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We have studied the Swendsen-Wang and Wol� cluster update algorithms for the Ising model in 2, 3 and 4 dimen-

sions. The data indicate simple relations between the speci�c heat and the Wol� autocorrelations, and between the

magnetization and the Swendsen-Wang autocorrelations. This implies that the dynamic critical exponents are related

to the static exponents of the Ising model. We also investigate the possibility of similar relationships for the Q-state

Potts model.

The Monte Carlo cluster update algorithms

of Swendsen and Wang (SW) [1] and Wol� [2]

can dramatically reduce critical slowing down in

computer simulations of spin models (for reviews

of cluster algorithms, see refs. [3,4]). There is lit-

tle theoretical understanding of the dynamics of

these algorithms, although a rigorous bound on

the dynamic critical exponent z for the SW al-

gorithm for Potts models has been derived [5].

In order to better understand these algorithms,

we are doing numerical simulations of the Ising

model in 2, 3 and 4 dimensions using the SW and

Wol� algorithms. We measured the time corre-

lation function �(t) for the energy and extracted

the integrated autocorrelation time �int;E [3].

The dynamic critical exponent zint;E is given by

�int;E � L
zint;E , where �int;E for the di�erent lat-

tice sizes is measured at the in�nite volume crit-

ical point. A detailed account of the methods we

use to do the measurements, �ts and error esti-

mates, is given in Ref. [6].

Results for �int;E are shown in Fig. 1. For d = 3

we have used a log-log plot, with the straight

lines representing �
2 �ts to a power law, while

for d = 2 and 4 we show a log-linear plot, with

straight lines representing �
2 �ts to a logarithm.

Note that for d = 4 we plot log �SWint;E rather than

�
SW
int;E, since the SW autocorrelations increase as

a power of L. In Fig. 1 we also include the mea-

sured value of the speci�c heat CH , scaled by

an appropriate factor, in order to show that the

bound of Li and Sokal [5]

�int;E � constant �CH ; zint;E � �=�; (1)

is indeed satis�ed by the SW algorithm. Here

� is the critical exponent for the speci�c heat,

and � is the exponent for the correlation length.

No such bound has been proven for the Wol�

algorithm, although it appears from Fig. 1 that

not only does the bound hold, but that there

may actually be equality in the exponents, i.e.

the Wol� algorithm for the Ising model seems to

satisfy the surprisingly simple relations

�
W
int;E = a + b� CH ; z

W
int;E = �=�; (2)

where a and b are constants.
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In Fig. 2 we plot the scaled di�erence

(�Wint;E � (a+ b� CH)) = �
W
int;E (3)

with a and b chosen to minimize �2 (smaller val-

ues of L are excluded from the �t). In all cases

values of a and b can be found such that the dif-

ference is zero within the errors, which are gener-

ally of the order of 1%. All the errors shown here

are purely statistical (one standard deviation).

The surprising simplicity of this result led us

to look for a similar relation for the SW algo-

rithm. The relative average size of the largest

SW cluster, m =< jc
max
SW j > =L

d, is an estimator

of the magnetization [7], and the exponent �=�

for the divergence of the magnetization has val-

ues which are similar to our values for zSWint;E. We

thus scaled the SW autocorrelations by multiply-

ing them bym. This is also shown in Fig. 1 (note

that the results are also scaled by an additional

arbitrary constant, so that these points are not

entangled with others in the plots). For d = 4

the results are very close to a constant, while

for d = 3 they seem to approach a constant as L

increases. In two dimensions the scaled autocor-

relations are not constant, but they �t very well

(much better than the unscaled data) to a log-

arithm, as can be seen in Fig. 1(a). The results

therefore support the assertion that

m �
SW
int;E = a + b� logL; z

SW
int;E = �=�: (4)

Better data is needed to test these conjectures,

since it is possible that they are merely good ap-

proximations. Clearly a theoretical understand-

ing of these results is also very desirable. The

relations 2 and 4 are certainly not general re-

sults, since for the 2-d 3-state Potts model we

�nd that zW > �=� and z
SW

> �=� [5,6]. Also,

it is quite surprising that these empirical rela-

tions imply that zSW is not equal to z
W for the

2-d Ising model, whereas the two appear to be

equal for the 2-d 3-state Potts model. We have

therefore attempted to �nd similar simple re-

lations for the 3-state Potts model. The mea-

sured value of z for this model is approximately

0.55(1) [6], which is very close to the value of

(�+�)=� = 8=15 � 0:533. It is possible that this

result also holds for the 4-state model, although

there the situation is less clear, since there are

large logarithmic corrections to scaling [5].

In order to test this conjecture, we have scaled

the autocorrelations (for both the Wol� and SW

algorithms) by the magnetization m, and then

attempted to �nd a linear relation between these

scaled autocorrelations and the speci�c heat. In

both cases we �nd that the data is consistent

with such a relation for lattices of size 162 to

2562 within the errors (which are of the order of

1%). Again, better data is required to properly

check this conjecture, and a similar analysis of

data for the 4-state model would be very useful.
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Fig. 1. �int;E for the Wol� and SW algorithms for the

Ising model in (a) 2-d, (b) 3-d and (c) 4-d. Also shown

is the speci�c heat CH and �
SW
int;E

scaled by the average

maximum cluster size m.

Fig. 2. The scaled di�erence between the Wol� autocor-

relations and a linear function of the speci�c heat for the

Ising model in (a) 2-d, (b) 3-d and (c) 4-d. The values of

a and b are chosen so as to minimize �2.














