
Figure Captions.

1 Speci�c heat CV . Points from cluster algorithm data, lines from histogram

reconstruction.

2 � as a function of the computer time for the runs of series B (3 � values

allowed, 50% acceptance ratio).

3a� c Magnetization m as a function of computer time. In (a) for the

Metropolis method at � = :26, in (b) m for the F systems (� is here a

dynamical variable which is allowed to take 5 values during the course

of the dynamics), in (c) the con�gurations of run F which have � = :26.
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to di�erent � values allows an easy ipping. In order to make the situation

clear in �g. 3c we have selected only the �rst 10000 con�gurations, of the F

dynamics, which happen to be at � = :26. The picture speaks for itself.

Also for ET there is a large gain at all � values. One gains a factor 3 at

� = :24; :25, a factor 6 at � = :255, and a factor 2:5 at � = :26. In this case

the best performances are obtained for small � values.

It is a pleasure for us to thank Masataka Fukugita for interesting discus-

sions, and Paul Coddington for a critical reading of the manuscript. Hard-

ware and software computer support has been given by Infn (Roma Tor

Vergata) and NPAC (Syracuse).

Note Added

After submitting this note we learnt about refs. [13], which propose a di�er-

ent but related method. For our method we do not need any patching, and

we just get the correct probability distribution at each � value.
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Run �1; n1 �2; n2 �3; n3 �4; n4 �5; n5

B :24, 145 :25, 297 :26, 158

C :23, 206 :25, 226 :27, 167

D :245, 148 :25, 301 :255, 151

E :24, 149 :245, 300 :25, 301 :255, 301 :26, 150

F :23, 159 :24, 290 :25, 290 :26, 306 :27, 155

Table 2: � values allowed in each of our Simulated Tempering runs, and

number of iterations (in units of 103) the system spent at each � value. For

historical reasons we label the runs with the capital letters B, C, D, E, F .

tried di�erent combinations, allowing the system to take 3 or 5 � values,

always centred around � = :25. In table 2 we check the performance of our

method at the di�erent � values we have allowed in the di�erent simulations.

The choice of the � values has been dictated, as we have discussed before, by

the requirement of having a non-negligible overlap in the energy histograms

of the preliminary MC runs. Runs D and E have a very small � value, and

a high acceptance factor for a � update, of ' 70%. Runs B and F have a

medium �, and a � acceptance factor of 40 � 50%. Run C has a higher �

value and a very low acceptance factor for the � update, 10 � 15%.

In �g. 2 we give �m as a function of the computer time for system B. Let

us start by commenting on the results for m, which are quite spectacular. At

� = :24 (not so low T ) �m is higher than O(100) for Metropolis and Cluster

methods, and gets down to 32 in the F run. In general runs with a larger

� value seem to be more e�ective for improving the estimate of m. Things

are better and better at lower temperatures. At � = :25 from �m > 700 we

go down to �m = 52 in run F , with a gain of a factor larger than 12. At

� = :255 from �m > 6000 we go down to 108 in run E, with a gain of a

factor better than 60. At � = :26 after 200000 steps the Metropolis does not

succeed in getting a single tunneling event, while our run E has �m = 52. In

�gs. 3a� c we show what happens. In �g. 3a we give the magnetization as a

function of computer time for the Metropolis method, for 200000 steps. The

system stays in the � state, with very large uctuations which never succeed

in getting a complete ip. In �g. 3b we plot m for our F system, only 10000

steps. Here the data points are at di�erent � values, and it is clear that going
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� ET � intET
m � intm Niter10

�3

:24 (MC) 1:1980(18) 10 -.161[12] [70] 200

:24 (CL) 1:2059(22) 14 -.180[10] [90] 200

:24 (B) 1:2045(19) 6 -.187(10) 60 145

:24 (E) 1:2025(13) 3:7 -.159(10) 40 160

:24 (F) 1:2015(11) 5:5 -.175(5) 32 290

:25 (MC) 1:5286(15) 7 -.37[6] [700] 200

:25 (CL) 1:5252(25) 11 -.32[4] [660] 200

:25 (B) 1:5311(10) 3:9 -.363(15) 150 297

:25 (C) 1:5303(12) 4:8 -.351(11) 70 226

:25 (D) 1:5299(9) 3:5 -.350(20) [370] 300

:25 (E) 1:5279(8) 2:4 -.320(12) 105 301

:25 (F) 1:5281(8) 3:3 -.352(9) 52 290

:255 (MC) 1:6723(12) 9 -.35(13) [6000] 200

:255 (D) 1:6723(8) 1:5 -.414(22) 180 151

:255 (E) 1:6718(6) 1:8 -.382(13) 108 301

:26 (MC) 1:7954(8) 2:8 -.7016(3) 3:8 200

:26 (CL) 1:7942(11) 7:6 -.53[5] [1000] 200

:26 (B) 1:7925(7) 1:6 -.476[18] [81] 158

:26 (E) 1:7924(6) 1:15 -.433(13) 52 150

:26 (F) 1:7928(5) 1:75 -.473(10) 64 307

Table 1: Thermal energy, magnetization and related integrated autocorre-

lation times. Errors are in round brackets (). When in square brackets, [],

error and � int estimates are not asymptotic. The value for m given by the

Metropolis method (MC) at � = :26 is wrong.
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Metropolis method.

The lattice Hamiltonian is the usual Ising model Hamiltonian, where the

site random �elds hi take values hi = jhj�i; (�i = �1 with probability 1
2
.

We have taken in our simulations V = 103 and jhj = 1. We have worked

with a given realization of the randommagnetic �eld. In order to characterize

the system in �g. 1 we show its speci�c heat. The 3 points with errors are

from 3 runs done by using the cluster algorithm, while the dotted, dashed

and dot-dashed lines are done by using the reconstruction method (see ref.

[9] for Ising model and SU(2) gauge theory applications, ref. [10] for an

earlier, independent introduction of the method, and ref. [11] for successive

applications and detailed revies). The continuous line use the method by

patching the 3 data points. The reconstruction is very reliable.

We have analyzed the measured observables by means of a binning proce-

dure, obtaining an asymptotic estimate for the errors. We have also focused

our analysis on the study of � int, which is the relevant quantity related to the

true error over measured observables. Following ref. [12] we use an improved

estimator for � int, taking up to 20 time steps for the estimation window. The

errors on �int are, when we quote an asymptotic estimate for them, always

of the order of 1 on the last digit. We have also monitored that �exp gives

consistent results.

In table 1 we give two of the measured observables: the thermal part

of the energy, ET , and the magnetization m. ET has a behavior typical of

the quantities that are Z2 symmetric. The rows called (MC) and (CL) give

information about the runs we have done with the Metropolis method and

with the cluster algorithm. These runs have been used to get a preliminary

estimate of the system energy and to determine the values of the gm. It is in

no way necessary to get, for estimating the gm, more than a rough estimate of

the Em, and in a practical application of the method the preliminaryMC runs

can be very short. It is possible to determine directly the values of the e�fn,

by using the energy histograms taken in the preliminary runs. Although we

stress that this possibility exists, we do not think that it could dramatically

increase the e�ciency of the method. When, in table 1, we put errors and �int
in square brackets we mean that we did not get an asymptotic estimate. Let

us also note now that the MC run at � = :26 gets a wrong expectation value

for m. In this case the standard Metropolis does not produce any tunneling

event, and always stays in the � phase.

In table 2 we give details about our Simulated Tempering runs. We have
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values of �m.

In the usual thermodynamic limit the energy is a quantity of order N

and the condition on � requires that � is of order N�

1

2 , which is not a very

demanding condition. The main di�culty in the method is the required

tuning in the choice of the gm. Indeed if one takes for the �m an unreasonable

value, the simulation could get trapped at a given value of �m. In this respect

it is interesting to note that we are not introducing any systematic bias. One

can also think about the possibility of performing an iterative procedure in

which the values of the gm's are adjusted during the simulation, but we will

see that already with the naive choice we are using one gets very impressive

results.

We have applied the Simulated Tempering method to the Random Field

Ising Model (RFIM), which has many features that are very relevant to our

case. It has a rough landscape, and the symmetry of the + and the � state

of the pure Ising model is broken by the random magnetic �eld. This is

not a trivial symmetry any more, and the ips from the + to the � sector

(and back) is an essential part of the dynamics. The state oriented in the +

direction and the one oriented in the � direction, which macroscopically are

very similar, from a microscopic point of view are completely di�erent. The

transition from the favoured state (which is selected by the speci�c realization

of the magnetic �eld) to the suppressed one is a rare event.

For the RFIM an extension of the cluster update method[6; 7] does not

give any improvement over the local classical Metropolis method[8]. The

system undergoes the usual pathology of freezing already at T > Tc, and the

spins form a large cluster. In no way does the cluster method help in this

case, for example, to tunnel from a + to a � state.

We have implemented the Simulated Tempering by proposing one � up-

date at the end of each sweep of the lattice spins. The computational time

required to compute the � update is negligible.

Let us anticipate our results: as we will show in some detail the Simulated

Tempering method helps a lot. In our test, correlation times for observable

quantities which are not sensitive to the magnetization decrease by a factor

of 6 as compared to the Metropolis and the cluster method. As far as the

estimate of the magnetization is concerned, the method changes the picture

dramatically, allowing tunneling where the Metropolis method is trapped in

a single state, and correcting, in some cases, wrong estimates given by the
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m, is the usual Gibbs distribution for � = �m. On the other hand the

probability of having a given value of m is simply given by

Pm / Zme
gm
� e�(�mfm+gm) ; (1)

where the Zm are the partition functions at given �m and the fm are the

corresponding free energies. If we make the choice gm = �mfm; then all the

Pm become equal.

If our target is to do a simulation at a given value of �, we can take � ~m = �

and with this choice for the gm we can perform a Monte Carlo simulation

in which we also allow the change of m by 1 unit. In this case the system

will be with a probability 1
~m
at m = ~m. Only a fraction 1

~m
of the events will

be interesting for measuring directly expectation values at � (if the use of

an histogram reconstruction makes also the other � values very useful). The

frequent visits of the system to lower values of �m will make it decorrelate

much faster. Indeed at lower � values free energy barriers are lower, and the

system will �nd it much easier to jump. Then, when it decides to cool o�

again, it will be visiting, with the correct equilibrium probability, a di�erent

minimum. This method may be useful only if the transition from one value

of �m to another happens with non-negligible probability. It is evident that if

the two contiguous values of � are too di�erent the probability of accepting a

change will be rather small, and that, on the contrary, if they are too similar

they will not help in decorrelating.

Let us try to compute the probability for going from �m to �m+1 � �m+�.

If we try to modify �, the variation of the Hamiltonian is given by �H =

E � � (gm+1 � gm); where E is the instantaneous value of the energy H(X).

On the other hand we have that gm+1�gm is given by the value of the energy

for some � in between �m and �m+1. More precisely

gm+1 � gm = Em � +
1

2
Cm�

2 +O(�3) ; (2)

where Em is E(�m) (E(�) is the expectation value of H(X) as function of

�) and Cm = dE

�m
. If we assume that E is very close to Em the variation �H

will be not too large under the condition that Cm�
2 = O(1) : One should also

consider that there are thermal uctuations in the value of the energy which

are of order of Cm. The condition on � is equivalent to requiring that there is

a non-negligible overlap in the values of the energy computed at contiguous
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after many simulated annealing runs and if the probability of ending with

the global minimum is not too small, the simulated annealing turns out to

be a rather e�cient algorithm. Let us note that this e�ciency depends a

lot on the shape of the phase space: if the absolute minimum has a small

basin of attraction, and is separated from the large local minima by very

high barriers, simulated annealing does not have any reason to be a good

algorithm.

Unfortunately if we want to extend the algorithm to �nite temperature

we are very soon in deep trouble. Indeed if we stop our simulations at a given

value of � <1, the one we want to use to evaluate observables, di�erent runs

will give di�erent results (if � is su�ciently large). In this case we cannot

just select the runs which produce the con�gurations with lower energy: at

T 6= 0 we have to minimize the free energy F and not the energy. Estimating

the entropic contribution is a non-trivial task, and makes a straightforward

generalization of the simulated annealing impossible. This problem is very

severe in cases like spin glasses [3] or hetero-polymers folding [4] (maybe

also peptides [5]) in which there are more than one equilibrium state and

we are actually interested in knowing the relative weight which the di�erent

equilibrium states carry in the partition function.

The method we propose in this note is meant to bypass these di�culties,

and to constitute a viable scheme to minimize free energy in an e�ective way.

It can be regarded as a very e�cient global optimization scheme. The basic

idea of the Simulated Tempering method consists of changing the tempera-

ture while remaining at equilibrium: this is in contrast with the simulated

annealing method, where every change of the temperature drives the system

out of equilibrium. This can be achieved by enlarging the con�guration space

of the system in the following way.

We de�ne a large con�guration space, which is characterized by the vari-

ables X (the original con�guration space) and by a new variable m, which

can takes M values (m = 1 : : :M). The probability distribution P (X;m)

will be chosen to be P (X;m) / e�H(X;m); where we have absorbed the factor

� in the de�nition of the Hamiltonian. We set H(X;m) � �mH(X) � gm :

Here the �m and the gm can take arbitrary values we assign a priori. The

gm will be a priori assigned constants, and the �m will be dynamical variables

which will be allowed to span a set of values given a priori. For simplicity

we can assume that the �m are ordered. It is evident that the probability

distribution induced by this Hamiltonian, restricted to the subspace at �xed
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Simulated annealing is an e�cient heuristic method which is used to �nd

the absolute minimum of functions with many local minima: it has been

introduced independently in the framework of the Monte Carlo approach for

discrete variables in ref. [1], and in the framework of stochastic di�erential

equations (of Langevin type) for continuous variables in ref. [2].

The essence of the method consists of the following. Let us suppose

that we are interested in �nding the minimum of a function H(X), where X

denotes an element of the con�guration space (which has dimensionN , where

N is often a very high number). In most cases we do not know any method

which can guarantee to �nd the minimum of H(X) with a computational

e�ort that does not increase more than polynomially in N . In these cases one

can try as a �rst guess a random search starting from a random con�guration

and minimizing H(X) with a steepest descent algorithm. If the number of

local minima increases as eN , with  di�erent from zero, it often happens

that this method also takes an exponentially large number of trials (i.e. e�N ,

with in general � < ).

In the simulated annealing method one considers a �-dependent algorithm

which asymptotically generates the con�gurationsX with Gibbs's probability

distribution, i.e. e��H(X); for de�niteness we can consider the case of Monte

Carlo steps. Simulations at increasing values of � are done (eventually at

� =1). Each time � is changed the system is driven out of equilibrium, but

that does not matter since eventually we are interested in the � =1 result.

In general the simulated annealing method does not have any reason to

converge to the exact result, i.e. to provide the minimum of H(X). Only

if we do an asymptotically large number of simulated annealing runs, or if

the values of � are changed by an in�nitesimal amount at each step and

an in�nite amount of Monte Carlo steps are done at each value of �, the

simulated annealing method will converge to the exact result and will �nd the

minimum of H. But the convergence is guaranteed only if we asymptotically

invest an in�nite amount of computer time. If a reasonable annealing scaling

is used (� is changed by a non-zero amount and only a �nite number of Monte

Carlo cycles are done at a given value of �) we have no reason to believe that

this procedure ends up in the global minimum; indeed in the extreme case

in which � takes only two values (0 and 1) we �nd the same result as the

random search algorithm we have described before.

The simulated annealing algorithm can however be used as an heuristic

predictor for the global minimum: one can compare the values of the energy
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Abstract

We propose a new global optimization method (Simulated Tem-

pering) for simulating e�ectively a system with a rough free energy

landscape (i.e. many coexisting states) at �nite non-zero tempera-

ture. This method is related to simulated annealing, but here the

temperature becomes a dynamic variable, and the system is always

kept at equilibrium. We analyze the method on the Random Field

Ising Model, and we �nd a dramatic improvement over conventional

Metropolis and cluster methods. We analyze and discuss the condi-

tions under which the method has optimal performances.
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