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chronous, and it has a very complex network (where APE has only a very

simple communication pattern), which potentially allows it to deal with

problems with a complex data structure (with a very high software e�ort).

Till now the network has shown to be very useful for debugging, error de-

tection and run-time recon�guration purposes.

The ACPMAPS System is running at Fermilab, with a very advanced

software system, Canopy (which is comparable to the level of the APE lan-

guage, with its very e�ective optimizer we have described before). Di�erent

physics aspects of lattice Q.C.D. (mainly heavy quark physics) have been

dealt with. The original ACPMAPS was 5 G
ops system. A board up-

date (from a Weitek chip set to an Intel i860 based board) has pushed the

peak speed to 50 G
ops, but the unchanged communication back-bone has

started to show some inadeguacieses. An hand-recoding of QCD programs

has shown that a sustained speed in excess of 20 G
ops can be reached on

the updated machine.

QCDPAX [19] has been built at Tsukuba University, in Japan, counting

on a long standing tradition of building computers. It has been running

quenched QCD in the last two years. It is a MIMD computer, with 480

units (a few used as a backup). It has a toroidal 2d simple communication

grid, a 14 G
ops peak speed, of which 2:5 are sustained for Q.C.D. codes.

In contrast to the APE programming environment, the user has to write to

explicit, separate codes, one for the host and one for the processing units.

Large scale simulations of Lattice Q.C.D. started indeed with early Cray

super-computers, and today Cray YMP's are widely used. Programs are

highly vectorized, and the e�ciency is quite high. Commercial parallel ma-

chines have been, in the last year, becoming more and more competitive.

Foe example Conjugate Gradient inversion programs on the largest avail-

able Thinking Machine CM-2 computers have been pushed up to 6 sustained

G
ops. Very e�ective programs also run on the Intel Delta at Caltech, and

e�orts are already in progress to write e�ective codes for the new Thinking

Machine CM-5 with its vector data path. Somehow the e�orts on commercial

computers have been complementary to the ones on dedicated computers.

Commercial computers have been may be more useful in the process of de-

veloping new algorithms (but for exceptions, see for example the smearing

techniques introduced in [4]), while dedicated engines have been crucial in

pushing very large scale simulations, and getting reliable quantitative results.
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Let us now describe the principles of operation of the optimizer. Its

structure is quite similar to that of the optimizer used in APE. In the �rst

phase the optimizer tries to combine multiplications and additions into so-

called normal operations for which the architecture of MAD is optimized.

In a second phase (pipeline and device usage optimization) the optimizer

rearranges and packs the code, attempting to �nd the position of each in-

struction that minimizes the total number of machine cycles. Two kinds

of constraints are taken into account: the operands of an instruction must

be calculated before being used, and two instructions cannot use the same

hardware device at the same time. The cycle number at which each device

of the computer (busses, registers, I/O ports, 
oating point adder and mul-

tiplier) is reserved by each instruction is de�ned by optimizer tables. Apart

from these constraints, the optimizer is free to re-organize the code with the

goal of �lling the pipeline. The last phase consists in the allocation of the

registers. Finally the executable code is produced.

5. Lattice Q.C.D. on dedicated and commercial computers..

The APE project has been developed in parallel with many other Q.C.D.

machines. The relevance of the Q.C.D. lattice problem (and, as we have

explained, more generally of lattice problems in Theoretical Computational

Physics) has prompted many groups both to build optimized computers, and

to use in an optimized way commercial computers.

APE runs a typical Q.C.D. matrix inversion conjugate gradient code

with an a e�ciency of order of :8 (order of 5 Giga
ops on the 6 Giga
ops

machine). Because of the synchronous nature of the APE computer and of

lattice QCD the e�ciency will be basically the same on all size machines.

Fluid dynamics problem also run on APE very e�ectively; on a 512� 512 2d

grid the Lattice Boltzmann Equation is simulated at more than 2 sustained

G
ops on the 6 G
ops machine [15]. Indeed, as we have already stressed,

APE is not a QCD engine, but more a, quite general purpose, lattice engine.

A series of such computers has been developed at Columbia University

[16], culminating with a 16 G
ops peak parallel computer, which runs some

parts of Q.C.D. codes also with an e�ciency very close to 90%. The machine

has been running in 1992 mainly Q.C.D. thermodynamics, and behaves very

reliably. TheColumbia computer is MIMD in nature, even if the practical

use has always been very SIMD oriented; MIMD features have mainly been

used for debugging and start-up purpose. A local, simple network allows

synchronous communications. The part of the code which needs optimization

has to be written in a low level assembler.

The GF-11 computer [17], built at IBM Yorktown, has a 10 G
ops

peak speed, and sustains 7 G
ops on Q.C.D. problems (in 1991-1992 it has

been running pure Q.C.D. spectroscopy). The computer is completely syn-



4.2. The compiling system. The compiler chain runs on the host

computer. The main steps in the chain are the compiler (or the assem-

bler) and the optimizer. The optimizer has some characteristics of gener-

ality which has allowed its porting from APE to APE-100 with only minor

changes. In the following, we describe the organization of the compiler chain.

4.2.1. The Apese language. Here is an overview of the Apese lan-

guage:

� there is a minimal subset of Apese that can be easily learned by

every physics application oriented user. This subset is a structured

language inspired by Fortran and C and is similar to the language

used with the �rst generation APE machines;

� the language faithfully matches the APE-100 hardware architecture;

Even if the Apese language helps to write e�ective programs, an APE-

100 user has to be well aware of some architectural characteristics. The pro-

grammer should consider APE-100 computers as a three dimensional mesh

of nodes (from 8 up to 2048) with periodic boundary connections.

Data words on nodes are single precision 32 bits IEEE-754 standard


oating point numbers. All the nodes execute the same code, typically and

hopefully acting on di�erent data. Parallel processing on APE-100 is limited

to operations on 
oating point numbers. Every time the Apese programmer

declares a 
oating point data structure memory will be reserved on all node

distributed memories. The allocated memory will be placed on every node at

the same local address, that will be associated to the name of data structure.

Therefore each operation written in Apese language, acting on that name,

will actually activate the same operation on every node of the mesh, choosing

the data stored at the associated local address.

The programmer should also consider that integer arithmetic is per-

formed by the Controller (which is in charge of the instruction 
ow and of

addressing). As we have already discussed at length there are three type

of conditioning that can modify the program execution: the �rst two IF

and IF-ALL are managed by the Controller and may cause a true branch in

the program 
ow, while the third one WHERE is locally managed by each

node and may result in a temporary suspension of the e�ects of the pro-

gram execution on that node, allowing a synchronous form of local program

conditioning.

4.2.2. The optimization. During the �rst step in the compilation the

compiler optimizes the register usage and the I/O to and from memory. The

second step of the compilation chain produces code optimization. The opti-

mizer reads the intermediate code produced by the compiler and generates

the executable code.



Fig. 7. 3D connections of PB's and CB's. The cubes represent CB's, the rounded rect-

angles PB's. The link between PB's with (x; y; z) = (3; 0; 0) and (3; 1; 0) is highlighted in
black.

4. The software structure. In the following we will discuss the op-

erating system (OS), the compiler, the Apese language, the optimizer and

the assembler language. A more detailed description can be found in [10].

4.1. The operating system. As we have seen before the user controls

APE-100 by means of the host computer, that provides a conventional �le

system and application development environment. The communication of

APE-100 with the external world (host computer and mass storage devices)

is asynchronous and is controlled by a network of Transputers.

To describe the functionality of the APE-100 OS it is useful to dis-

tinguish two di�erent operating modes: user and system. The user writes

programs in a high level or assembly language, from which code for the S-

CPU and FPU's is generated. When an user program needs an asynchronous

service (e.g. an I/O operation), it halts the S-CPU and switches to system

mode under Transputer control.

The Transputer is able to gain control over the system also when ab-

normal conditions occur. Typical examples are the raising of an exception,

or an operator request, or de-scheduling of an user program that exceeded

some resource quota (for example the assigned maximum CPU time).

The code runs on the host computer, which contains the user interface

called Host-resident APE Control Kernel. This provides the user with an

interface to access APE-100 devices, issue I/O operations, load and run

programs, monitor the machine status, etc.



Fig. 6. 256 PB's in 16 crates in 4 racks.

PB and is mounted on the opposite side of the backplane. Fig. 7 schemat-

ically represents the links between CB's and PB's for a fraction of the 3D

lattice. A link in the Y direction is highlighted at the bottom left side of

the �gure. The connections in the X direction run on the crate backplane,

those along the Y and Z directions run over bidirectional di�erential lines

on twisted pair ribbon cables.

To understand the way in which the topology is implemented, note that

each CB is assigned the (x; y; z) coordinates of the PB which precedes it in

the direction of increasing X . Assume the range of the coordinates to be

0:::Nx, 0:::Ny, 0:::Nz. The Y and Z cables are laid according to the following

rule: given a CB of coordinates (x; y; z) its top (as one can see in �g. 7) is

linked to the bottom of the CB (x � 1; y; z + 1), while its back is linked to

the front of CB (x� 1; y+ 1; z), all coordinates being taken modulo Nx+ 1,

Ny + 1, Nz + 1.

In conclusion, communication tasks are partitioned between PB's and

CB's. This solution has several advantages with respect to the alternative

(the PB's take care of all communication tasks, i.e. non CB's):

1. There are no cables directly plugged into the PB's, making them

easily replaceable.

2. A smaller number of backplane pins is used for outboard connections

and the complexity and pin count of the Commuter is also reduced.

3. The hot bipolar chips needed for bu�ering and level translation

to/from di�erential lines are mounted far away from the cool, (mos-

tly) CMOS chips on the PB's.



Fig. 5. Connections between adjacent nodes.

reducing the amount of cabling required for inter-crate links, while com-

munication within a node is supported at full speed. In the case in which

the communication �eld is known only at run time, the transfer time for a

generic �rst neighbour displacement is a factor 4 larger than in the case of a

local communication (on the same board, where the hardware bandwidth of

one MAD plus memory is 50 Mbyte/sec) whose communication �eld known

at compilation time. In this slower case the whole machine (MAD, memory

and controller) has to remain idle, waiting for the transfer. This feature is

implemented by stretching the clock for the needed number of cycles.

In a fully connected �rst neighbour 3D machine each PB would be pro-

vided with 6 links to neighbouring boards. However, in our design only one

pair of links is active on each memory access: the left/right pair, as in �g. 5,

the up/down pair or the front/back pair. For each given PB only two (not

six) links are thus su�cient. We have left to a separate board, the Connec-

tion Board (CB) (which we will describe in the following) the further routing

of these links to other boards.

In the full size, 100 G
ops machine, the 2048 nodes are arranged on a

8 � 8 � 32 lattice. In this section it is convenient to view this pattern as

a 4 � 4 � 16 lattice of PB's, each holding a 2 � 2 � 2 cube of nodes. The

PB's are distributed among crates and racks as shown in �g. 6. Boards with

the same value of Y and Z are in the same crate, and each crate holds four

X-rows, displaced along the Y direction. A rack houses a full X � Y plane

of PB's.

There is one CB for every PB. The CB shares the same connector of the



elementary conditions (i.e. == 0, > 0, >= 0, =!0, using C-language

notations) which are made available to the IF circuitry. This is a 1-bit wide

stack- based machine, which allows the evaluation of complex conditions by

building on the Boolean operation AND, OR, NOT, to generate the Local

IF Status. The stack allows nesting of up to eight conditional structures.

When the execution of a code section is conditioned (inside a WHERE

block) and the Local IF Status is false all MAD operations are converted to

NOP's (No-Operations), forbidding write operations to registers and mem-

ory. The AND of Local IF Status of all MAD's is delivered to the controller

to obtain the global condition used by IF-ALL.

MAD is able to detect 
oating point exceptions (adder or multiplier

over
ow and LUT exceptions), non recoverable errors in the data bus and

parity errors in the code bus. All the exceptions are maskable.

3.2.2. The communication network. Let us �rst discuss inter-node

communication from the point of view of the application programmer, and

then move on to hardware considerations. APE-100 is simple from the point

of view of the programmer, since one can concentrate one's attention on

the behaviour of a single node. The parallelism manifests itself through

the existence of replicas of node data structures which are logically placed

along the six possible directions in space. These replicas can be accessed by

using six prede�ned constant displacements (corresponding to Left, Right,

Up, Down, Back and Front). For instance, if V (i) is an element of an array

belonging to a given node, V (i+ Left) is the corresponding element on the

closest left-side replica of the array. Inter-node communication can thus be

controlled by an extension of the address �eld.

At the hardware level this model is implemented by splitting the address

into two �elds: a memory address, which is sent to the RAM chips, and a

communication �eld, which is sent to the Commuter System. The value of

the communication �eld does not need to be known at compilation time, and

can be computed at run time.

The communication pattern is completely synchronous and only exe-

cutes MAD to memory and memory to MAD operations at distance of one

unit. If one moves to the Right a data from MAD to memory, then all

MAD's move information to the memory at their Right, while all memories

receive such information from the MAD at their left. All operations are syn-

chronous, and no collisions are possible. There is no problem of contentions.

Moving information at distance n must be done by repeating this elementary

step n times.

As we show in �g. 5, for full communication speed during an inter-node

transaction the PB should receive and transmit four data words. In prac-

tice, a 4 : 1 time multiplexing in inter-node communications is implemented,



Fig. 4. Simpli�ed block diagram of MAD.

check bits, which can transfer one data word every clock cycle. When MAD

inputs a word, it uses the check bits to correct single-bit errors and detect

double-bit (and some multiple bit) errors. In an output operations MAD

generates a 7 bit modi�ed Hamming code. Error correction is useful both

against memory errors and inter-node transmission errors. Multiple errors

are fatal and stop the machine. Single errors are not fatal, but on each

occurrence MAD updates a counter which can be read when the synchronous

backend is idle. The I/O bandwidth of the MAD is twice the bandwidth that

can be actually used in APE-100, due to the memory access time and the

absence of interleaving.

MAD contains Look-Up Tables (LUT's). LUT's are used to obtain ap-

proximated terms used in the computation of some frequently used functions

like:
1
x
, log(x), 1p

(x)
, exp(x).

The arithmetic part of MAD consists of a multiplier and an adder hard

wired for the normal operation: D = (A� (�B))� C. At each clock cycle

one MAD can produce the results of one normal operation. Two of the

128 registers are permanently loaded with the values 0 and 1 so that simpler

operations can be executed (without breaking the homogeneity of the code,

which helps in producing well optimized codes):

� Simple sum: D = (1� (�B)) � C.

� Simple multiplication: D = (A� (�B))� 0.

� No-Operation: 0 = (0� (�0))� 0.

The adder's result is used cycle by cycle to produce Boolean values for



Fig. 3. Arrangement of nodes on a Processor Board.

or remotely (i.e on neighbouring boards). Each of the chips composing the

Commuter System dispatches 4 bits.

The cubic lattice topology is thus implemented through a distributed

inter-connection system. Every PB also contains some support circuitry

which allows connection of the PB's to the controller.

The PB's receive the MAD code from the Controller and deliver it to

the 8 MAD's. While the MAD executes an instruction every clock cycle, the

PB's are fed with a double instruction every two cycles. The instructions are

unpacked locally and delivered every cycle. All the elements of the SIMD

backend are driven by a single clock which synchronizes their activities cycle

by cycle.

3.2.1. The MAD. Here we present a short description of MAD; more

detailed information can be found in [9]. MAD (see �g. 4) is a 40 ns pipelined

VLSI custom device controlled by a 48 bit wide control word supplied on a

cycle by cycle basis.

The main components of the MAD are the register �le, the 
oating point

multiplier, the logic and arithmetic 
oating point unit, the look-up tables,

the error detection and correction unit and a status register.

The register �le contains 128 32-bit registers and supports 5 simultane-

ous accesses (3 read, 1 write and 1 read or write). Thus on each cycle it is

possible to start one 
oating point addition, one 
oating point multiplication

and one I/O operation.

Input/output MAD operations use a bidirectional port of 32 data and 7



There are 40 Mbyte of dynamic memory on each processing board. Each

node uses 4 Mbyte to store data and 1 Mbyte to store the EDAC code used

to correct single error, detect all double errors and some multiple errors.

The memory uses 4 Mbit memory chips organized as 1 Meg � 4 bit: each

chip contains one bit of data belonging to four di�erent nodes, so that after

a complete failure of one chip (4 bits wrong) 4 nodes would detect a single

error which would be corrected, and the machine would continue working

properly.

The management of the remote data transfers are handled by the same

logical circuitry as the address generation. From the programmer's point of

view the �rst neighbour nodes can be seen as an extension of the local address

space. The hardware takes care of respecting the appropriate timings.

The transfer of contiguous data from node memory to MAD proceeds at

a rate of 1 word per S-CPU cycle. In the time interval we need to transfer

a single word, four 
oating point operations may be executed on MAD. The

data access to the memory of the �rst neighbour is 4 times slower.

3.1.3. The asynchronous interface. The LAI processor is a Trans-

puter placed on the controller board. When the S-CPU is halted (this condi-

tion is always under LAI control) the LAI is able to assert all external busses

of the controller and to access node memories. When the crate controlled by

the LAI is in local mode, the LAI has complete control of it, including ex-

ception handling. Finally, the LAI monitors environmental conditions, like

temperature or supply voltage, and issues alarms as appropriate.

The LAI handles exceptions produced by all nodes or by the controller.

It manages the clock distributed to the synchronous sections, the global

start/stop signal and it controls the run/halt condition of the S-CPU.

Exceptions are collected and delivered to the RAI which controls the

CDU (Clock Distribution Unit). After an exception the RAI sends a global

stop signal. If the machine is divided in crate wide segments, the exceptions

are treated locally by the controller of the crate.

Each controller is synchronized via a common clock routed to all crates,

and they all run the same program with the same data. The S-CPU are

synchronized, under the control of the LAI, via a global start-stop signal

generated in the CDU. If the machine is segmented (e.g into racks), there is

a separate start-stop signal for each rack.

3.2. The nodes and the processing boards. As discussed above the

nodes of APE-100 lie on a 3 dimensional simple cubic mesh. On a given PB

there are 8 nodes, forming an elementary 2
3
cube. The PB also contains 10

Commuter chips (forming the Commuter System, see �g. 3), which provide

mutual inter-connection between nodes either locally (i.e. on the same PB)



Fig. 2. Controller block diagram.

controller variables. The IF-ALL executes a logical AND of the conditional

expressions (local IF status) on all the nodes which run the program and

then a conditional branch set according to the result of the AND.

In the normal operation mode we expect all S-CPU to operate syn-

chronously on the same data; in order to avoid disasters in this mode the

memory content of all S-CPU must be the same. The whole LAI-RAI system

is in this mode, acting under the same clock, the same instructions, the same

data. They are, in this mode, physically duplicated but acting as identical

entities.

We have decided to have an independent controller in each crate in order

to avoid dispatching the instruction word, which is rather long, to all the

di�erent crates. In this way only one signal (the clock) keeps the computer

synchronized, while all the other control streams are generated on all crates.

As a byproduct of this choice the computer can be partioned dynamically at

the single crate level. Controllers can act independently, and each crate can

run a di�erent user program. In this situation inter-crate communication is

strictly forbidden. However the system software needed to operate in this

mode has not yet been written.

3.1.2. Node distributed memory and address generation. Data

Memory Addresses (DMA), identical for all nodes, are generated by the S-

CPU or by the LAI and are converted into Memory and Commuter control

signals. All the memory control circuitry is centralized in the controller

board.



a Boolean function of global (in the above sense) variables.

The IF-ALL instruction is a global structure, executed by the S-CPU on

the basis of the logical AND of local conditions evaluated by all nodes which

take part in the computation. The WHERE structure is local: it causes a

block of instructions to be enabled only in those nodes where a certain local

condition (the Boolean result of computations done by the local MAD) is

ful�lled. Synchronization is preserved by executing the conditioned code on

all nodes but disabling write operations on the nodes which do not ful�l the

logical condition. This construct allows an e�ective breaking of the SIMD

sequence.

When multiple S-CPU are active in a given program, they will execute

the same branch, be it an IF (they all have identical copies of the global

variables), or an IF-ALL (they all share the conditions returned by the

nodes which they control).

These basic structures can be used to implement complex ones, such as

the typical Fortran-like DO loops, or new parallel ones, such as REPEAT-

UNTIL-ALL or REPEAT-WHILE-ALL.

3. The hardware structure. We will discuss in the following the con-

troller and the processing boards of the computer (with the 
oating point

MAD chip and the communication network).

3.1. The controller. We show the controller sub-system in �g. 2. It

includes the Synchronous CPU (S-CPU), program and data memories, the

memory controller and a LAI for the communication with the external world.

The whole sub-system is housed in a single board.

3.1.1. The Scalar CPU. The �rst implementation of the S-CPU [13]

has been a synchronous integer processor, operating at a cycle time of 80

ns (similar to a processor developed at CERN as an improvement of the

original 3081� E[14]
).

The S-CPU runs at one half the speed of the MAD: it executes one

instruction for every four MAD 
oating point instructions (since MAD con-

tains one adder and one multiplier). The S-CPU controls the program 
ow.

The control word issued to the nodes can be regarded as an extension of the

instruction word controlling the S-CPU itself: the same Program Memory

Address (PMA) points at both control sections. In principle the nodes can

be regarded as special purpose devices of just one processor: a controller

branch directs all nodes. A single program instruction contains one S-CPU

instruction and two MAD instructions (since, as we said, there is a di�erence

in the S-CPU and the MAD clock speeds).

The S-CPU also executes global conditional structures: IF and IF-

ALL. The IF instruction executes a test and branch on a logical condition on



replication gives, among others, the advantage that APE-100 can be seg-

mented into smaller independent units. The 2048-node version, for example,

can be con�gured as four 512 node machines (or sixteen 128 node machines).

Segmented con�gurations are supported by the Transputer network (which

we will describe in the following), and are made possible by re-arranging

subsections of the global mesh of processors in smaller blocks with periodic

boundary connections. In this con�guration communication among di�erent

machines is only supported by the Transputer network.

2.2. The asynchronous frontend interface. The asynchronous fron-

tend interface can be seen as composed by two main elements: the host

computer and the asynchronous interface. The host computer is the user

interface: it runs the cross-compiler and the host resident part of the moni-

tor/debugger. These services are available through local terminals or via a

network. The host is connected to the synchronous backend by the asyn-

chronous interface. Via this interface the host can load programs and data

onto the synchronous backend, de�ne its con�guration, start and stop the

execution of synchronous programs, and examine the result of the compu-

tation. The asynchronous interface is also responsible for the management

of the APE-100 mass memories. It can save or load the content of the PB's

memories to disks. The asynchronous interface is based on a network of

Transputers which can be programmed to execute these tasks. The I/O fa-

cilities can be easily used from the user applications programs running on

APE-100.

The asynchronous interface is distributed. A Transputer is the heart

of the Local Asynchronous Interface (LAI), associated to each S-CPU and

housed in the controller board. Another Transputer, the root Transputer,

forms the Root Asynchronous Interface (RAI), connected to the host com-

puter. In the processing board the Commuter chips have an asynchronous

section accessible by the LAI. In the single controller con�guration (i.e. up

to 6 G
ops) there is no need for the RAI, as the LAI is directly connected

to the host computer.

2.3. Data types and program 
ow. Our architecture naturally dis-

tinguishes two types of data: global data (on the S-CPU) and local data (on

a node). In general, we regard S-CPU data as integer and local data as


oating point (IEEE-754 standard). Local data reside in the node memories

or on MAD registers, while global data reside in the S-CPU memory and

registers.

Three kinds of conditional structures are implemented: IF, IF-ALL

and WHERE. The IF structure is the classical non parallel Fortran-like

instruction, which controls program 
ow according to a condition which is



Our choice has been to keep fully synchronous the largest possible part

of the computer. That has made construction and testing possible in a very

short time (and should make our computers very reliable). A microprocessor

or a cache based RISC processors would not have satis�ed such a standard.

We wanted MAD to have 128 internal registers (and some commercial com-

puters are now following us in this trend), which we judged to be a feature

crucial for getting a highly optimized code. Our architecture which allows

each processor to access a single register in one cycle is very 
exible. This is

di�erent with the choice made, for example, for the CM-5 data path, where

in the standard short instruction format mode registers are accessed in blocks

of 8. We do not use vector registers, but we can sustain the full speed of

our pipelining by accessing random registers (known at compilation time).

Obviously the optimizer (which we will describe in the following) must be

smart enough to deal with this feature. Our controller (the S-CPU) �ts the

MAD pace by construction, and the language is based on an optimizer which

allows the attainment of peak performance from an high level dialect.

The heart of the APE-100 computing power is the 
oating point pro-

cessor MAD [9], a custom VLSI device. MAD is a 
oating point 32 bit

real arithmetic processor, and contains one adder and one multiplier. It has

a peak 
oating point performance of 50 M
ops. The MAD architecture,

which we will describe in the following, guarantees that a large fraction of

this theoretical peak speed can be attained for an important set of numerical

algorithms. MAD has built-in a large amount of support circuitry for error

detection and correction. It contains specialized hardware for performing

conditional write instructions and look up tables.

The communication is handled by a second set of custom VLSI devices,

the Commuter System, which takes care of the node-to-node data transfer

as well as of the communications with the asynchronous interface.

A processing node contains one MAD and its 4 Mbyte local memory.

This is a reasonable memory size for Lattice Q.C.D., where a strongly in-

creasing amount of computer time to solve the problem is required as a

function of the lattice volume. In the largest machine we will produce we

will have 8 Gbyte of memory, in which, as far as lattice Q.C.D. is concerned,

we will be able to store a 644 lattice (for the standard quenched theory).

Eight such nodes are assembled on a Processing Board (PB), together with

a Commuter System. A 2048 node model contains 256 PB's (with a total

of 8 Gbyte of memory) assembled in 16 crates (housed in 4 cabinets). The

128 node 6 G
ops version is built with 16 PB's which are housed in a single

crate.

The S-CPU is housed in the Controller Board, and controls the nodes.

The Controller is replicated, and there is one S-CPU in each crate. This



Fig. 1. Schematic diagram of the controller and of the processing boards.

fundamental variables are 3 � 3 complex matrices. Most of the computa-

tion is needed to multiply and add such matrices, or to multiply matrices

and vectors. The problem is computationally intensive; each element of the

matrix is needed many times in the course of a typical operation.

We regard QCD as a typical lattice problem, which can be solved in

a very e�ective way by a Lattice Engine. in the same class there are many

problems of high interest which are very similar to Lattice QCD as far as the

computer demands and implementation is concerned. The only detail of our

APE-100 architecture which has been strongly in
uenced by detailed fea-

tures of the Q.C.D. lattice problem is the project requirement that memory-

processor communication band-width should not be a bottle-neck in the

design for this particular problem.

2. The APE-100 architecture. The architecture of APE-100, �g. 1,

can be seen as composed of two layers: a synchronous backend and an asyn-

chronous frontend interface. The software environment handles all the in-

teractions, which are completely transparent to the user.

2.1. The synchronous backend. The synchronous backend is a Sin-

gle Instruction Multiple Data (SIMD) 3D cubic mesh of nodes. Each node

consists of a 
oating point unit (the Multiplier and Adder Device, MAD), a

Communication and Control Unit System, composed by 10 identical chips

(the Commuter) and a Memory Bank. The nodes are driven by a syn-

chronous computer: the S-CPU
[13]

. All the elements of the backend are

controlled by a 25 MHz clock.



Table 1

APE-100 at a glance - 1

Three dimensional topology.

Modular SIMD architecture ( from 8 to 2048 nodes).

4 Mbyte, 128 registers and 50 M
ops per node.

Hardware support for local (non-SIMD) conditional structures.

Centralized address and integer computations.

25 MHz master clock.

8 nodes per Processing Board.

1 to 16 crates, each with 16 Processing Boards and 1 Controller.

Table 2

APE-100 at a glance - 2

1 PB 1 Crate Max Conf

Floating Point 400 M
ops 6:4 G
ops 100 G
ops

Data Memory Size 32 Mbyte 512 Mbyte 8 Gbyte

RAM to reg rate 400 Mbyte/sec 6:4 Gbyte/sec 100 Gbyte/sec

one could also build a 32768 node machine on a 8� 64� 64 lattice, with a

peak speed of 1.6 T
ops, but at present the construction of such a machine

is not planned. The viability of this project has been especially due to the

large use of custom VLSI components
[9]

and to the large e�ort devoted to

the software development[10].

Let us just very brie
y summarize here the present situation of the APE

machines (see [11]). The old APE series (up to 1 G
ops) has been running

for more than 4 years, helped to produce order 20 physics papers, and is

now obsolete. One 6 G
ops machine has been running for the last 9 months

(as of October 1992), dealing mainly with Q.C.D. and with 
uid-dynamics

simulations. Three more equivalent machines will be ready before the end of

1992, together with the �rst 6 G
ops machine built on smaller boards. This

new model is identical to the old one, but more compact. We expect that

the 100 G
ops machine will be running before the summer of 1993 (together

with a smaller, 25 G
ops machine).

1.1. Lattice QCD. From a general point of view doing numerical sim-

ulations for lattice Q.C.D. [3, 12, 4] corresponds to solving a parabolic (and

sometimes hyperbolic) di�erential equation using �nite di�erence methods.

In most of the cases the derivatives are approximated by �rst and second

neighbour di�erences. One of the peculiarity of lattice Q.C.D. is that the



ABSTRACT

We describe APE-100, a SIMD, modular parallel processor architecture for large

scale scienti�c computations. The largest con�guration that will be implemented
in the present design will deliver a peak speed of 100 G
ops. This performance

is, for instance, required for high precision computations in Quantum Chromo

Dynamics, for which APE-100 is very well suited.
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1. Overview. In the years 1985�1987, the APE collaboration has been

involved in a major e�ort to design and build a parallel computer in the 1

G
ops range. APE [1] has been one among several projects [2] that have built


oating point engines mainly tailored to the requirements of numerical simu-

lations of Lattice Gauge Theories (LGT) and especially of Lattice Quantum

Chromo Dynamics
[3]

(QCD), the gauge theory which, in the continuum

limit, is supposed to describe the strong interactions between elementary

particles. Three APE units, featuring 
oating point performances between

256 M
ops and 1 G
ops, have been completed and have been heavily used

for LGT simulations. A large variety of physics results have been obtained

on the APE computer. We have been studying, for example, the pure gauge

and the hadronic mass spectrum in quenched QCD, and the decon�nement

phase transition of quarks lattice QCD [4].

We will describe here the architecture of the next step, APE-100, a

design that, by including all of the positive features of APE, has been able

to push the peak speed to 100 G
ops [5]. The details of the hardware and

software implementation of this architecture can be found elsewhere
[6]
. In

Tables 1 and 2 we give the basic technical information about the APE-100

computers.

We recall that although APE was used mainly for Lattice Gauge Theory

simulations, both APE and APE-100 are general purpose SIMD computers.

The architecture of APE-100 is more 
exible than that of APE and we plan

to use APE-100 for many physical applications beyond LGT (e.g. 
uid

dynamics).

The SIMD architecture of APE-100 is based on a three dimensional cubic

mesh of nodes with periodic boundary conditions, each node being connected

to its 6 neighbours. APE-100 has a modular architecture. The building block

is a 2� 2� 2 cube, while a 2048-node APE-100 can be seen as a 8� 8� 32

lattice. The 6 G
ops version is implemented with a simple array of 16 cubes.

Such connection grids are well suited for the simulation of homogeneous

physical systems (including, of course, Lattice Gauge Theories and Lattice

QCD, and Statistical Lattice Systems [7], [8]). Discussing various aspects of

the APE-100 design we will stress here the new ideas and implementations

which allow the feasibility of a 2048-node machine, with a 
oating point

performance of 100 G
ops peak speed. In principle the design is such that
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