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Technology

The best enterprises have both a compelling need pulling them forward and

an innovative technological solution pushing them on. In high-performance

computing, we have the need for increased computational power in many

applications and the inevitable long-term solution is massive parallelism. In

the short term, the relation between pull and push may seem unclear as

novel algorithms and software are needed to support parallel computing.

However, eventually parallelism will be present in all computers|including

those in your children's video game, your personal computer or workstation,

and the central supercomputer

The technological driving force is VLSI, or very large scale integration|

the same technology that has created the personal computer and workstation

market over the last decade. In 1980, the Intel 8086 used 50,000 transis-

tors while in 1992 the latest Digital alpha RISC chip contains 1,680,000

transistors|a factor of 30 increase. The dramatic improvement in chip

density comes together with an increase in clock speed and improved de-

sign so that the alpha delivers over a factor of 1,000 better performance on

scienti�c problems than the 8086{8087 chip pair of the early 1980's.

The increasing density of transistors on a chip follows directly from a

decreasing feature size which is now 0:75� for the alpha. Feature size will

continue to decrease, and by the year 2000, chips with 50,000,000 transistors

are expected to be available. What can we do with all these transistors?

With around a million transistors on a chip, designers were able to move

full mainframe functionality to about 2 cm2 of a chip. This enabled the

personal computing and workstation revolutions. The next factors of 10
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Figure 1: The nCUBE-2 Node and Its Integration into a Board. Up to 128

of these boards can be combined into a single supercomputer.

increase in transistor density must go into some form of parallelism by repli-

cating several CPU's on a single chip.

By the year 2000, parallelism is thus inevitable in all computers. Today,

we see it in the larger machines, as we replicate many chips and many printed

circuit boards to build systems as arrays of nodes; each unit of which is some

variant of the microprocessor. This is illustrated in Figure 1, which shows a

nCUBE parallel supercomputer with 64 identical nodes on each board|each

node is a single chip CPU with additional memory chips. To be useful, these

nodes must be linked in some way, and this is still a matter of much research

and experimentation. Further, we can argue as to the most appropriate node

to replicate; is it a \small" nodes as in the nCUBE of Figure 1, or is it more

powerful \fat" nodes, such as those o�ered in CM-5 and Intel Touchstone

where each node is a sophisticated multichip printed circuit board. However,

these detailed issues should not obscure the basic point; parallelism allows

one to build the world's fastest and most cost e�ective supercomputers.
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Figure 2: Performance of Parallel and Sequential Supercomputers

Figure 2 illustrates this as a function of time showing, already today, a

factor of 10 advantage for parallel versus conventional supercomputers.

Parallelism may only be critical today for supercomputer vendors and

users. By the year 2000, all supercomputers will have to address the hard-

ware, algorithmic, and software issues implied by parallelism. The reward

will be amazing performance and the opening up of new �elds; the price will

be a major rethinking and reimplementation of software, algorithms, and

applications.

Grand Challenges
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The President has instituted this year, the �ve-year federal High Perfor-

mance Computing and Communications Initiative. This will spur the de-

velopment of the technology described above and is focused on the solution

of grand challenges shown in Figure 3. These are fundamental problems in

science and engineering, with broad economic and scienti�c impact, whose

solution could be advanced by applying high performance computing tech-

niques and resources.

The activities of several federal agencies have been coordinated in this

initiative. DARPA is developing the basic technology, which are applied

to the grand challenges by DOE, NASA, NSF, NIH, EPA, and NOAA. Se-

lected activities include the mapping of the human genome in DOE, climate

modeling in DOE and NOAA, coupled structural and air
ow simulations of

advanced powered lift, and a high-speed civil transport by NASA.

Well-Known Parallel Computers

We can learn quite a bit about the use and design of parallel computers by

studying parallelism in nature and society. In fact, one can view society or

culture as a set of rules and conventions to allow people to work together,

i.e., in parallel, e�ectively, and harmoniously.

A simple illustration is the way we tackle a large project|the construc-

tion of the space shuttle. It would be attractive to solve this sequentially

by hiring a single superman to complete this project. This is prohibited by

current physical phenomenology, and so instead one puts together a team,

maybe in this case involving 100,000 \ordinary" people. These people work

in parallel to complete the shuttle. A parallel computer is quite similar, we

might use 10
5
digital computers working together to simulate air
ow over

a new shuttle design. Key in NASA's shuttle project is the management

structure. This becomes, for the analogy, the issue of computer hardware

and software architecture; a key research area in computer science.

We can view the brain as a parallel computer with some 10
12

neurons

working together to solve information processing and decision-making prob-

lems. The neurons are analogous to the node shown in Figure 1(a); nature

links neurons by axons and dendrites, not wires and printed circuit board

traces used by nCUBE. However, the basic design|interconnected elements

communicating by message passing|is the same and further both nature's

and digital parallel computer use the same mechanism of data parallelism

to solve problems concurrently.

5



Figure 4: Three Parallel Computing Strategies Found in the Brain (of a

Rat). Each �gure depicts brain activity corresponding to various functions:

(A) continuous map of a tactile inputs in somatosensory cortex, (B) patchy

map of tactile inputs to cerebellar cortex, and (C) scattered mapping of

olfactory cortex as represented by the unstructured pattern of 2DG update

in a single section of this cortex [Nelson:90b].

Data Parallelism

Parallel computing is general purpose because there is a single unifying

mechanism on which it is based|this is called domain decomposition or

data parallelism. Nature solves complex problems by dividing them up and

assigning particular neurons, or group of neurons, to di�erent parts of the

problem. This is illustrated in Figure 4, which shows that di�erent areas of

the brain are responsible for disentangling tactile information from di�erent

parts of the body. Again, vision is a major task for the brain and there is

direct spatial mapping of received pixels of light at the retina to neurons in

the brain.
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Figure 5: A Two-dimensional Projection of a Model Universe in which Two

Galaxies are on a Collision Course. This is a simpli�ed version with 18,000

\stars" of a large simulation reported in [Salmon:89b]. The irregular decom-

position onto a 16-node machine is illustrated above.

Parallel simulation of interacting particles, shown in Figure 5, is handled

by data parallelism with individual particles being assigned to a particular

node in the parallel machine. The astrophysical simulation of Figure 5 is

very inhomogeneous and corresponding the spatial regions assigned to a

node are irregular and indeed time dependent. This complexity was chal-

lenging for the implementation, but the resultant program achieved excellent

performance with a speedup of over 800 on a 1024-node nCUBE. Similar suc-

cess can be anticipated for parallel implementations of molecular dynamics

codes, such as CHARMM.

Several chemistry computations involve generation and manipulation of

large full matrices that represent the interaction Hamiltonian. Energy level

calculations involve eigenvalue determination while scattering can use ma-

trix multiplication and linear equation solution. The same concept of data

parallelism is used with, as seen in Figure 6, a simple regular decomposition

of the matrix onto the processors. Parallelism is present both for genera-

tion of the matrix elements that proceed independently in each node, and

the eigenvalue and other matrix operations. A general matrix library LA-
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Figure 6: 16�16 Matrix Decomposed onto a 4�4 Parallel Computer Array

PACK will soon be available for a broad class of high-performance vector

and parallel computers.

Problems consist of algorithms applied to a large data domain. Data

parallelism achieves parallelism by splitting up domain and applying the

computational algorithm concurrently to each point.

Current Parallel Machines

The �eld of parallel computing changes rapidly with, as in the workstation

market, vendors leapfrogging each other with new models. Further, any

given model is essentially obsolete after some three years, with new machines

having very di�erent design and software support. Here, we will discuss some

of the machines that are interesting in 1992. There are three broad classes of

machines. The �rst is the so-called SIMD, or synchronous machine, where

we have a coupled array of computers with distributed memory and process-

ing units, i.e., each processor unit is associated with its own memory. On

SIMD machines, each node executes the same instruction stream. The latest

example of this is the Maspar MP-1, remarketed with additional software as
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the DECmpp by Digital The MP-1 has up to 16K four-bit processors and

one Gigabyte (10
9
bytes) of memory and approximately one GigaFLOPS

(109 
oating point operations per second) peak performance. The Connec-

tion Machine CM-1, CM-2, and CM-200 are also SIMD distributed memory

machines.

Thinking Machines surprised the community by changing the architec-

ture of their latest CM-5, shown in Figure 7, to be the so-called MIMD

distributed memory architecture. Again, we have a coupled collection of

nodes|each with memory and processor|but now each node can execute

its own instruction stream. The largest CM-5 delivered has 1,024 nodes, 32

Gigabytes of memory, and can, on some applications, realize 80 GigaFLOPS.

The CM-5 installations are not fully implemented, and the largest parallel

computer in operation today is the Intel \Delta Touchstone" System at Cal-

tech, shown in Figure 8. This is also a MIMD distributed memory machines

with 528 nodes, but a very di�erent node interconnection scheme. Intel's

Touchstone family continues to evolve, and the latest \Paragon" model,

which will be available later this year, should have similar performance to

the CM-5. The nCUBE, shown in Figure 1, also has the MIMD distributed

memory design.

All the parallel machines discussed above are \scalable" and available in

con�gurations that vary from small $100,000 systems to a full size supercom-

puter at approximately $30,000,000; the number of nodes and performance

scales approximately linearly with the price. The DECmpp (Maspar) has

deliberately aimed at the low end of the market and the largest 16K system

costs factor of 25{50 less than the 1024-node CM-5 discussed above. In

fact, as all the machines use similar VLSI technology, albeit with designs

that are optimized in di�erent ways, they very crudely have similar price

performance. This, as shown in Figure 2, much better than that of conven-

tional vector supercomputers, such as those from Cray, IBM, and Japanese

vendors.

Current Cray and IBM supercomputers are also parallel with up to 16

processors in the latest CRAY C-90. their architecture is MIMD shared

memory with a group of processors accessing a single global memory. This

design is also seen on machines like the Sequent and high-end Silicon Graph-

ics workstations, but all these machines have a modest number (� 32)

processors as they are hard to scale to many processors, i.e., to \massive

parallelism."

An ingenious compromise is seen in the recent Kendall Square machine

KSR-1, and the experimental DASH computer at Stanford. These have a
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Figure 7: The CM-5 Produced by Thinking Machines
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Figure 8: The \Delta Touchstone" Parallel Supercomputer Installed at Cal-

tech and Produced by Intel
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so-called virtual shared memory. The machine is built with a distributed

memory, but special hardware (caches) and software make this distributed

memory \act" as though it is globally available to all processors.

Currently, the dominant parallel computer vendors are American with

only modest competition from Europe, with systems built around the trans-

puter chip from Inmos. Japanese manufacturers have so far made little

contribution to this �eld, but as the technology matures, we can expect

them to provide formidable competition.

The Best Architecture?

Each of the machines and architectures described above have both strong

and weak point, as they have been optimized in di�erent ways.

The shared and virtual shared memory architectures have been designed

for easier software, and in particular, for easier porting of existing Fortran

codes. It is, however, di�cult to scale them to large systems, and retain

good cost performance.

The data parallel methodology described earlier �ts well with distributed

memory machines, but substantial reworking of software is needed so that

compilers can exploit the inherent parallelism of the problem. However,

distributed memory machines are clearly scalable to very large systems, and

with the appropriate software, the vast majority of large-scale problems will

run on them. The trade-o� between SIMD and MIMD is also reasonably well

understood in terms of a problem classi�cation introduced by Fox. Regular

applications, such as the matrix operations seen in Figure 6 are suitable for

SIMD machines; MIMD computers can perform well on both these and the

irregular problems typi�ed by the particle dynamics simulation in Figure 5.

We estimate that roughly half of existing large supercomputer simulations

could use SIMD e�ciently with the other half needing the extra 
exibility

of the MIMD architecture.

The hardware and software are evolving so as to integrate the various

architectures. In the future, the user will be presented with a uniform inter-

face to the di�erent parallel machines. One will be able to make choices, as

for conventional machines, based on the parallel computer's performance on

one's application mix. One will not be faced, as in the past, with radically

di�erent software environments on each design. Future architectural de-

velopments will improve performance by moving critical functionality from

software to hardware; this will o�er the user increased performance from an
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unchanged software model.

Software

The adoption of parallel machines as a mainstream computing tool is held up

by the lack of application codes that can run on them. Most successful uses

of parallel machines have come from academic and research applications with

less than 10,000 lines of code and where the software and parallel algorithm

have been developed from scratch. The task of reimplementing large codes,

such as the important 100,000 line CHARMM chemistry application for

parallel machines is highly nontrivial.

The need to rework the software is clearly the major inhibitor to the

rapid adoption of parallel machines. However, there has been signi�cant

progress in developing \portable scalable languages and software environ-

ments." These allow us to reimplement or develop new applications with

the assurance that the resultant software will run well on all the current and

projected parallel machines for which the problem is suitable.

There are no compelling new \parallel languages," but rather the suc-

cessful approaches have extended existing languages. We will brie
y discuss

Fortran here, but similar remarks can also be made for C, C++, Ada, Lisp,

etc. There are two classes of extensions to Fortran, which we discuss in turn.

Data Parallel Fortran

Here, parallelism is represented by a sequence of array operations where

each element is calculated independently by user de�ned or system library

functions|these allow one to add or multiply arrays and vectors, �nd max-

ima and combine such elemental operations. The user aids the compiler

in implementing parallel array operations with commands that lay out the

arrays over the nodes of the parallel machine. The best known example of

such a data parallel language is CMFortran, developed by Thinking Ma-

chines. Currently, the \High Performance Fortran Forum" expects to pro-

duce an informal industry standard by the end of 1992 for a data parallel

Fortran suitable for both SIMD and MIMD machines. The initial version

of this standard is based on several research ompilers, including FortranD,

which is an extension of Fortran77 and Fortran90, developed by a collabo-

ration between Rice and Syracuse universities. High Performance Fortran

o�ers a uniform software environment, which will allow the user to develop
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applications independently of the di�erent hardware architectures discussed

above|this is what we mean by a scalable portable software system.

Message Passing Fortran

We expect that data parallel versions of Fortran will eventually be able to ef-

�ciently support a large fraction of large science and engineering simulations.

However, more general and less demanding on the compiler, are extensions

of Fortran which allow the user to explicitly generate the messages needed

on MIMD machines. The resultant \Fortran plus message passing model"

(Fortran + MP), is suitable for all problems for which Fortran is a reason-

able language on a conventional computer. Fortran + MP is usually more

time consuming for the user to develop than data parallel Fortran, and is

only suitable for MIMD machines. However, in this broad class (MIMD)

of distributed or shared memory machines, Fortran + MP is portable and

scalable using such message passing systems as Express, Zipcode, Linda, or

PICL. An industry standards forum is just starting for message passing.

Distributed Computing and Operating Systems

A \real" software environment for parallel machines must o�er many other

services besides the parallel language to meet expectations of users of con-

ventional (super)computers. Operating services for SIMD machines are pro-

vided by the UNIX host and MIMD machines have also used this mechanism

up to now. Intel's new Paragon i860-based machine will feature Mach on

each processor. Mach is a sophisticated version of UNIX optimized for

distributed computing. Mach currently needs to be augmented by fast

dedicated message passing to properly support parallel applications. This

highlights the distinctions between \parallel" and \distributed" computing.

A distributed network of, say, workstations is indeed a MIMD distributed

memory parallel processor. However, this hardware and its current support

software, such as Mach, has lower communication bandwidth and, in partic-

ular, higher start-up costs (communication latency) than dedicated parallel

machines with their high-performance interprocessor connection network.
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Operating System Services

Modern parallel computers o�er parallel disk systems, which will allow many

applications to match the high compute performance of Figure 2 with scaling

disk I/O (input/output) performance. The software and methodology for

accessing these parallel disks is still rudimentary and more experience is

needed to develop this. Particularly interesting is the multicomputers with

initial availability on the nCUBE and Meiko systems.

Parallel debuggers are available, and these are clear extensions from

the sequential environment for the data parallel applications that dominate

science and engineering simulations. Monitoring and evaluation of the per-

formance of the computer is particularly important for parallel machines

as it can signal poor decomposition and other inhibitors to good use of

the machine. Another new software tool will automatically decompose and

distribute problems over the nodes of a parallel machine. This has been

demonstrated, but not yet implemented as a robust portable tool.

Applications

Most experience on parallel machines has been with academic and research

problems. However, the �eld can only realize its full potential and be com-

mercially successful if it is accepted in the real world of industry and govern-

ment applications. Some of these are seen in the grand challenges, which are

the focus of the federal high-performance computing and communications

initiative.

However, more generally, parallel computing o�ers U.S. industry the op-

portunity of a global competitive advantage. This is a technology where the

U.S. has a clear lead over Europe and Japan, and this technology leader-

ship can be turned into a potent \weapon" in the global economic \war" we

expect in the 1990s.

We have surveyed some of these industrial applications of parallel com-

puters as part of a new project, ACTION, funded at Syracuse University by

New York State.

Interesting possibilities include:

� use in the oil industry for both seismic analysis of new oil �elds, and

the reservoir simulation of existing �elds;

� environmental modeling of past and potential pollution in air and

ground;
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� 
uid 
ow simulations of aircraft, and general vehicles, engines, air-

conditioners, and other turbomachinery; integration of structural anal-

ysis with the computational 
uid dynamics of air
ow; car crash simu-

lation;

� design of new drugs for the pharmaceutical industry by modeling new

compounds;

� simulation of electromagnetic and network properties of electronic

systems|from new components to full printed circuit boards;

� identi�cation of new materials with interesting properties, such as su-

perconductivity;

� simulation of electrical and gas distribution systems to optimize pro-

duction and response to failures;

� production of animated �lms and educational and entertainment uses,

such as simulation of virtual worlds in theme parts and other virtual

reality applications;

� support of geographic information systems, including real-time analy-

sis of data from satellite sensors in NASA's \Mission to Planet Earth";

and

� a relatively unexplored area, known as \command and control" in

the military area and \decision support" or \Information Processing"

in the civilian applications. These combine large databases with ex-

tensive computation. In the military, the database could be sensor

information, and the processing a multi-track Kalman �lter. Com-

mercially, the database could be the nation's medicaid records, and

the processing would aim at cost containment by identifying anoma-

lies and inconsistencies. My survey of New York State industry would

suggest that this combination of databases, and signi�cant computa-

tion is the largest opportunity for parallel computing.
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