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Abstract

A set of stock option pricing models are im-

plemented on the Connection Machine-2 and the

DECmpp-12000 to compare model prices and histor-

ical market data. Improved models, which incorporate

stochastic volatility with American call generally have

smaller pricing errors than simpler models which are

based on constant volatility and European call. In a re-

�nement of the comparison between model and market

prices, a �gure of merit based on the bid/ask spread

in the market, and the use of optimization techniques

for model parameter estimation, are evaluated. Opti-

mization appears to hold great promise for improving

the accuracy of existing pricing models, especially for

stocks which are di�cult to price with conventional

models.

1 Introduction

Following the opening of the �rst organized options

exchange in April, 1973 by the Chicago Board of Op-

tions Exchange, rapid growth in option trading has
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Digital Equipment Corporation.

been accompanied by the development of option pric-

ing theory and modeling. While there are many types

of options, all option contracts are based on puts, calls,

and an underlying asset (a stock or an index of stocks).

The owner of a call option contract has a right but not

the obligation to purchase shares of the asset for an

agreed upon exercise or striking price, for a �xed pe-

riod of time [2]. European option contracts can be ex-

ercised only at maturity, while American contracts can

be exercised at any time during the life of the contract.

Option traders include both speculators and �nancial

managers. Speculators are attracted to the options

market because of the potential for high pro�ts. Con-

siderably less capital is required to participate in the

options market than the stock market. Financial man-

agers participate in the options market to hedge risk

in their portfolios.

The variance of asset price over time (de�ned as

volatility) is a key parameter in any calculation of

option prices. Since the introduction of a constant

volatility, European pricing model (Black-Scholes) [1],

�nance researchers have sought improved methods to

price options with stochastic volatility and American

contracts.

A schematic view of the path of stock price over

time is illustrated in Figure 1. Elements of the model
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Figure 1: Schematic view of stock over life of option

contract

include initial stock price, the call price, the exercise

price, the time of dividend, as well as model param-

eters which cannot be directly observed but must be

estimated from market information. These parame-

ters include volatility of underlying asset, variance of

the volatility, and correlation between asset price and

volatility. In general, the time just prior to dividend

payout is the only time that a call option is exercised

before maturity.

This project is part of a program at the Northeast

Parallel Architectures Center (NPAC) to develop ap-

plications of parallel computing in industry, and is the

result of a collaboration with the School of Manage-

ment at Syracuse University. Our purpose here is to

report the results of a comparison of a set of option

pricing models and historical market data. Performing

this comparison requires high performance computing.

In a related study we examine data distribution, load

balancing, and communication issues and their e�ect

on performance of option pricing models on the Con-

nection Machine-2 and the DECmpp-12000 [7].

In this comparison, we observed smaller errors in

pricing models incorporating stochastic volatility and

American call than for models based on constant

volatility and European call. In a re�nement of our

comparison between model and market prices, we used

optimization techniques to estimate model parameters

and devised a �gure of merit based on the bid/ask

spread in the market to summarize model perfor-

mance. Optimization appears to hold great promise in

improving the performance of existing pricing models.

Current, ongoing work includes developing a simple

trading strategy to assess model performance in terms

of market pro�tability.

2 Option pricing models

The Black-Scholes option pricing model was �rst

published in 1973 [1] with the opening of the Chicago

Board of Options Exchange, and remains commonly

used. This model assumes constant volatility and

European pricing (exercise only at maturity), and is

the least sophisticated model considered in this study.

Black and Scholes [1] derived a nonstochastic equation

for call price that can be solved analytically. Many of

the models that follow the Black-Scholes model incor-

porate methods for treating volatility as a stochastic

process.

Monte Carlo models are the conventional standard

of comparison for option pricing models. The Monte

Carlo method allows us to directly incorporate volatil-

ity and stock price change as stochastic processes, and

parallelizes very easily. While generally accepted to

provide the most accurate pricing estimates, Monte

Carlo models remain too computationally intensive to

be used other than for research purposes.

Binomial approximation models allow us to incor-

porate stochastic volatility and American call, and are

computationally far more e�cient than Monte Carlo

simulation. In a previous, related study, Finucane [4]

compared a set of Monte Carlo simulation and bino-

mial pricing models. Using a set of �xed input pa-

rameters (stock price, volatility, variance of volatil-

ity, correlation, stock price/exercise price ratio), bi-

nomial models were demonstrated to provide accurate

approximations (within two standard errors) of the

stochastic volatility price for the European and Amer-

ican Monte Carlo cases.

In this study, we evaluate the accuracy of binomial



approximation models for pricing call options. We se-

lected four pricing models, implemented these mod-

els in Fortran90 on the Connection Machine-2 and

the DECmpp-12000, and performed a comparison be-

tween model and historical market prices. The four

models in our market comparisons are:

Model 1. Black-Scholes model (constant volatility, Eu-

ropean call)

Model 2. Binomial approximation with constant

volatility, and American call

Model 3. Binomial approximation with stochastic

volatility, and European call

Model 4. Binomial approximation with stochastic

volatility, and American call

Following [3, 5, 4], we brie
y summarize the equa-

tions describing the continuous time movement of

stock price and volatility (variance of stock price) over

the life of an option contract. Discretizing these pro-

cesses within the binomial lattice is based on an as-

sumption that stock price and volatility follow a con-

tinuous drift. The binomial model is used to derive a

distribution of stock prices at time of maturity.

Volatility, �, and stock price, S, follow stochastic

processes represented as

d�
2

�2
= ��dt+ �dfW (1)

dS

S
= �sdt+ �d eZ (2)

where fW and eZ are standard Weiner processes with

correlation �, �� is the drift of the variance process

and �s is the drift of stock price (both constants) and �

is the volatility of the variance (not directly observed,

but estimated from data). Weiner processes generate

continuous paths that are in constant motion no mat-

ter how small the time step.

Binomial approximation models represent the con-

tinuous time processes described above as a lattice

of discrete up/down movements in stock price and

volatility. For example, the magnitude of the increase

(u) or decrease (d) in variance for a given time period

is as

u = e
(����2=2)�t+�

p
�t (3)

d = e
(����2=2)�t+�

p
�t (4)

with the probability of an increase or decrease being

equally likely. With the introduction of correlation,

�, the variance of stock price after i periods with j

upward movements and i� j downward movements is

then de�ned as

�
2 =

�
�
2
0;0

�
u(�)id(�)i�j (5)

In the limit, as �t approaches zero, the binomial pro-

cess approaches the continuous time process.

The magnitude of increases (U ) and decreases (D)

within the stock price are then de�ned as

Ui;j = e
(rf��2i;j=2)�t+�i;j�t (6)

Di;j = e
(rf��2i;j=2)�t��i;j�t (7)

American options incorporate early exercise, which

means that the option can be exercised at any time

during the life of the contract. Pricing American op-

tion contracts with the binomial model requires track-

ing price movements within the lattice from the time

of early exercise (dividend payout) to contract matu-

rity. We use American pricing, but do not describe

details of the model implementation in this paper.

3 Implementation of the binomial ap-

proximation model

Binomial models provide a numerical procedure for

approximating the stochastic processes of stock price

change over time. A binomial lattice is illustrated in

Figure 2 showing asset price or volatility of price in the

vertical axis and time in the horizontal axis. Impor-

tant elements of the model include initial price (S0)

and volatility (�0) or (V0), time of dividend payout

(tdiv), the 2tdiv nodes at time of the dividend where

tdiv ranges over values 1 to T � 1, and the 2T nodes

at terminal time T . A single option price C0, is es-

timated from a weighted average of the 2T prices at

time T and discounting to the present time T0.
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Figure 2: Structure of the binomial lattice

We designate the time steps in our model from 1 to

tdiv as stage 1 of the model, and timesteps from tdiv to

maturity T as stage 2 of the model. This breakdown

of the American pricing model allows us to track price

movements after dividend payout and determine per-

centages of early exercise.

Figure 3 illustrates the 2tdiv nodes in the binomial

lattice at time of dividend. The value of tdiv ranges

from 1 to T � 1 and de�nes the shape of the two-

dimensional Fortran array (1 : 2tdiv ; 1 : 2T�tdiv). The

value tdiv comes frommarket information (each option

record has its own value tdiv) and is not accessible to

the model until run-time, requiring dynamically allo-

cated arrays.

At the close of stage 1 in our model, there are 2tdiv

nodes in the lattice. After dividend payout, and the

onset of stage 2 of the model, up/down movements of

price (and volatility) for each node are represented by

a subtree of the lattice and expressed in the second

dimension of the array of size 2T�tdiv . As illustrated

in Figure 3, when tdiv = 2, there are 2tdiv or 4 rows

in the two-dimensional array. After dividend payout,

stage 2 of the model, further up/down moves of price

and volatility are expressed in the 2T�2 columns of

the two-dimensional array.

We run the binomial model for T= 17 time steps or

periods. At each time step T, there are 2T points in
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Figure 3: Binomial lattice expressed as a two-

dimensional array

the binomial lattice. This model size is consistent with

a related study [4], we also found little improvement in

model accuracy with model sizes of T= 18, 19 and 20.

We express the binomial lattice in both one and two-

dimensional arrays, and use the Fortran90 intrinsic

function eoshift to perform repeated nearest-neighbor

communication within the array.

Using this approach, we evolve binomial lattices of

volatility and price over 17 periods. In each period, the

number of nodes in the lattice doubles, representing

the up/down movements of volatility and price over

time.

Although the communication requirements of this

model are signi�cant, the model requires only nearest

neighbor communication along one axis. This feature

allows us to express the the two-dimensional structure

of the binomial lattice (volatility x time, and price x

time) in one-dimensional Fortran arrays. We describe

implementation of one and two-dimensional models on

the Connection Machine-2 and DECmpp-12000 in a

related study [7]. Data distribution, load balancing,

and communication issues have an important in
uence

on model run time.



4 Comparison of market and model

prices

We obtained market data from the Chicago Board

of Options Exchange for the period 1988-1990, and

in our initial tests, used one-month records of option

trades from January, 1988 for a set of 13 stocks. Op-

tions are a high-volume instrument, each one month

data set consists of individual trades ranging in size

from three to ten thousand trades.

We de�ne the market price as the average of the

prevailing bid and asking prices for each trade record.

From our set of pricing models, we calculate four mod-

els prices for each trade and compare model with mar-

ket prices. Before running the pricing models, we must

�rst estimate various model parameters. Volatility �,

the most important parameter in all of the models,

is not directly observable. The same is true of �, the

variance of �, and its correlation with the stock price

�. The techniques used to estimate these parameters

has a direct impact on the data comparison.

We begin with a simple method for model param-

eter estimation. At the beginning of each half hour

interval, we select an option with an exercise price

closest to the stock price, and the shortest expiration

time. We compute four estimates of market volatility,

termed the implied volatility, by numerically inverting

the four models for the selected option record. These

implied values of volatility are then used as input to

the models to price the remaining options in that half

hour interval. To estimate � and �, which are as-

sumed in this simple method not to vary over time,

we average the half hour implied volatilities for each

day, and compute the variance and correlation of these

daily averages over the month long market record. We

compare market and model prices by reporting RMS

errors.

In our preliminary comparison, we examined the

performance of four pricing models, using this simple

method of parameter estimation, over the one month

period of January, 1988. The following list identi�es

the individual stocks used in this comparison: Bristol

Figure 4: Results of preliminary market comparison

Myers Squibb (bmy), Chrysler Corp. (c), Eastman

Kodak (ek), Ford Motor Corp. (f), General Electric

(ge), Hewlett Packard (hwp), International Business

Machines (ibm), American Telephone & Telegraph (t),

Texas Instruments (txn), Walmart (wmt), and Xerox

(xrx). Figure 4 represents model performance as a

RMS error between model and market price. For all

stocks, the least sophisticated model, model 1 Black-

Scholes with constant volatility and European call,

has the largest errors. Our most sophisticated model,

model 4 binomial model with stochastic volatility and

American call, tends to have the smallest pricing er-

rors. Pricing errors also tend to vary by stock. For

example, AT&T (t) seems to be harder to price than

Ford Motors (f) for this period. Although not shown

here, we observed that the more sophisticated bino-

mial model (stochastic volatility with American call)

tends to perform better than the other models for op-

tions with the longest times to maturity (for example,

greater than 60 days).

5 Re�ning the comparison of models

and market data

In our initial evaluation of model accuracy, we used

a simple method of model parameter estimation and



expressed model errors as RMS errors. To re�ne this

comparison of model and market prices, we developed

a �gure of merit to summarize model accuracy, and

used optimization techniques to estimate model pa-

rameters.

The �gure of merit is based on the bid/ask spread in

the market. As the term implies, the bid/ask spread is

the di�erence between prevailing bids by buyers, and

asking prices by sellers for a given option. Our �gure

of merit de�nes the percentage of time that a model

price falls within one bid/ask spread of the market

price (de�ned as the average of the bid and ask price).

The �gure of merit provides a simple method for sum-

marizing model accuracy in market terms.

In addition to the simple method of parameter es-

timation based on historical values, we investigated

a more sophisticated approach using nonlinear opti-

mization. In this scheme, half-hour volatilities are es-

timated as described above, and the parameters � and

� are chosen so that they minimize the �2 error be-

tween the market prices and the model prices for each

day. To do this, we de�ne the �2 as

�
2(�; �; t) =

NtX
i=1

(Pi �Mi(�; �))
2 (8)

where Nt is the number of records for day t, Pi is

the market price of the ith record, and Mi(�; �) is the

model price for the ith record using parameters � and

�. �
2 is a nonlinear function of � and � and turns

out to be a rather smooth function of the parameters.

This allows us to use the downhill simplex method

[6], a simple method of nonlinear optimization which

works well for this application. Using optimization

techniques, we �nd the parameters � and � that give

the best possible �t to the data.

Estimating these parameters requires a great deal

of computational e�ort. For a typical run, the down-

hill simplex method requires approximately 20 steps

to converge to parameters with an accuracy of 10�3.

Each step requires the calculation of model prices and

implied volatilities for all of the options in the given

day. Typical data sets include 100 trades per day, 14

Figure 5: Figure of merit summarizing model perfor-

mance

of which are numerically inverted to compute the im-

plied volatilities. The numerical inversion requires, on

average, about 10 price calculations. Thus to estimate

the parameters for one day requires 20*(86 + 14*10)

= 4520 option price calculations.

We used model parameter estimates based on op-

timization as input to model 4, the binomial model

with stochastic volatility and American call. Figure 5

summarizes results for a subset of the 13 stocks in our

previous comparison. Model numbers 1 through 4 cor-

respond to the same four models used above. Models

5 and 6 are based on model 4, but use optimized pa-

rameter estimates for � and �. In general, optimization

substantially improves the �gure of merit summarizing

model performance. Improvement in model accuracy

with optimized parameters is greatest for IBM and

Eastman Kodak stock in this period (January, 1988).

IBM appears to be more di�cult to price than other

stocks in our sample, so we might expect optimization

to make a di�erence. Eastman Kodak stock, however,

is reasonably modeled without optimization without

optimization, and further improved with optimization.



6 Discussion and conclusion

We used parallel models to perform a large scale

comparison of option pricing models and historical

market data. It is important to note that a small per-

centage improvement in model accuracy has impor-

tant implications for this application. While our com-

parison was limited to one month of market data, our

results suggest that improved pricing models, incor-

porating stochastic volatility and American call, are

more accurate than simple models based on constant

volatility and European call. Incorporating optimiza-

tion techniques into option pricing appears to hold

great promise.

This comparison required approximately 150 hours

of 8K Connection Machine-2 or DECmpp-12000 time

to perform. Based on speedup ratios observed in a re-

lated study [7], we estimate a similar comparison us-

ing sequential models running on a high speed work-

station, such as a SUN4 or DECstation 5000 would

require approximately 7,000 hours.

Current work related to this project includes fur-

ther improvement of optimization techniques [8], and

application of the models to longer time periods. In

addition, we are developing a simple trading strategy

to assess model accuracy in terms of market pro�tabil-

ity. In this strategy, we use the models to identify

under priced options in the market, buy and hold op-

tions for various holding periods, and track long term

pro�tability of the various models.

In conclusion, this study demonstrates an applica-

tion parallel computing in the �nance industry. Par-

allel models are required for performing large scale

comparisons between model and market prices. Par-

allel models are useful tools for developing new pric-

ing models and applications of pricing models, such as

pricing entire portfolios and devising hedging strate-

gies under changing market conditions.
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