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Abstract

1 Introduction

Two basic types of simulations exist for mod-

eling systems of many particles: grid-based

(point particles indirectly interacting with one

another through the potential calculated from

equivalent particle densities on a mesh) and

particle-based (point particles directly inter-

acting with a one another through poten-

tials at their positions calculated from the

other particles in the system). Grid-based

solvers traditionally model continuum prob-

lems, such as 
uid and gas systems, and mixed

particle-continuum systems. Particle-based

solvers �nd more use modeling discrete sys-

tems such as stars within galaxies or other rar-

e�ed gases. Many di�erent physical systems,

including electromagnetic interactions, gravi-

tational interactions, and 
uid vortex interac-

tions, all are governed by Poisson's Equation:

r
2� = �4�G�; (1)

for the gravitational case. To evolve N parti-

cles in time, the exact solution to the problem

requires calculating the force contribution to

each particle from all other particles at each

timestep:

Fi =

NX
j 6=i

Gmimj(xj � xi)

jxj � xij
3

: (2)

The O(N2) operation count is prohibitive for

simulations of more than a few thousand par-

ticles commonly required to represent astro-

physical and vortex con�gurations of interest.

One method of decreasing the operation

count utilizes grid-based solvers which trans-

late the particle problem into a continuum

problem by interpolating the particles onto

a mesh representing density and then solve

the discretized equation. Initial implemen-

tations were based upon Fast Fourier Trans-

form (FFT) and Cloud-in-Cell (CIC) methods

which can calculate the potential of a mass

distribution on a three-dimensional grid with

axes of length M in O(M3 logM3) operations

but at the cost of lower accuracy in the force

resolution. All of these algorithms are dis-

cussed extensively by Hockney and Eastwood

[12].

A newer type of grid-based solver for dis-

cretized equations classi�ed as a multilevel

or multigrid method has been in develop-

ment for over a decade [7, 8]. Frequently

the algorithm utilizes a hierarchy of rectan-

gular meshes on which a traditional relax-

ation scheme may be applied, but multiscale

methods have expanded beyond any particu-

lar type of solver or even grids, per se. Re-

laxation methods e�ectively damp oscillatory

error modes whose wavenumbers are compa-

rable to the grid size, but most of the it-

erations are spent propagating smooth, low-



wavenumber corrections throughout the sys-

tem. Multigrid utilizes this property by resam-

pling the low-wavenumber residuals onto sec-

ondary, lower-resolution meshes thereby shift-

ing the error to higher wavenumbers compa-

rable to the grid spacing where relaxation is

e�ective. The corrections computed on the

lower-resolution meshes are interpolated back

onto the original �ner mesh and the combined

solutions from the various mesh levels deter-

mine the result.

Many grid-based methods for particle prob-

lems have incorporated some form of local di-

rect force calculation, such as the particle-

particle / particle-mesh (PPPM) method or

the Method of Local Corrections (MLC), to

correct the force on a local subset of parti-

cles. The grid is used to propagate the far-

�eld component of the force while direct force

calculations provide the near-�eld component

either completely or as a correction to the

\external" potential. The computational cost

strongly depends on the criterion used to dis-

tinguish near-�eld objects from far-�eld ob-

jects. Extremely inhomogeneous systems of

densely clustered particles can deteriorate to

nearly O(N2) if most of the particles are con-

sidered neighbors requiring direct force com-

putation.

A class of alternative techniques which have

been implemented with great success utilize

methods to e�ciently calculate and combine

the coe�cients of an analytic approximation

to the particle forces using spherical harmonic

multipole expansions in three dimensions.
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where the multipole moments

M i1:::in
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)
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V
 are the disjoint spatial regions, and G(r)

is the Green's function. Instead of integrating

G over the volume V
 , one may compute the

potential (and, in a similar manner, the gradi-

ent) at any position by calculating the multi-

pole moments which characterize the density

distribution in each region, evaluating G and

its derivatives at r � r
 , and summing over

indices.

Not only does spatially sorting the particles

into a tree-type data structure provide an ef-

�cient database for individual and collective

particle information [18], but the various al-

gorithms require and utilize the hierarchical

grouping of particles and combined informa-

tion to calculate the force on each particle from

the multipole moments in O(N logN ) opera-

tions or less.

Implementations for three dimensional

problems frequently use an oct-tree | a cube

divided into eight octants of equal spatial

volume which contain sub-cubes similarly di-

vided. The cubes continue to nest until, de-

pending on the algorithm, the cube contains

either zero or one particles or a few parti-

cles of equal number to the other \terminal"

cells. Binary trees which subdivide the vol-

ume with planes chosen to evenly divide the

number of particles instead of the space also

have been used [3]; a single bifurcation sepa-

rates two particles spaced arbitrarily close to-

gether while the oct-tree would require arbi-

trarily many sub-cubes re�ning one particular

region. This approach may produce fewer arti-

facts by not imposing an arbitrary rectangular

structure onto the simulation, but construc-

tion is more di�cult and information about
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each cut must be stored and used throughout

the computation.

Initial implementations for both grid-based

and multipole techniques normally span the

entire volume with a uniform resolution net

in which to catch the result. While this is

adequate for homogeneous problems, it either

wastes computational e�ort and storage or

sacri�ces accuracy for problems which exhibit

clustering and structure. Many of the algo-

rithms described above provide enough 
exi-

bility to allow adaptive implementationswhich

can conform to complicated particle distribu-

tion or accuracy constraints.

2 Adaptive Structures

Mesh-based algorithms have started to incor-

porate adaptive mesh re�nement to decrease

storage and wasted computational e�ort. In-

stead of solving the entire system with a �xed

resolution grid designed to represent the �nest

structures, local regions may be re�ned adap-

tively depending on accuracy requirements

such as the density of particles. Unlike �nite-

element and �nite-volume algorithms which

deform a single grid by shifting or adding ver-

tices, adaptive mesh re�nement (AMR) algo-

rithms simply overlay regions of interest with

increasingly �ne rectangular meshes. Berger,

Colella, and Oliger have pioneered application

of this method to hyperbolic partial di�eren-

tial equations [5, 6]. Almgren recently has ex-

tended AMR for multigrid to an MLC imple-

mentation [1].

Adaptive mesh re�nement traditionally has

been limited to rectangular regions. Mc-

Cormick and Quinlan have extended their very

robust, inherently conservative adaptive mesh

multilevel algorithm called Asynchronous Fast

Adaptive Composite (AFAC) [14] to relax non-

rectangular sub-regions directly between two

grid levels. The algorithm is a true mul-

tiscale solver not limited to relaxation-type

solvers. AFAC provides special bene�ts for

parallel implementations because the various

levels in a single multigrid cycle may be sched-

uled in any convenient order and combined at

the end of the cycle instead of the traditional,

sequentially-ordered V-cycle.

In the particle-based solver regime, the

Barnes-Hut [4] method utilizes an adaptive

tree to store information about one particle

or the collective information about particles

in the sub-cubes. Each particle calculates the

force on itself from all of the other particles

in the simulation by querying the hierarchi-

cal database, descending each branch of the

tree until a user-speci�ed accuracy criterion

has been met. The accuracy is determined

by the solid angle subtended by the cluster

of particles within the cube from the vantage

point of the particle calculating the force. If

the cube contains a single particle or all of the

particles in the cube can be approximated by

the center of mass, the force is computed using

a multipole expansion; otherwise, each of the

eight sub-cubes is examined in turn using the

same criterion. By utilizing combined infor-

mation instead of the individual data at the

terminal node of each branch, the algorithm

requires O(N logN ) operations.

The Fast Multipole Method (FMM) devel-

oped by Greengard and Rokhlin [11] utilizes

new techniques to quickly compute and com-

bine the multipole approximations in O(N )

operations. Initial implementations sorted the

particles into groups on a �xed level of the

tree with the hierarchical pyramid structure

providing the communication network used

to combine and re-propagate the multipole-

calculated potential. Recent enhancements in-

clude adaptive re�nement of the hierarchy cre-

ating structures similar to a Barnes-Hut tree

[10].

Both Katzenelson and Anderson have noted

the applicability of a variety of \tree algo-
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rithms" to the N-body problem. Katzenelson

utilizes the common structure of the Barnes-

Hut and FMM algorithms to study how this

problem can be mapped to a variety of parallel

computer designs [13]. Anderson utilizes the

multigrid framework as a basis for communica-

tion in his FMM implementationwhich substi-

tutes Poisson integrals for spherical harmonic

multipole expansions [2].

3 Tree as Grid

We propose that the exact same hierarchical

structure used by particle-based methods now

maybe e�ectively utilized in adaptive mesh re-

�nement implementation. The spatially struc-

tured cubic volumes into which the mass-

points are sorted are inherently situated, sized,

and ordered as an e�cient adaptive mesh rep-

resenting the system of interest. Instead of

interpreting the hierarchy as a graphical rep-

resentation of the tree-shaped database, it can

function as the physical mesh which links the

grid resolution with the particle density. Fig-

ures 1 and 2 represent a two-dimensional tree-

structure from a particle simulation. Figures 3

and 4 show the con�guration in �gure 2 repre-

sented by a composite grid. The similarity be-

tween �gures 2 and 3 demonstrates the conver-

gence of these two di�erent approaches. Tree

levels and cells may not directly correspond

with grid levels and zones, i.e. multiple parti-

cles (and cells) from multiple levels would be

collected to form a single grid level of appro-

priate resolution aligned with the tree cells.

This relationship stems from the grid-based

algorithms reliance on the locality of the dis-

crete operator and the particle-based schemes

similar utilization of locality to e�ciently col-

lect, combine, and redistribute the multipole

moments. In the Poisson case, the locality

stems from the regularity of harmonic func-

tions which allow accurate approximation of

Figure 1: A perspective view of a 4-level 2-

D tree including lines and dots representing

parent-child relationships.

the smooth, far-�eld solution by low-order rep-

resentations [1]. Barnes-Hut requires the lo-

cality of the tree not just as a framework for

the algorithm but to provide the ability to se-

lectively descend into sub-cubes as needed dur-

ing the computation allowing Salmon to create

\locally essential" datasets per processor [15].

Locality is common to and useful for many

loosely synchronous parallel algorithms [9].

This union of hierarchies provides oppor-

tunities beyond similar programming struc-

ture [2, 13]: it allows easier synthesis of com-

bined particle and mesh algorithms and al-

lows hierarchy-building developments to ben-

e�t both simulation methods. An additional

advantage of the oct-tree over the binary tree

(recursive bisection) for dividing space is evi-

dent when combining particle and mesh algo-

rithms: the spatially divided oct-tree allows

for easy alignment with a mesh while the the

binary tree does not easily overlay a mesh or

another tree [17]. The parallel implementation

of the Barnes-Hut code by Salmon [15], includ-

ing domain decomposition and tree construc-

4



Figure 2: A collapsed representation of a

small, two-dimensional Barnes-Hut tree con-

taining 32 particles.

tion, provides insights applicable to adaptive

mesh re�nement on massively-parallel multi-

ple instruction multiple data (MIMD) comput-

ers. The locality of the algorithms precisely

provide the structure necessary for e�cient

parallel domain decomposition and ordered,

hypercube-like communication on MIMD ar-

chitectures.

An astrophysical model combining a smooth


uid for gas dynamics with discrete parti-

cles representing massive objects can occur en-

tirely on a mesh or using a mixed simulation.

The block structures available in the AFAC

algorithm allow arbitrarily-shaped, nested re-

gions of rectangular meshes to be used as

Figure 3: The 
attened tree in �gure 2 inter-

preted as a composite grid.

the relaxation grid for a multilevel algorithm;

these regions can directly represent the par-

tially complete sub-cubes present in oct-tree

data structures frequently used in three di-

mensional particle simulations. When combin-

ing both methods, the density of mass points

is no longer su�cient as an estimate for nec-

essary grid resolution, so additional criteria

based upon acceptable error in other aspects

of the simulation, e.g. accurately reproduc-

ing shocks, will a�ect the construction of the

mesh. But the grid can adapt to these con-

straints and the hierarchy still provides the

multipole information at points of interest.

If the Method of Local Corrections is incor-

porated to provide greater accuracy for local

interactions, the neighboring regions requiring

correction can utilize the Barnes-Hut test of

opening-angle or the Salmon test of cumula-

tive error contribution [16] instead of a direct

proximity calculation. The correction can be

calculated using a multipole expansion instead

of the direct particle-particle interaction which

improves e�ciency for the worst-case scenario

of dense clusters. While the same machinery
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Figure 4: Another view of the composite grid

in �gure 3 showing the individual grid levels

from which it is constituted.

can be used to solve the entire particle prob-

lem with a multipole method, some boundary

conditions may be much harder to implement,

necessitating the use of a local correction grid

method.

4 Conclusion

Grid-based particle simulation algorithms con-

tinue to provide an e�ective technique for

studying systems of point-like particles in ad-

dition to continuum systems. These methods

are a useful alternative to grid-less simulations

which cannot incorporate 
uid interactions or

complicated boundary conditions as easily or

e�ectively. While the approach is quite dif-

ferent, the tree-structure and enhanced accu-

racy criterion which are the bases of multi-

pole methods are equally applicable as the fun-

damental structure of an adaptive re�nement

mesh algorithm. The two techniques comple-

ment each other well and can provide a useful

environment both for studying mixed particle-

continuum systems and for comparing results

even when a mesh is not necessitated by the

physically interesting aspects of the modeled

system. The hierarchical structure naturally

occurs in problems which demonstrate local-

ity such as systems governed by the Poisson

Equation.

Implementations for parallel, distributed-

memory computers gain direct bene�t from

the locality. Because both the grid-based and

particle-based methods form the same hier-

archical structure, common data partitioning

can be employed. A hybrid simulation using

both techniques implicitly has the information

for both components | particle and 
uid |

at hand on the local processor node, simpli-

fying the software development and increasing

the e�ciency of computing such systems.

Considerations such as the e�ciency of

a deep, grid-based hierarchy with few or

even one particle per grid cell need to be

explored. Current particle-based algorithm

research comparing computational accuracy

against grid resolution, i.e. one can utilize

lower computational accuracy with a �ner grid

or less re�nement with higher computational

accuracy, will strongly in
uence this result.

Also, the error created by interpolating the

particles onto a grid and then solving the dis-

crete equation must be addressed when com-

paring grid-less and grid-based methods.
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