agree fairly well with our data. A study of the Wol� algorithm for the Ising

model has also been carried out by Tamayo et al. 11, who obtain similar results. Their

paper also contains some remarks on the RC algorithm, and suggests that zRC < zW for

the 2-d model. From our results it appears that this is certainly possible, however the

trend at larger lattice sizes seems to imply that the exponent is probably the same as for

the other algorithms. Much better data would be required to draw a �rm conclusion. Our

value for zSW in the q = 3 case agrees with that of Swendsen and Wang 1, and the more

recent result of Li and Sokal 13 . Kandel et al. 14 obtain a value of 0.4 by measuring the

relaxation time from an ordered state to equilibrium, claiming to see a crossover to this

smaller value of the exponent for L > 32, however we see no sign of such behavior.

An interesting recent development is the claim by Burkitt and Heermann 15 that

the autocorrelations in the 2-d Ising model using the SW algorithm grow logarithmically

rather than as a power law, so that zSW = 0. It is very di�cult to distinguish between

a logarithm and a small power. Since power law or logarithmic behavior is only expected

asymptotically, there is some uncertainty as to which data points should be included in

the �t (the same is true in �tting the autocorrelation function to obtain � ), so the �ts

are somewhat subjective. If we look at the slopes of lines connecting successive points

in Fig. 1 (i.e. the approximations to z using only two successive lattice sizes), we see a

slight trend towards smaller values as L increases. The di�cult problem is to determine

whether this trend disappears at large L, resulting in a non-zero value of z, or continues,

signifying logarithmic behavior. Note that the q = 3 data �t well to a power law even

down to L = 16, and in this case a logarithmic increase in � can be de�nitely excluded.

In Fig. 3 we plot the exponential and integrated autocorrelations in jM j, along with

�ts to a power law (solid lines) and a logarithm (dashed lines). As seen by Burkitt and

Heermann, �int;jM j seems to be better �tted with a logarithm, especially for small values

of L (although these are not really relevant, since we are looking for asymptotic behavior).

It is therefore quite possible that zint;jM j is zero. The other exponents (zint;E and zexp

for E and jM j) are much harder to ascertain, since the autocorrelations do not give good

�ts to either a log or a power law unless smaller values of L are excluded. For �int;E, this
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can be seen in Fig. 1, where the solid line is a power law �t, and the dashed line a �t to

a logarithm. In the case of �exp for jM j, we found substantially greater values at large L

than did Burkitt and Heermann, and consequently were unable to reproduce their good

logarithmic �t down to small L. This is possibly due to large errors in their results at large

L, although it is di�cult to tell since no errors are given.

In Table 4 we give the values of chi-squared per degree of freedom for both �ts, for

the Wol� and SW algorithms. The �ts include only data with L � 64 for SW, and L � 50

for Wol�, so that we are only �tting to �ve data points, and this may a�ect the reliability

of the chi-squared values. The results favor logarithmic behavior, although we would not

claim that the evidence is conclusive, especially since the di�erences are so small that

corrections to scaling could be very important. Good data on much larger lattices will

probably be necessary to conclusively di�erentiate between z = 0 and z � 0:25.
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SW WOLFF

L �exp �int �exp �int

8 2.598 (10) 2.590 (5) 1.175 (29) 1.095 (1)
2.568 (13) 2.451 (6) 1.127 (29) 1.006 (1)

16 3.315 (13) 3.258 (5) 1.612 (22) 1.435 (4)

3.282 (17) 2.957 (5) 1.555 (22) 1.215 (3)

32 4.117 (18) 4.016 (5) 2.101 (11) 1.815 (3)
4.095 (19) 3.468 (8) 2.048 (14) 1.403 (3)

50 4.740 (10) 4.586 (5) 2.460 (21) 2.079 (5)
4.709 (25) 3.812 (6) 2.382 (21) 1.513 (3)

64 5.081 (21) 4.899 (10) 2.577 (31) 2.225 (6)
5.002 (29) 3.986 (7) 2.454 (31) 1.559 (5)

100 5.78 (4) 5.510 (17) 2.943 (25) 2.489 (7)
5.71 (5) 4.305 (12) 2.801 (23) 1.641 (3)

128 6.16 (4) 5.874 (16) 3.10 (4) 2.654 (12)

6.11 (5) 4.509 (13) 3.01 (4) 1.694 (5)

256 7.21 (7) 6.87 (3) 3.42 (6) 3.076 (24)
7.23 (6) 5.018 (13) 3.35 (5) 1.818 (9)

512 8.53 (18) 8.04 (10) - -
8.51 (9) 5.530 (20) - -

Table 1

Exponential and integrated autocorrelation times for the SW and Wol� algorithms as a

function of the lattice size for q = 2. For each value of L, the �rst line displays the values

for the energy, the second line the absolute magnetization.
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SW WOLFF

L �exp �int �exp �int

8 6.182 (18) 6.056 (9) 4.36 (3) 3.900 (8)
6.196 (22) 5.821 (9) 4.31 (3) 3.735 (10)

16 9.260 (8) 8.99 (3) 6.82 (6) 5.878 (15)

9.260 (8) 8.45 (3) 6.81 (6) 5.419 (14)

32 13.77 (13) 13.30 (6) 10.32 (12) 8.76 (4)
13.78 (13) 12.11 (5) 10.26 (12) 7.72 (3)

64 20.39 (22) 19.58 (12) 17.0 (7) 13.08 (16)
20.38 (20) 17.32 (10) 16.7 (5) 11.06 (11)

128 30.2 (4) 28.64 (12) 24.2 (1.0) 19.5 (3)
30.4 (3) 24.55 (12) 22.7 (6) 15.53 (14)

256 43.4 (2.0) 41.3 (1.5) 33 (3) 27.7 (8)
43.2 (10) 34.3 (1.0) 31.4 (1.3) 21.5 (3)

Table 2

Same as Table 1 but for q = 3.
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Q = 2 Q = 3

zexp zint zexp zint

SW 0.26(1) 0.25(1) 0.56(2) 0.55(1)
0.26(1) 0.16(1) 0.56(2) 0.51(1)

Wol� 0.22(2) 0.25(1) 0.60(2) 0.57(1)

0.22(2) 0.12(1) 0.57(2) 0.51(1)

LC 0.32(2) 0.29(1) 0.59(2) 0.57(1)
0.32(2) 0.16(1) 0.59(2) 0.52(1)

AC - - 0.57(2) 0.56(1)
- - 0.57(2) 0.53(1)

Table 3

Dynamical critical exponents for the di�erent cluster algorithms. For each algorithm, the

�rst line displays the values for the energy, the second line the absolute magnetization.
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SW Wol�

power log power log

�exp;E 2.4 0.5 5.2 2.6
�int;E 5.9 1.9 4.2 0.6
�exp;jM j 2.2 0.7 3.8 2.7

�int;jM j 6.2 0.5 1.1 0.4

Table 4

Chi-squared per degree of freedom for �ts to a power and a logarithm.
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Figure 1. �int;E for the di�erent algorithms for q = 2. The solid lines are �ts to a power

law, with exponents given in Table 1, while the dashed lines are �ts to a logarithm.

Figure 2. �int;E for the di�erent algorithms for q = 3. The solid lines are �ts to a power

law.

Figure 3. Exponential and integrated autocorrelation times for jM j for the Wol� and SW

algorithms with q = 2. The solid lines are �ts to a power law, while the dashed lines are

�ts to a logarithm.
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