
Modeling the CM-5 multicomputer 1

Zeki Bozkus, Sanjay Ranka and Geo�rey Fox

School of Computer Science

4-116, Center for Science and Technology

Syracuse University

Syracuse, NY 13244-4100

zbozkus@npac.syr.edu

ranka@top.cis.syr.edu

gcf@npac.syr.edu

1This work was supported in part by NSF under CCR-9110812 and DARPA under contract #

DABT63-91-C-0028. The content of the information does not necessarily reect the position or the

policy of the Government and no o�cial endorsement should be inferred.

Abstract

This paper describes the performance evaluation and modeling of the CM-5 multiprocessor.

We provide a number of benchmarks for its communication and computation performance.

We have also benchmarked many operations, like scans and global reduction, that can be

performed using special hardware available on the CM-5. Most of these operations are are

modeled using regression on appropriate parameters.

These models are used to predict the performance of Gaussian Elimination on the CM-5.

Comparative timing on the Intel Touchstone Delta machine are also provided.

We also describe how to e�ciently embed a mesh and a hypercube on a CM-5 architecture

and provide timings for some mesh and hypercube communication primitives on the CM-5.

1 Introduction

The CM-5 is a distributed memory multiprocessor. The processors are interconnected using

three networks: data network, control network and the diagnostics network. The data

network is useful for processor to processor communication for bulk transfer. The control

network, in general, is useful to perform operations which require the participation of all

the nodes simultaneously, such as broadcasting and synchronization. Thus communication

between two nodes can be performed by using the data network or the control network. The

diagnostic network is for fault diagnosis/maintenance of the system. This paper is restricted

to the control network and the data network.

This paper presents results of a set of benchmark programs run on the CM-5 machine1. Our

study of the current CM-5 performance has twomain goals. The �rst goal is to benchmark the

CM-5 for its performance. The second goal is to model the CM-5 primitives in a fashion that

it will be useful for estimating the performance of applications on CM-5. These primitives

are modeled by linear performing regression using SAS, a statistical package widely available.

The parameters for each primitive are chosen appropriately.

The rest of the paper is organized as follows. Section 2 briey describes CM-5 sys-

tem.Section 3 gives computation benchmarks.Section 4 discuss the CM message-passing

library. Section 5 and 6 gives communication benchmarks from node to node and host

to node respectively. Section 7 addresses some of the global operations provided by the

CM-5. Section 8 gives brief summary of communication performance. Section 9 and 10 dis-

cusses about simulating mesh and hypercube on quad tree. Section 11 presents performance

estimation of CM-5 and compare with the Intel Touchstone Delta. Finally, section 12 gives

the conclusion of this paper.

1Note to the referees: the current version of the paper is limited to the scalar version of the CM-5. It

is expected that within the next few months the CM-5 would be upgraded to the oating point vector units

increasing the computational performance signi�cantly. We expect to add performance results of vector units

at that time.

RISC

(SPARC)
processor

Micro- Network
Interface

Vector Vector VectorVector
Unit Unit Unit Unit

Memory Memory Memory
Mbytes MbytesMbytes

to Control Network to Data Network

64-bit bus

instruction fetch,

program control

Memory
Mbytes

(plus ECC)

64-bit paths

four

four vector
units also
serve as

memory
controllers

Figure 1: CM-5 processing node with vector units.

2 System Overview

This section gives a brief overview of the CM-5 system. Our overview is divided into two

main sections: the processing unit and the communication networks.

2.1 Processors

Each node is a Sparc microprocessor with four vector units of a CM-5 system and 32 Mbytes

of memory (Figure 1.) The Sparc processor has a clock of 33Mhz. A 64Kbyte cache is

used for both instruction and data. It has separate integer and oating point registers. The

Sparc processor is rated at a peak performance of 22 Mips or 5 MFlops. It performs the

instruction fetching, controls the processing engines for vector units (in the full version of

CM-5) and manages the communication with other system components via the network

interface. The vector units perform one memory operation and one arithmetic operation per

cycle at 16Mhz (half the rate of the Sparc). It can perform a multiply and add in one cycle.

Thus the peak performance of each vector unit is 32 Mops for multiply-add and 16Mops

for add or multiply.

Thus a processing node with four vector units can give a peak performance of 128 MFlops

(for multiply-adds) and 64 Mops for multiplies or adds alone.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2: Data network with 16 nodes.

2.2 Networks

Every node in the CM-5 is connected to two interprocessor communications networks, the

data network and the control network. There is a separate network for carrying out diag-

nostics.

2.2.1 Control Network

The control network provides hardware support for common cooperative operations. These

operation include integer sum, max, min, and, or, xor, parallel pre�x and segmented parallel

pre�x. Further, it provides barrier synchronization. The control network has a relatively

low latency. This combined with a high bandwidth provides fast execution of the above

operations.

2.2.2 Data Network

The data network is a message passing point to point routing network. The network topology

is a quad tree based structure with a network interface at all the leaf nodes. The CM-5 is

designed to provide a peak bandwidth of 5 MBytes/s for point to point communication

between any two nodes in the system. However, if the destination is within the same group

of 4 or 16, it can give a peak bandwidth of 20 Mbytes/s and 10 Mbytes/s respectively[1].

Figure 2 and 3 show the network for 16 nodes and 64 nodes respectively. The CM-5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3: Data network with 64 nodes.

network is redundant in nature and is fault tolerant. The routing is deadlock free and the

conict arbitration is fair [2].

2.3 Test System

Our experiments were performed on 32 node CM-5 at Northeast Parallel Architecture Center

at Syracuse and a 512 node CM-5 at The Army High Performance Research Center at

University of Minnesota.

All the measurements reported in this paper were done using programs written in C.

The timings were estimated by measuring the time for m repetitions of the experiment and

dividing the time bym. The value of m was varied from 1 to 100 as required for the accuracy

of measurement.

3 Computation Benchmarks

We implemented a series of tests to measure the arithmetic speed of the Sparc processor

for integer and oating point operation. A comparison with the timings on the Intel Delta

processor i860 is also provided at table 1. The current Sparc chip has performance 2 to 3

times slower than i860 processor (running at 40 MHz) .

Operation CM-5 DELTA

(�s) (�s)

short + 1.22 0.54

long + 1.35 0.62

oat + 1.57 0.68

double + 1.88 0.69

short * 1.75 0.69

long * 1.90 0.62

oat * 2.19 0.62

double * 2.05 0.68

Table 1: Time for arithmetic operation on CM-5 and Delta

4 CM-5 Communication Library CMMD

The CM message-passing library, CMMD, provides facilities for cooperative message passing

between processing nodes. CMMD supports a programming model which is referred to

as Host/Node programming. This model involves program running on the on the host,

while independent copies of the node program run on each processing node. CM-5 can be

recon�gured into many partitions. The host acts like a partition manager (PM). It begins

execution by performing needed initializations and then invoking the node programs.

5 Basic Node to Node Communication

This section describes the results for basic node to node communication. Message passing

routines support two types of messages: standard messages in which bytes are in normal

sequential order and vector messages in which elements (many bytes) are stored with strides

(a �xed amount of space). Most of the routines support the same primitives for both types

of messages. We only performed experiments for standard messages. The performance of

these primitives for vector messages should be similar.

5.1 Send and Receive for Regular messages

We wanted to measure the time necessary for sending a message from one node to another.

We measured this time for node 0 to all the other nodes in the system. Since, one way

messages are di�cult to measure, this time is estimated by dividing the round trip time by

2. The round trip time is calculated using the following algorithm. Node 0 starts the clock

and sends a message to node i (i 6= 0). Node i waits for a message form node 0 and echoes

this message back. Node 0 stops the clock after receiving the message. The send and the

receive used on the CM-5 are both blocking in nature.

5.1.1 Neighbour communication

The best performance communication is between two neighbours in all networks. We mea-

sured the message passing time between node 0 to node 1 on the CM-5. If the bu�er is

improperly (word) aligned the current implementation is relatively slower (by a factor of 4 !)

for moving data from node memory into Network interface. Figure 4 shows sending di�erent

size of messages from Node 0 to Node 1. But �gure 5 shows sending word aligned messages (

divisible by 16) from Node 0 to Node 1. The time can be modeled by the following equation

T (l) = 73:39 + 0:126 � l microseconds (1)

For comparison, the corresponding equation for the Delta at [3] is

T (l) = 72 + 0:08 � l microseconds

Thus the startup time is approximately 73.39 microseconds and transfer rate is proportional

to 0.126.

Figure 6 shows that the transfer rate for the aligned bu�er is around 8 Mbytes/sec. This

bandwidth is signi�cantly lower than the peak bandwidth of 20 Mbytes/sec [2]. In the current

CM-5 implementation, system communication bandwidth isn't limited by the ability of the

node processor to shove data into network. Assembler codes can achieve something like 18

Mbytes/sec moving data from one node's registers to another's. But C with CMMD library

programs tend to go slower, partly because the C compiler's output is never as e�cient

0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000 60000 70000

Time

Message length (bytes)

neighbor communications

Figure 4: Neighbour communication between node 0 to node 1 with unaligned message

length (not have to be divisible by 16)(time is milliseconds).

0

1

2

3

4

5

6

7

8

9

0 10000 20000 30000 40000 50000 60000 70000

Time

Message length (bytes)

neighbor communications

Figure 5: Neighbour communication between node 0 to node 1 with word aligned message

length (divisible by 16) (time is milliseconds).

0

1

2

3

4

5

6

7

8

0 10000 20000 30000 40000 50000 60000 70000

Mbytes/sec

Message length (bytes)

transfer speed

Figure 6: Transfer rate for neighbour communication between node 0 to node 1 with word

aligned messages

as hand-crafted assembler, partly because it's tricky to convince the compiler to generate

double-word data transfer instructions[4]. It is expected that future versions of the library

will improve this raw communication bandwidth.

5.1.2 Non-neighbor communication

We measured the communication time from node 0 to every other nodes using the same

strategy as the previous section. The results for a message of size 16 and 2000 bytes are

presented in �gure 7 and 8. It shows that the di�erence in time to communicate between

neighbour and non-neighbour is negligible. Again, this could be attributed to the fact that

the bandwidth is limited by how fast the Sparc processor (using the C program) can pump

data into the network interface.

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0 100 200 300 400 500 600

Time

The processor Id. Number

16 bytes

Figure 7: Communication from node 0 to every other node on a 512 nodes CM-5 for a

message of 16 bytes (time is milliseconds).

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0 100 200 300 400 500 600

Time

The processor Id. Number

2000 bytes

Figure 8: Communication from node 0 to every other node on a 512 nodes CM-5 for a

message of 2000 bytes (time is milliseconds).

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Time

Message length (bytes)

Figure 9: Communication time from host to node 0 (time is milliseconds).

6 Host to Node communication

The CMMD library also provides a rich set of global operations. These include broadcast,

parallel pre�x, and synchronization operations provided by the underlying hardware, All

nodes must cooperate in these operations and call them before the execution of the primitive

is completed. This provides implicit synchronization. These primitives use the control

network for performing their operations.

6.1 Host to node Send and Receive

Figure 9 shows the time to send a message from host to a node. Figure 10 shows the transfer

rate from host to node. Host to node transfer rate is around 0.4 Mbytes/sec. This is quite

small as compared to the node to node transfer rate of 8 Mbytes/sec.

Partition Manager's (PM) VME bus become a bottleneck for movement of data from the

PM's memory into the data router and into nodes. This is due to the slower speed of the

bus and the non exclusive use of the VME bus (with Unix).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Mbytes/sec

Message length (bytes)

transfer speed

Figure 10: The transfer rate from host to node 0

Node-host communications are also constrained by the fact that the node is communicating

outside its partition when it's talking to the host. Communication outside a node's partition

requires a trap into the node OS, which involvesmore overhead than the direct writes required

to communicate inside a partition [4].

6.2 Broadcast from host

In a broadcast operation, messages are sent from the host to all nodes. The host broadcasts

the entire contents of the bu�er to all nodes. All nodes receive the same amount of data

simultaneously. The host and all the nodes must take part in a broadcast. The node

processors need to wait for a hardware signal that the entire broadcast is complete before

performing any other operation.

Figure 11 shows broadcast timing for 32 nodes and 512 nodes. The time for broadcast for

32 and 512 nodes is very close to each other. Thus, the CM-5 has a scalable architecture

for broadcast. Equation 2 and 3 gives the relationship between message length and time of

broadcast operation for 32 and 512 nodes respectively.

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000 30000 35000

Time

Message length (bytes)

broadcast at 32 nodes
broadcast at 512 nodes

Figure 11: Broadcasting timing at 32 nodes and 512 nodes (time is milliseconds).

T (l) = 527 + 0:83 � l microseconds (2)

T (l) = 542 + 0:83 � l microseconds (3)

Broadcast is faster than the host-node CMMD send because it uses the Control Network.

Thus by using CM-5 broadcast library, each node can receive messages from host at a transfer

rate of approximately 12 Mbytes/sec. (Figure 11).

6.3 Distribute from host to nodes

This primitive communicates an array (from the host) to all the nodes such that each nodes

receives a consecutive block (of equal size). The partitioning is done similar to the block

decomposition of the Fortran D Language speci�cation [5]. This primitive is very useful

when the host performs I/O and input has to be block partitioning among nodes. Figure

12 shows the performance of this primitive. We derive the Equation 4 and 5 for 32 and 512

nodes respectively.

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000 120000 140000

Time

Message length (bytes)

distribute at 32 nodes
distribute at 512 nodes

Figure 12: Distribution from host to nodes on 32 and 512 CM-5. (Time is milliseconds)

T (l; p) = 360 + 1:15 � l microseconds (4)

T (l; p) = 2600 + 1:13 � l microseconds (5)

7 Global Operations

Scans, reductions, and concatenation are some of the global operations provided by the

CMMD library. Given a bu�er containing a value in each node, these global computations

operate simultaneously on the bu�er set to perform such tasks as

� summing the value across all the nodes

� �nding the largest or smallest value

� performing a bitwise AND, OR, or XOR

Operation type add max min ior xor and

scan int 10.14 10.14 9.51 10.48 10.47 9.81

scan unit 10.13 9.61 9.81 10.50 10.82 10.16

scan double 47.57 54.16 55.91 * * *

segmented scan int 10.80 10.79 10.25 11.12 10.98 10.46

segmented scan uint 11.13 10.50 10.48 11.48 11.48 9.29

segmented scan double 123.26 125.25 132.87 * * *

reduce with host int 74.50 74.52 73.56 73.92 74.51 74.58

reduce with host uint 78.39 79.21 77.76 79.65 78.46 77.96

reduce with host double 187.51 194.88 197.52 * * *

reduce only nodes int 6.63 6.95 6.29 6.95 6.96 6.63

reduce only nodes uint 6.98 6.31 6.32 7.30 7.31 6.80

reduce only nodes double 39.48 42.21 46.76 * * *

Table 2: scan, segmented scan and reduction with host (result on the host and nodes) reduce

only host (result only on the nodes) operation on 32 nodes. Time unit is microseconds. * :

represents an unde�ned operation.

7.1 Scan Operation

A scan (a parallel pre�x operation) creates a running tally of results in each processor in the

order of the processor identi�er. Assuming that the A[j] represents the element A in the jth

processor and R[j] represents the result R in the jth processor. Then a scan (with an add)

performs the following operation

R[i] =
i�1X

j=0

A[j] 0 � i < P

where P is the number of processors.There are several versions of scan with behaver similar

to above.

Table 2 shows the performance of scan operation for a 32 node CM-5.

7.2 Segmented Scans

In a segmented scan, independent scans are computed simultaneously on di�erent subgroups

(or segments) of the nodes. For a detailed description of segmented scans, the reader is

referred to [6]. The segments are determined at run time by an argument called the sbit

which is a segment bit. sbit = 1, represents the beginning of a new segment. Table 2 shows

the performance of a segmented scan operation on a 32 node CM-5 assuming sbit is 1 with

a probability of 0.1.

7.3 Reduction Operation

A reduction operation takes as input a value in every processor and outputs a single value,

either in every processor or in the host processor. The operation performed can be one of

the following : add, max, min, ior, xor and and.

Table 2 gives the time required for the reduction operation assuming that the result is on

the host and nodes or the result is on the nodes. The host in the reduction operation slows

down the operation by an order of magnitude.

7.4 Concatenation Operation

Concatenation appends the value from each processor to the values of all preceding pro-

cessors (in processor identi�er order). CMMD provides two versions of concatenation: one

concatenates across the nodes only, and writes the resulting value into a bu�er on every

node. The other concatenates values from every node into a bu�er on the host. The result

of the concatenation is always ordered from the lowest to highest node [7].

Assuming that each processor has N elements, and there are P processors. Suppose

processor i contains a vector Vi[0 � � �N � 1]. The global concatenate operation computes a

concatenation of the local list in each of the processors. The resultant vector R[0 � � �NP �1]

is stored in the host or in every node.

R[j] = Vj div N [j mod N]

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000

Time

Message length (bytes)

concatenation at 32 nodes
concatenation at 512 nodes

Figure 13: Concatenation with result at the 32 nodes and 512 nodes (time is milliseconds).

Figure 13 and 14 shows the time required for concatenation using 32 and 512 nodes with

the result at the nodes and result at the host respectively. The length of the resultant vector

is proportional to the product of N and P . From �gure 13, it is clear that the time for

concatenation on 512 nodes is 15.36 (� 16) times larger than 32 nodes. From �gure 13 we

approximately derive the equation 6 for concatenation operation at nodes.

T (l; p) = p+ 1:2 � p � l microseconds (6)

l is message length and p is the number of nodes in that partition. Clearly, concatenation

operation is scalable.

T (l; 512)=T (l; 32) � 16

However when the result is to be stored on the host the timings are irregular and larger than

the case when results are stored on the nodes. This can be mainly attributed to the reasons

described in section 6.

0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000 2500 3000

Time

Message length (bytes)

concatenation at 32 nodes
concatenation at 512 nodes

Figure 14: The concatenation with result host and nodes at 32 nodes and 512 nodes (time

is milliseconds).

7.4.1 Broadcast from one node to all nodes

When we write SPMD style programming, one of the common kind of communication is to

broadcast from one node to the rest of node. Figure 15 shows performance of this primitive

at CM-5. We derive the following Equation 7 and 8 for 32 and 512 nodes CM-5.

T (l) = 19:38 + 1:49 � l microseconds (7)

T (l) = 5:0 + 1:46 � l microseconds (8)

8 Summary of PerformanceModels for Collective Com-

munications

Table 3 presents a summary of the performance modeling of all the global communication

primitives for CM-5. This table shows that CM-5 is scalable for these operations.

0

5

10

15

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000 30000 35000

Time

Message length (bytes)

node broadcast at 32 nodes
node broadcast at 512 nodes

Figure 15: Broadcasting from one node to all the other nodes on a 32 and 512 nodes CM-5

(time is milliseconds).

Communication Type Derived Formula

Neighbour T(l) = 73.39 + 0.126*l microseconds

Broadcast from Host (32 nodes) T(l) = 527 + 0.83*l microseconds

Broadcast from Host (512 nodes) T(l) = 542 + 0.83*l microseconds

Broadcast from node (32 nodes) T(l) = 19.38 + 1.49*l microseconds

Broadcast from node (512 nodes) T(l) = 5.0 + 1.46*l microseconds

Distribute from node (32 nodes) T(l) = 360 + 1.15*l microseconds

Distribute from node (512 nodes) T(l) = 2600 + 1.13*l microseconds

Concatenation to Host T(l,p) = p + 1.2*l microseconds

Table 3: Summary of all derived equations for communication on CM-5

9 Mesh simulation

A wrap-around mesh (torus) can be embedded into the CM-5 quad tree based architecture

by using the shu�e row major mapping. This mapping preserves the locality of 2 � 2 and

4 � 4 sub meshes. Figure 16 gives two procedure for calculating the mapping of a node on

a m� n mesh on a quad tree architecture and its inverse. The from coordinate to procnum

and from procnum to coordinate procedures help every node to �nd out their north, east,

west and south neighbour. The shu�e and unshu�e in �gure 16 are bitwise operations. If

i = abcd and j = efgh then shuffle(i; j) returns aebfcgh. unshuffle is a reverse operation

of shuffle. The size of unshuffle input is 2log2(m) bits long. Tables 4 shows the timings

of 16� 32, 8� 64, 4� 128, 2� 256 mesh simulation on a 512 node CM-5 .

from coordinate to procnum(i,j)

f

jprime = j mod m;

block = j / m;

procnum = m*m*block + shu�e(i, jprime);

g

from procnum to coordinate(procnum, i, j)

f

block = procnum / (m*m);

procnumprime = procnum - block * m*m;

(i, jprime) = unshu�e(procnumprime);

j = jprime + m*block;

g

Figure 16: An algorithm to simulate mesh on CM-5

mesh message NORTH EAST WEST SOUTH

size size max min max min max min max min

16x32 16 K 15.21 15.00 16.80 15.57 21.84 20.82 15.15 15.00

16x32 32 K 29.72 29.55 32.15 19.42 32.66 19.73 19.65 19.39

16x32 64 K 56.43 48.36 76.45 57.30 66.55 63.61 56.70 49.49

8x64 16 K 15.01 14.91 21.72 20.81 21.18 4.26 4.42 4.11

8x64 32 K 24.50 24.26 31.83 19.15 32.57 19.17 19.18 18.93

8x64 64 K 37.64 37.04 65.10 60.60 87.32 66.86 49.28 26.26

4x128 16 K 4.22 4.15 15.88 15.34 20.60 19.95 9.62 9.95

4x128 32 K 13.36 1.70 20.62 18.99 29.23 29.00 13.75 12.93

4x128 64 K 32.60 31.57 67.62 49.12 55.74 53.76 32.89 31.64

2x256 16 K 4.07 3.05 20.43 20.34 14.74 14.64 9.40 3.05

2x256 32 K 12.72 11.46 35.74 35.48 24.61 24.39 18.57 11.45

2x256 64 K 24.89 22.47 49.05 48.66 61.95 54.75 31.55 22.90

Table 4: The timing of mesh 16� 32, 8� 64, 4� 128 and 2� 256 simulation with 512 nodes

CM-5 (time is millisecond).

10 Hypercube simulation

For many computations, the communication pattern required is similar to the connections

of a hypercube architecture. These included bitonic sorting, Fast Fourier Transform and

many divide and conquer strategies [8]. This section discusses the time requirements for

such communication pattern.

A p-dimensional hypercube network connects 2p processing elements (PEs). Each PE has

a unique index in the range [0; 2p � 1]. Let ip�1ip�2 : : : i0 be the binary representation of the

PE index i. Let ik be the complement of bit ik. A hypercube network directly connects pairs

of processors whose indices di�er in exactly one bit; i.e., processor ip�1ip�2 : : : i0 is connected

to processors ip�1 : : : ik : : : i0; 0 � k � p�1. We use the notation i
(b) to represent the number

that di�ers from i in exactly bit b.

We consider communication patterns in which data may be transmitted from one processor

to another if it is logically connected along one dimension. At a given time, data is transferred

from PE i to PE i
(b) and from PE i to PE i

(b).

Node i of a logical hypercube is mapped on node i of the CM-5. The communications

patterns performed for a logical hypercube on the CM-5 using this mapping are shown in

�gure 17. The time required for swapping data along di�erent dimensions is approximately

the same for all dimensions and scales linearly with the size of the message (for messages as

as large as 256K bytes). The rate of transfer is between 4.4 Mbytes/sec and 5.3 Mbytes/sec.

This is close to the peak bandwidth for long range communication on the CM-5. However

for messages with locality (dimension 1 and 2) the bandwidth is nowhere close to the peak

of 20 Mbytes/sec. This is due to the reasons described in section 5.

11 Performance Estimation for Gaussian elimination

Modeling of the primitives is useful in estimating the performance of a given program [9].

We use Gaussian elimination to illustrate how to estimate the performance of a program by

using results mentioned in the previous sections. Figure 18 is the computational intensive

segment of a Gaussian elimination program. The row-column-oriented algorithm with partial

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8

Time

Dimensions of cube

8 K bytes
16 K bytes
32 K bytes
64 K bytes
256 K bytes

Figure 17: the timing of each level of fat tree leaves at level 0 root level 8 (time is millisec-

onds).

pivoting is used here [8] .

Table 5 is a portion of the relevant data derived from our benchmarking and modeling

results presented in the previous sections. The execution time of each iteration is multiplied

by the number of iterations to obtain the estimated time. There are N iteration for matrix

size of N � (N + 1). This code was executed on a 32 node CM-5. The measured results are

compared to the estimated results in Table 6. Such modeling can be useful in performance

prediction di�erent algorithms. One can use this information in choosing algorithms and

optimizing program codes. One can automate performance estimation at compile time by

using cost function of each primitives instead of real operations.

We now compare CM-5 to the Intel Touchstone Delta Mesh for Gaussian elimination. The

Delta system is a message-passing multicomputer, consisting of an ensemble of individual

and autonomous nodes that communicate across a two-dimensional mesh interconnection

network. It has 513 computational i860 nodes, each with 16 Mbytes of memory and each

node has peak speed of 60 double-precision Mops, 80 single-precision Mops at 40 MHz.

double a[N/nproc][N+1]

for(i=0;i<N;i++) {

find pivoting row

by using two reduction operations;

broadcast pivoting row;

some vector computation;

}

Figure 18: Gaussian Elimination Code for Program Estimation.

Operation Reference 64� 65 128� 129 256� 257 512� 513

Reduction double with max Table 2 0.042 0.042 0.042 0.042

Reduction int with max Table 2 0.006 0.006 0.006 0.006

Broadcast from node Equation 7 0.917 1.680 3.206 6.252

Computation Table 1 0.266 1.057 4.213 16.823

Time per iteration 1.057 2.787 7.469 23.130

Table 5: Cost of operations of Gaussian elimination on 32 nodes CM-5 (time is milliseconds).

Matrix Size 64� 65 128� 129 256� 257 512� 513

Estimated Time 78.9 356.7 1912.1 11843.0

Measured Time 72.5 353.45 1848.0 10948.6

Table 6: Estimated and measured time (time is milliseconds).

Operation 64� 65 128� 129 256� 257 512� 513

gopf 0.86 0.86 0.86 0.86

Broadcast from node 0.43 0.72 1.36 2.50

Computation 0.12 0.48 2.18 11.10

Time per iteration 1.41 2.06 4.40 14.46

Table 7: Individual operation of Gaussian elimination on 32 nodes The Delta Mesh (time is

milliseconds).

We implemented the Gaussian elimination algorithm in both system by C + MP (Message

Passing).

Table 7 show timing of individual operation of Gaussian elimination in the Delta Mesh.

Comparing the results of Table 5 and Table 7, The Delta gopf 2 operation is slower than two

reduction operations of CM-5. But the Delta is faster for broadcasting and computation.

Table 8 compares the performance on the two multicomputers. Thus, for Gaussian elimi-

nation it can be seen that the 32 nodes CM-5 without vector nodes is comparable to the 32

nodes Delta system. This is because the CM-5 (without vector units) has poor performance

as compared on computation to Intel Delta Machine. However, it has a faster mechanism

for performing reduction. Since large matrixes have more computation as seen on the tables,

CM-5 is better for smaller matrixes and worse for large matrixes.

12 Conclusions

In this paper, we studied the performance of the CM-5 multiprocessor. We provided a

number of benchmarks for its communication and computation performance. The compu-

tation performance is currently limited because the vector units are not available. In the

current version the CM-5 Sparc chip has performance 2 to 3 times slower than i860. It is

expected that the performance should improve by at least an order of magnitude with the

2The Delta function which lets user de�ne its own function. We designed our function to �nd pivot row

and its processor number in the Delta Mesh

CM-5 DELTA

Matrix Size 32 Nodes 32 Nodes

64� 65 72.5 126.0

128� 129 353.4 331.0

256� 257 1848.0 1261.0

512� 513 10948.6 6062.0

Table 8: Comparison of CM-5 and DELTA (time is milliseconds).

full con�guration (with the vector units).

The maximum node to node transfer rate was found to be 8 Mbytes/sec for unidirectional

transfer between two neighbour nodes. This was signi�cantly lower than the peak bandwidth

of 20 Mbytes/sec. It is expected that this rate is going to increase with later versions of the

CMMD software. The host to node communication is signi�cantly slower than the node to

node communications. The maximum transfer rate for long messages was of the order of

0.4 Mbytes/sec. Thus algorithms which require active participation of the host and require

large number of messages to be communicated from the host to nodes will, in general, have

poor performance and poor scalability. We studied some collective communication patterns

required for solving many interesting scienti�c problems (such as the mesh and hypercube).

The bandwidth for hypercube type of communications was between 4 and 5 Mbytes per

second. This was also true for cases when all the communication passed through the root

(pseudo) of the CM-5 interconnection network. For the mesh type of communication the

bandwidth was relatively lower. For most patterns the transfer rate was between 1.0 and

2.5 Mbytes/sec. The reasons of hypercube type patterns having higher transfer rate can be

attributed to the following: 1) hypercube patterns require a swap between two processors;

2) hypercube patterns embed more regularly on the CM-5 interconnection network.

There are several global operations which use the control network for communication.

Broadcast from the host to nodes achieves a transfer rate of 12 Mbytes/sec. Concatenation

from nodes when the host is not participating requires time linearly proportional to the size

of the resultant array. Concatenation requires signi�cantly more time when the result is to

be stored at the host. The other operations, like max, min, add, xor, and etc., which use the

global control network are extremely fast when the result is to be stored on the nodes and

can be completed in 6 to 7 microseconds for integers and 39 to 47 microseconds for double

precisions. The time are an order of magnitude higher when the result need to be stored on

the host. Scans and segmented scans are useful primitives for solving many applications [6].

These operations are quite fast and can be completed in 10 microseconds for integers on 32

nodes. For double precision the times are signi�cantly larger (a factor of 4 for scans and a

factor of 13 for segmented scans).

For most primitives, the participation of the host generally degraded the total time for

completion. Thus the CM-5 is more suitable for programs which require minimum partici-

pation of the host (such as the Single Program Multiply Data style of programming).

The CM-5 data and control network were found to be highly scalable. The performance

�gures remained constant for most operations when we evaluated similar primitives from 32

to 512 nodes. Once the vector units are added to the current version of CM-5, the computa-

tion performance along with the scalable communication provided by the data and control

network and the global operations (like scans, synchronization, max etc) provided by the

control network should make the CM-5 a versatile machine for solving many computationally

intensive, interesting scienti�c and engineering problems.

A comparative study was performed between Intel Touchstone Delta and CM-5 (without

vector units). We found that a 32 node CM-5 had a comparable performance to the Touch-

stone Delta. Although, the Sparc processor is slower as compared the i860 chip. Reduction

operation is faster on CM-5 but its broadcast is slower than on the Delta

Acknowledgements

We would like to thank Steve Swartz of Thinking Machine for many clari�cations regarding

the CM-5. We would like to thank Professor Vipim Kumar for providing access to the CM-5

at the Army High Performance Computing Center at University of Minnesota.We would also

like to thank Min-You Wu for his suggestions on improving the manuscript.

References

[1] Brond Larson. personal communications. 1992.

[2] Thinking Machines Corporation. In The Connection Machine CM-5 Technical Summary,

October 1991.

[3] T. H. Dunigan. Communication Performance of the Intel Touchstone Delta Mesh. Tech-

nical report, Oak Ridge National Laboratory, 1992.

[4] Steve Swartz. personal communications. 1992.

[5] Geo�ry Fox, Seema Hiranadani, Ken Kenndy, and etc. Fortran D Language Speci�cation.

Technical report, Rice and Syracuse University, 1992.

[6] Guy E. Blelloch. In Vector Models for Data-Parallel Computing. MIT, May 1990.

[7] Thinking Machines Corporation. In CMMD Reference Manual, Januar 1992.

[8] G. C. Fox, M.A. Johnson, S. W. Otto G.A.Lyzenga, J.K. Salmon, and D. W. Walker. In

Solving Problems on Concurent Processors, volume 1-2. Prentice Hall, May 1988.

[9] Min-You Wu and Wei Shu. Performance Estimation of Gaussian-Elimination on the

Connection Machine . International Conference on Parallel Processing, 1989.

