
Lessons from Massively Parallel Applications on

Message Passing Computers

Geo�rey C. Fox

Syracuse University

Northeast Parallel Architectures Center

111 College Place

Syracuse, New York 13244-4100

Abstract

We review a decade's work on message passing MIMD parallel computers

in the areas of hardware, software and applications. We conclude that dis-

tributed memory parallel computing works, and describe the implications of

this for future portable software systems.

1 Introduction

We start with a nostalgic note. The 1984 COMPCON conference was my

�rst opportunity to discuss our early hypercube results from Caltech [1]

based on the software and science applications we built for C. Seitz's 64-

node Cosmic Cube which started \production" runs on Quantum Chromo-

dynamics (QCD) in October, 1983. That �rst MIMD machine was only two

megaops performance | ten times better than the VAX11/780 we were

using at the time. However, the basic parallelization issues remain similar

in the 1991 six gigaop QCD implementation on the full size 64K CM-2.

What have we and others learned in the succeeding eight years while the

parallel hardware has evolved impressively with in particular a factor of 3000

improvement in performance? There is certainly plenty of information! In

1989, I surveyed some four hundred papers describing parallel applications

[2], [3] | now the total must be over one thousand. A new complete survey

is too daunting for me. However, my personal experience, and I believe the

lesson of the widespread international research on message passing parallel

computers, has a clear message.

The message passing computational model is very powerful and allows

one to express essentially all large scale computations and execute them ef-

�ciently on distributed memory SIMD and MIMD parallel machines.

Less formally one can say that parallel computing works, or more con-

troversially but accurately in my opinion that \distributed memory parallel

computing works". In the rest of this paper, we will dissect this assertion

and suggest that it has di�erent implications for hardware, software and

applications. Formally, we relate these as shown in Figure 1 by viewing

computation as a series of maps. Software is an expression of the map of

the problem onto the machine. In Section 2, we review a classi�cation of

problems described in more detail in [3], [4], [5], [6], [7], [8]. In the following

three sections, we draw lessons for applications, hardware, and software and

quantify our assertion above about message passing parallel systems.

2 Problem Architecture

Problems like computers have architectures. Both are large complex collec-

tions of objects. A problem will perform well when mapped onto a com-

puter if their architectures match well. This loose statement will be made

more precise in the following, but not completely in this brief paper. At a

coarse level, we like to introduce �ve broad problem classes which are briey

described in Table 1. These can and should be re�ned, but this is not nec-

essary here. Thus, as described in Table 1, we do need to di�erentiate the

application equivalent of the control structure | SIMD and MIMD | for

computers. However, details such as the topology (hypercube, mesh, tree,

etc.) are important for detailed performance estimates but not for the gen-

eral conclusions of this paper. Note that the above implies that problems

and computers both have a topology.

We will use the classi�cation of Table 1 in the following sections which

will also expand and exemplify the brief de�nitions of Table 1.

3 Applications

Let us give some examples of the �ve problem architectures.

Synchronous: These are regular computations on regular data do-

mains and can be exempli�ed by full matrix algorithms such as LU decompo-

sition; �nite di�erence algorithms and convolutions such as the fast Fourier

transform.

2

� Synchronous: Data Parallel Tightly coupled and software needs to ex-

ploit features of problem structure to get good performance. Compar-

atively easy as di�erent data elements are essentially identical.

� Loosely Synchronous: As above but data elements are not identical.

Still parallelizes due to macroscopic time synchronization.

� Asynchronous: Functional (or data) parallelism that is irregular in

space and time. Often loosely coupled and so need not worry about

optimal decompositions to minimize communication. Hard to paral-

lelize (massively) unless : : :

� Embarrassingly Parallel: Independent execution of disconnected com-

ponents.

� A=LS: (Loosely Synchronous Complex) Asynchronous collection of

(loosely) synchronous components where these programs themselves

can be parallelized.

Table 1: Five Problem Architectures

3

Loosely Synchronous: These are typi�ed by iterative calculations

(or time evolutions) on geometrically irregular and perhaps heterogeneous

data domains. Examples are irregular mesh �nite element problems, and

inhomogeneous particle dynamics.

Asynchronous: These are characterized by a temporal irregularity

which makes parallelization hard. An important example is even driven

simulation where events, as in a battle�eld simulation, occur in spatially

distributed fashion but irregularly in time. Branch and bound and other

pruned tree algorithms common in arti�cial intelligence such as computer

chess [9] fall in this category.

Synchronous and Loosely synchronous problems parallelize naturally in

a fashion that scales to large computers with many nodes. One only requires

that the application be \large enough" which can be quanti�ed by a detailed

performance analysis [10] which was discussed quite accurately in my original

COMPCON paper [1]. The speed up

S =
N

(1 + fc)
(1)

on a computer with N nodes where the overhead fc has a term due to

communication which has the form

fc /

1

n
1�1=d

tcomm

tcalc

(2)

where tcomm and tcalc are respectively typical node to node communication

and node (oating point) calculation time. n is the application grain size

and d its dimension which is de�ned precisely in [10]; in physical simulations

d is usually the geometric dimension. Good performance requires 1

n1�1=d

be \small" with a value that depends on the critical machine parameter

tcomm=tcalc. The grain size n would be the number of grid points stored

on each node in a �nite di�erence problem so that the complete problem

had Nn grid points. Implicit in the above discussion is that these problems

are \data parallel" in the language of Hillis [11], [12]. This terminology is

sometimes only associated with problems run on SIMD machines but in fact,

data parallelism is the general origin of massive parallelism on either SIMD

or MIMD architectures. MIMD machines are needed for loosely synchronous

data parallel problems where we do not have a homogeneous algorithm with

the same update operation on each data element.

The above analysis does not apply to asynchronous problems as this

case has additional synchronization overhead. One can, in fact, use mes-

4

Numerical ! Virtual ! Real

Formulation \compiler" Machine Machine (Parallel) (3)

of Problem (Virtual Speci�c Computer

Problem) \assembler"

sage passing to naturally synchronize synchronous or loosely synchroniza-

tion problems. These typically divide into communication and calculation

phases as given by individual iterations or time steps in a simulation. These

phases de�ne an algorithmic synchronization common to the entire applica-

tion. This is lacking in asynchronous problems which require sophisticated

parallel software support such as that given by the time warp system [13].

However, there is a very important class of asynchronous applications

for which large scale parallelization is possible. These we call loosely syn-

chronous complex as they consist of an asynchronous collection of loosely

synchronous (or synchronous) modules. A good example, shown in Figure 2,

is the simulation of a satellite based defense system. Viewed at the level of

the satellites, we see an asynchronous application. However, the modules are

not elemental events but rather large scale data parallel subsystems. In a

simulation developed by JPL, these modules included sophisticated Kalman

�lters and target weapon association [14]. This problem class shows a func-

tional parallelism at the module level and a conventional data parallelism

within the modules. The latter ensures that large problems of this class

will parallelize on large machines. Image analysis, vision and other large

information processing or command and control problems fall in the loosely

synchronous complex class.

A �nal problem class of practical importance is termed \embarrassingly

parallel". These consist of a set of independent calculations. This is seen in

parts of many chemistry calculations where one can independently compute

the separate matrix elements of the Hamiltonian. Another example is seen

in the operation of the New York stock exchange where the trading of 2000

stocks can be independently controlled by separate computers | in practice

the SIAC corporation distributes the stocks over a few hundred personal

computers or workstations with each handling the independent trading of a

few stocks.

5

Problem Class Machine Architecture

Synchronous SIMD, MIMD

Loosely Synchronous MIMD

Asynchronous unclear

Loosely Synchronous Heterogeneous network

Complex (A=LS) of SIMD and MIMD

machines

Embarrassingly Parallel Network of

workstations

SIMD, MIMD

Table 2: Parallel Computer Architectures Suitable for each Problem Class

4 Hardware

Table 2 shows that the �ve di�erent problem architectures are naturally

suited (i.e., will run with good performance) to di�erent parallel machine

architectures.

As described in the previous section, all problems except those in the

pure asynchronous class, naturally parallelize on large scale machines as

long as the application is large enough. In my 1989 analysis [2], [3] of

84 applications in 400 papers, I estimated that synchronous and loosely

synchronous problems dominated scienti�c and engineering computations,

and these two classes were rightly equal in number. This argues that both

SIMD and MIMD machines are valuable. Around 50% of the surveyed

problems could e�ectively use a SIMD architecture whereas a comparable

number can exploit the additional exibility of MIMD machines. Note that

all distributed memory machines | whether MIMD or SIMD| are message

passing and so subject to similar analysis. One views the 64K CM-2 not

as a bunch of virtual processors controlled by data parallel CMFortran, but

rather as a set of 2048 WEITEK based nodes exchanging messages over a

hypercube network.

We found 14% embarrassingly parallel applications and 10% asyn-

chronous problems in [2], [3]. The latter contain some loosely synchronous

6

complex problems, but we had not identi�ed this separate class at the time.

As parallel computing matures, we expect to see more examples of this

complex heterogeneous class | especially in commercial and government

applications.

5 Software

In our picture shown in Equation 3, software maps problems onto the hard-

ware in one or more stages.

We can understand many of the di�erent software approaches in terms

of choices for the virtual machine which is the user's view of the target com-

puter. Essentially all our Caltech work on the hypercube and other MIMD

machines used a C (Fortran) plus explicit message passing software model.

This corresponds to choosing a virtual machine model that was either a hy-

percube or more generally a collection of nodes able to exchange messages

independent of a particular topology. The latter was called VMLSCS in [10]

for Virtual Machine Loosely Synchronous Communication System. This

software model was very successful in that as shown in Figure 3, one is able

to use it to map essentially all problems onto a MIMD distributed memory

multicomputer. Its strengths and weaknesses are a consequence of using a

virtual machine model close to a real machine. This allows great generality

in problems but produces non-portable code that is speci�c to one machine

class. Further, it is hard work as the user must map the problem a \long

way" from the original application onto the virtual machine.

Over the last few years, another approach has become popular which cor-

responds to using a virtual machine model which is close to the problem and

not the machine architecture. We view the use of CMFortran in this fashion

corresponding to a virtual machine representing data parallel synchronous

problems. The two approaches are contrasted in Figure 4. This analysis

suggests that data parallel Fortran can be mapped onto both SIMD and

MIMD machines. We view CMFortran as supporting a SIMD virtual ma-

chine (SIMD problem architecture) and not as the language for just SIMD

hardware. For this reason, we prefer to term the \compiler" target in Equa-

tion 3 as the virtual problem and not the more common description as a

virtual machine. This terminology makes it more natural to consider lan-

guages like CMFortran as the languages for \SIMD problems" (synchronous

problems) rather than the languages for SIMD machines.

The Rice and Syracuse groups [15], [16], [17] have proposed FortranD

7

Table 3: Extensions of FortranD for Di�erent Problem Classes

8

as a data parallel Fortran suitable for distributed memory machines. This

generalizes the concepts behind CMFortran in several ways. As shown in

Figure 5, FortranD includes Fortran 77D and Fortran 90D with implicit

and explicit parallelism respectively; the compiler for Fortran 77D uses de-

pendency analysis to uncover data parallel constructs which are explicit in

the array operations and run-time library of Fortran 90D. FortranD targets

both SIMD and MIMD machines. Although the initial design for FortranD

was largely aimed at synchronous problems, it is exible enough to include

loosely synchronous problems. In fact, we expect that with suitable exten-

sions, FortranD and similar languages should be suitable for the majority

of synchronous and loosely synchronous problems. Thinking Machines has

pioneered many of these ideas with their adoption of CMFortran for the

SIMD CM-2 and MIMD CM-5.

The loosely synchronous extensions to FortranD are designed to handle

irregular problems which we already understand how to implement with ex-

plicit message passing. However, higher level software models as de�ned by

Figure 6, such as FortranD are I believe essential if parallel processing is to

become generally accepted. We have used the ideas behind Parti [18], [19] in

the loosely synchronous implementation of FortranD. Table 3 summarizes

work in progress with Saltz. We need to divide the loosely synchronous

class into subclasses which each have rather di�erent needs in language ex-

tensions. We have examined initially some partial di�erential equation and

particle dynamics problems. We see four major subclasses. The simplest

case is typi�ed by an unstructured mesh which has a single static irregular

data structure. The hardest case is typi�ed by the fast multipole method

for particle dynamics [20], [21] where one has an irregular dynamic data

structure which is implicitly de�ned. As we consider further examples such

as vision and signal proceedings, we may discover new issues or in our prob-

lem architecture language, new loosely synchronous problem architecture

characteristics which need to be explicitly recognized in FortranD.

6 Conclusions

We have claimed that the message passing model was and will continue to

be very successful. The vendors will build better and better hardware with

lower communication latency and reasonable tcomm=tcalc
<

�
10. We view

the message passing software model as \assembly-language" which in many

cases we can and should hide from the user with a software model \nearer"

9

that of the problem. Optimizing compilers will translate from a problem

oriented software model convenient for users to the message passing level

supported by the machine. This latter level will continue to be used directly

for applications for di�cult cases which are not e�ciently supported in the

high level software.

Acknowledgements

This work was supported by the ASAS Program O�ce Techbase Program,

and by DARPA under contract #DABT63-91-C-0028. The content of the

information does not necessarily reect the position or the policy of the

Government and no o�cial endorsement should be inferred. This work was

supported in part with equipment provided by the Center for Research on

Parallel Computation with National Science Foundation Cooperation Agree-

ment No. CCR-8809165|the Government has certain rights in this mate-

rial.

References

[1] Fox, G. C. \Concurrent processing for scienti�c calculations," in

Proceedings of the IEEE COMPCON. IEEE Computer Society Press,

February 1984. Conference held in San Francisco. Caltech Report C3P-

048.

[2] Angus, I. G., Fox, G. C., Kim, J. S., and Walker, D. W. Solving Prob-

lems on Concurrent Processors: Software for Concurrent Processors,

volume 2. Prentice-Hall, Inc., Englewood Cli�s, NJ 07632, 1990.

[3] Fox, G. C. \What have we learnt from using real parallel machines to

solve real problems?," in G. C. Fox, editor, The Third Conference on

Hypercube Concurrent Computers and Applications, Volume 2, pages

897{955. ACM Press, 11 West 42nd Street, New York, NY 10036, Jan-

uary 1988. Caltech Report C3P-522.

[4] Fox, G. C., and Furmanski, W. \The physical structure of concurrent

problems and concurrent computers," Phil. Trans. R. Soc. Lond. A,

326:411{444, 1988. Caltech Report C3P-493.

[5] Fox, G. C., and Furmanski, W. \The physical structure of concurrent

problems and concurrent computers," in R. J. Elliott and C. A. R.

10

Hoare, editors, Scienti�c Applications of Multiprocessors, pages 55{88.

Prentice Hall, 1988. Caltech Report C3P-493.

[6] Fox, G. C. \Achievements and problems for parallel computing." Tech-

nical Report SCCS-29b, California Institute of Technology, June 1990.

Proceedings of the International Conference on Parallel Computing:

Achievements, Problems and Prospects; held in Anacapri, Italy, June

3{9, 1990; to be published in Concurrency: Practice and Experience;

CRPC-TR90083.

[7] Fox, G. C. \Hardware and software architectures for irregular problem

architectures," in ICASE Workshop on Unstructured Scienti�c Compu-

tation on Scalable Microprocessors, October 1990. Held in Nags Head,

North Carolina. SCCS-111; CRPC-TR91164.

[8] Fox, G. C. \The architecture of problems and portable parallel software

systems." Technical Report SCCS-134, Syracuse University, July 1991.

Revised SCCS-78b.

[9] Felten, E. W., and Otto, S. W. \A highly parallel chess program," in

Proceedings of International Conference on Fifth Generation Computer

Systems 1988, pages 1001{1009. ICOT, November 1988. Tokyo, Japan,

November 28 { December 2. Caltech Report C3P-579c.

[10] Fox, G. C., Johnson, M. A., Lyzenga, G. A., Otto, S. W., Salmon,

J. K., and Walker, D. W. Solving Problems on Concurrent Processors,

volume 1. Prentice-Hall, Inc., Englewood Cli�s, NJ 07632, 1988.

[11] Hillis, W. D. The Connection Machine. MIT Press, Cambridge, Mass.,

1985.

[12] Hillis, D., and Steele, G. \Data parallel algorithms," Comm. ACM,

29:1170, 1986.

[13] Wieland, F., Hawley, L., Feinberg, A., DiLoreto, M., Blume, L., Ruf-

es, J., Reiher, P., Beckman, B., Hontalas, P., Bellenot, S., and Je�er-

son, D. \The performance of a distributed combat simulation with the

time warp operating system," Concurrency: Practice and Experience,

1(1):35{50, 1989. Caltech Report C3P-798.

[14] Meier, D. L., Cloud, K. L., Horvath, J. C., Allan, L. D., Hammond,

W. H., and Max�eld, H. A. \A general framework for complex time-

driven simulations on hypercubes," in D. W. Walker and Q. F. Stout,

11

editors, The Fifth Distributed Memory Computing Conference, Vol-

ume I, pages 117{121, 10662 Los Vaqueros Circle, P. O. Box 3014, Los

Alamitos, California 90720-1264, 1990. IEEE Computer Society Press.

Held April 9{12, Charleston, South Carolina. Caltech Report C3P-960.

[15] Fox, G. C. \FortranD as a portable software system for parallel com-

puters." Technical Report SCCS-91, Syracuse University, June 1991.

Published in the Proceedings of Supercomputing USA/Paci�c 91, held

in Santa Clara, California. CRPC{TR91128.

[16] Fox, G. C., Hiranadani, S., Kennedy, K., Hoelbel, C., Kremer, U.,

Chau-Wen, T., and Min-you, W. \FortranD language speci�cations."

Technical Report SCCS-42c, Syracuse University, April 1991. Rice Cen-

ter for Research in Parallel Computation; CRPC-TR90079.

[17] Wu, M., and Fox, Geo�rey, C. \Fortran 90D compiler for distributed

memory MIMD parallel computers." Technical Report SCCS-88b, Syra-

cuse Center for Computational Science, September 1991. CRPC-

TR91126.

[18] Saltz, J., Crowley, K., Mirchandaney, R., and Berryman, H. \Run-

time scheduling and execution of loops on message passing machines,"

Journal of Parallel and Distributed Computing, 8:303{312, 1990.

[19] Saltz, J., Berryman, H., and Wu, J. \Multiprocessor and runtime com-

pilation," Concurrency: Practice and Experience, 3(5), 1991. Special

Issue from International Conference on Parallel Computing, held in

Anacapri, Italy June 3{9, 1990.

[20] Salmon, J. Parallel Hierarchical N-Body Methods. PhD thesis, Califor-

nia Institute of Technology, December 1990. Caltech Report C3P-966.

[21] Greengard, L. \The rapid evaluation of potential �elds in particle sys-

tems," in ACM Distinguished Dissertation Series, Vol. IV. MIT Press,

Cambridge, Mass., 1988. Yale research report YALEU/DCS/RR-533

(April 1987).

12

