
Figure captions

Fig. 1. Autocorrelations � int;E for theWol� and SWalgorithms plottedagainst lattice

sizeL for the Isingmodel in(a) 2-d, (b) 3-d and(c) 4-d. Also shownis the speci�c heat

CH, and the SWautocorrelations scaledby the average maximumcluster sizem. The

latter twoquantities are alsoscaledbyanarbitraryconstant. The plots are log-linear for

(a) and(c), andlog-logfor (b). All error bars are shown, but areusuallysmaller thanthe

points. The lines are �ts toapower law, logarithm, or constant.

Fig. 2. The di�erence � W
int;E � (a + b � CH) betweentheWol�autocorrelations anda

simple linear functionof the speci�c heat, for the Isingmodel in(a) 2-d, (b) 3-d and(c)

4-d. Thevaluesof a andb arechosensoas tominimizethe� 2, except inthreedimensions,

wherewehave takenb = 0. The errors shownare almost all less than1% of � W
int;E .
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Dimension zint;E SW zint;E Wol�

2 0:25(1) � 0: 25(1) �

3 0: 54(2) 0: 33(1) �

4 0: 86(2) 0: 25(1) �

Table1.

Measureddynamiccritical exponentsfor Isingmodel clusteralgorithms. Asterisks indicate

that the datais alsoconsistent witha logarithmicdivergence (z int;E =0).
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critical behavior of the systemmaybe described.

Therelations(3) and(4) arecertainlynot general results, sincefor the2-d q =3Potts

model we�ndthat z W
> �=� andz SW

>�=� [5][6]. Also, it is quite surprisingthat these

empirical relations imply that z SW is not equal to z W for the 2-d Isingmodel, whereas

the twoappear to be equal for the 2-d q =3Potts model. It is of course possible that

theserelationsarenot exact, butmerelygoodapproximations. Wearecurrentlycollecting

more data inorder to checkwhether these results holdupwithlarger lattices andbetter

statistics, andwewill present more detailedresults ina future publication[23] .
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corrections to scalingare knownto be important for these quantities. If we doa simple

power law�t to the speci�c heat in 3-d and the magnetization in 4-d, we get results

whichare also verydi�erent fromthe actual exponents, but whichare veryclose to the

measuredvalues of the correspondingdynamic exponents, as expectedfromrelations (3)

and(4). Thus althoughwemaynot be able tomeasure the asymptotic behavior of the

autocorrelation times, �nding simple relations between the autocorrelations and static

quantities whose asymptotic behavior is knownenables us to infer the true values of the

dynamic critical exponents.

This is especially useful for the 2-d model, for whichthe autocorrelations growso

slowlythat anycorrections to scalingcouldhave abige�ect. It is therefore verydi�cult

tosaywithanycon�dencethat z =0, evenwithdataonverylarge lattices. Theapparent

relation(3) seems tobe themost compellingevidence so far that z W
int;E is infact zerofor

the 2-d Isingmodel, while the relation(4) wouldimplythat z SW
int;E is actually1/8, which

is not apparent fromthe usual �ts toeither a logarithmor apower law.

4. Concl usions

Wehavemeasuredtheautocorrelationsanddynamiccritical exponentsof theSWand

Wol�cluster algorithmsfor theIsingmodel in2, 3and4dimensions. Wehavefoundwhat

appear tobe surprisinglysimple empirical relations betweenthe autocorrelationtimes of

thesealgorithmsandsimplestatic quantities (themagnetizationandspeci�cheat). These

relations couldperhaps stemfromthe fact that the dynamics of cluster algorithms are

closelylinkedto the physical properties of the system, since the Swendsen-Wangclusters

arejust theConiglio-Klein-Fisherdroplets [22] , or \physical clusters" [18], fromwhichthe

7



additive constant a is consistent withzero, so that the autocorrelationtime maybe just

amultiple of the speci�c heat, withb � 0: 148 . Infour dimensions we �nda � 0: 167 and

b � 0: 050 .

The surprising simplicity of the result (3) led us to look for a similar relation for

the SWalgorithm. The power of cluster update algorithms comes fromthe fact that

they 
ip large clusters of spins at a time. The relative average size of the largest SW

cluster, m=< jc max
SW j >=L

d, is anestimator of themagnetization[18] , andthe exponent

�=� characterizing the divergence of the magnetizationhas values whichare similar to

our measuredvalues for the dynamic exponents of the SWalgorithm. Toinvestigate this

further, we have scaledthe SWautocorrelations bym, inasimilarmanner tothe scaling

of theWol�autocorrelations inequation(1). If this gives aconstant or a logarithm, then

�
SW
int;E diverges like themagnetization, andsowehave z SW

int;E =�=� .

The SWautocorrelations scaledbym(andbyanadditional arbitrary constant, so

that these points are not entangledwithothers inthe plots) are alsoshowninFig. 1. For

d =4 the results are very close to a constant, while for d =3 they seemto approacha

constant as L increases. Intwodimensions the scaledautocorrelations are not constant,

but they�t verymuchbetter toa logarithmthandoes the unscaleddata, as canbe seen

inFig. 1(a), and�t verypoorlytoapower law. The datatherefore support the assertion

that

m�
SW
int;E =a +b � log L; z

SW
int;E =�=�: (4)

Ourmeasurementsof z W
int;E in3-d andz SW

int;E in4-d giveresultswhichareverydi�erent

fromthe acceptedvalues of �=� (� 0: 10� 0: 20) [19] [20] and�=� (=1) [15][21] , since

6



implythat z =0).

InFig. 1 we also include the measuredvalue of the speci�c heat C H, scaledbyan

appropriate factor, inorder toshowthat the boundof Li andSokal [5]

�int;E � constant �CH ; zint;E � �=� (2)

is indeedsatis�edbythe SWalgorithm. Here � is the critical exponent for the speci�c

heat (C H � L
�=�). Nosuchboundhas beenprovenfor theWol�algorithm[17] , although

it appears fromthe�gures that not onlydoes theboundhold, but that theremayactually

be equalityinthe exponents.

If we compare the results of �ts toC H and� W
int;E (the autocorrelations inthe energy

for the Wol� algorithm), which correspond to the measured values of �=� and z W
int;E

respectively, thenford =3we�nd0.32(1) and0.33(1). Intwoandfourdimensions�=0,

and z W
int;E is also consistent with zero. Hence the Wol�algorithmfor the Ising model

seems tosatisfythe surprisinglysimple relations

�
W
int;E =a +b � C H; z

W
int;E =�=�; (3)

where a andb are constants. InFigure 2weplot the di�erence � W
int;E � (a +b � C H) for

the various dimensions, witha andb chosentominimize� 2 overacertainrangeof lattice

sizes (smaller values of Lare excludedfromthe�t). Wecansee that inall cases, values of

a andb canbe foundsuchthat thedi�erence is zerowithinerrors. Note that all the errors

shownhere are purelystatistical (one standarddeviation). Intwodimensions the best �t

is obtainedwitha � �0: 474 andb � 0: 957 (the datadoes not exclude the possibilitythat

b =1 , whichwouldimplythat � W
int;E is just a constant plus C H). For the 3-d model the

5



at eachiteration, themeasuredautocorrelationtime � 0 needs tobe scaledbythe ratioof

the averageWol�cluster size < j c W j >andthe number of lattice sites L d. The scaled

autocorrelationtime

� =� 0
<j cW j >=L

d (1)

is what we present for theWol�autocorrelations. Since this scalingratio is anestimator

for thesusceptibility[2], thedynamiccritical exponent z 0 for theunscaledautocorrelations

is givenbyz 0 =z +(d� 
=�) , where � is the critical exponent for the correlationlength,

and
 is the critical exponent for the susceptibility, whichdiverges as L 
=� .

FortheSWalgorithmonthe larger lattice sizes intwoandthreedimensions, weused

aparallel cluster labelingalgorithmwhichwehavedeveloped[16] inorder torunonlarge

parallel machines. For theother lattice sizes, weranmultiplesimulations inparallel using

smaller sharedmemorymachines andnetworks of workstations.

3. Resul t s

Results for � int;E , the integratedautocorrelationtime for the energy, are shownin

Figures 1(a), (b) and (c) for d =2, 3 and 4 respectively. For d =3 we have used a

log-log plot, withthe straight lines representing� 2 �ts to a power law, while for d =2

andd =4wehaveuseda log-linear plot, withthe straight lines representing� 2 �ts toa

logarithm. Note however that for d =4we plot log �int;E rather than� int;E for the SW

algorithm, since the SWautocorrelations increase as apower of L. Themeasuredvalues

of the exponents fromthe�ts tothedataareshowninTable1. FortheWol�algorithmin

all dimensions, andthe SWalgorithmintwodimensions, it is verydi�cult todistinguish

betweenasmall exponent andalogarithmicincrease intheautocorrelations (whichwould

4



algorithm, Tamayo et al. [8] obtained0.44(10), while Wol�founda value of 0.28(2) for

the energyautocorrelations [7]. WehaveexaminedWol�'sdataandfoundthat it also�ts

well toalogarithm, sothat z =0 is alsoapossibility.

In four dimensions only one result is known, which is z =�0: 05(15) for the Wol�

algorithm[8]. Simulations have also beendone onthe mean-�eldIsingmodel, whichis

expectedto give the same exponents as the Isingmodel infour or more dimensions [11]

. Themean-�elddataare consistent withz being0 for theWol�algorithm[8] and1for

SW[12] , withthe latter result beingsupportedbytheoretical arguments.

2. Si mul at i ons

Due to the discrepancies betweenthe various measurements of the dynamic critical

exponents, wehavedonenumerical simulationsof theIsingmodel in2, 3and4dimensions

using the SWandWol�algorithms, with the aimof obtaining good statistics onfairly

large lattices, inorder toget reliable values for the dynamic exponents. Wemeasuredthe

time correlationfunction�(t ) for the energy, andextractedthe integratedautocorrelation

time [3] � = 1

2
+
P

1

t=1 �(t ). Thedynamiccritical exponent z is givenby� � L
z, where �

for thedi�erent latticesizes ismeasuredat the in�nitevolumecritical point. Wehaveused

the Potts formulationof the Isingmodel, for whichthe critical point intwodimensions is

knownto be � c =log (1+
p
2) � 0: 8813736 [13] . For the 3-d model we usedthe value

0.443308[14] , while inthe 4-d casewehaveused0.29962[15] . Adetailedaccount of the

methods weusedtodothemeasurements, �ts anderror estimates, is giveninref. [6].

Autocorrelationsaretraditionallymeasuredbetweeneachupdateof theentirelattice,

sofor the singleclusterWol�update, whereonlyafractionof the lattice sites areupdated

3



1. Introduct i on

The Monte Carlo cluster update algorithms of SwendsenandWang (SW) [1] and

Wol�[2] candramatically reduce critical slowing downincomputer simulations of spin

models, and thus greatly increase the computational e�ciency of the simulations (for

reviews of cluster algorithms, see refs. [3] [4] ). There is little theoretical understanding

of the dynamics of these algorithms. Inparticular, little is knownas to whythey seem

toeliminate critical slowingdowncompletely insome cases, andnot others. There is no

knowntheorywhichcanpredict the value of the dynamic critical exponent z for anyspin

model, althougha rigorous boundonz for the SWalgorithmfor Potts models has been

derived [5] . Another problemwhich is not well understood is why the SWandWol�

algorithms give similar values of z for the 2-d Potts model [6] , but have very di�erent

behavior for other models, suchas the Isingmodel inmore thantwodimensions [7] [8] .

Themeasurement of dynamiccritical exponents isnotoriouslydi�cult, andbothvery

goodstatistics andverylargelattices arerequiredinordertoobtainaccurateresults. This

is certainlythe case for the Isingmodel, where anumber of di�erent measurements have

givencon
icting results. For the twodimensional Ising model, initial results suggested

z � 1=3 for boththe SWandWol�algorithms [1][8]. Further work[7] gave z � 1=4 , and

it was later shownthat the datawereconsistent withalogarithmicdivergence, suggesting

that z =0 [9] . Recent results showthat it is very di�cult to distinguishbetween a

logarithmandasmall power [6].

Measurementsonthethreedimensional model haveproventobe just asdi�cult, with

values of z for theSWalgorithmrangingfrom0.339(4) to0.75(1) [1][7][10] . FortheWol�
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Abstract

We have measured the autocorrelations for the Swendsen-Wang and the Wol� cluster

update algorithms for the Isingmodel in2, 3 and4dimensions. The data for theWol�

algorithmsuggest that the autocorrelations are linearly related to the speci�c heat, in

whichcasethedynamiccritical exponentz W
int;E =�=� . FortheSwendsen-Wangalgorithm,

scalingthe autocorrelations bythe averagemaximumcluster size gives either a constant

or a logarithm, whichimplies that z SW
int;E =�=� for the Isingmodel.
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