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Abstract

We discuss the theory of non-critical strings with extrinsic curvature embedded in a target spac

d greater than one. We emphasize the analogy between 2d gravity coupled to matter and non

liquid-like membranes with bending rigidity. We �rst outline the exact solution for strings in dime

via the double scaling limit of matrix models and then discuss the di�culties of an extension to d >

from recent and ongoing numerical simulations of dynamically triangulated random surfaces indica

is a non-trivial crossover from a crumpled to an extended surface as the bending rigidity is incre

cross-over is a true second order phase transition corresponding to a critical point there is the excitin

of obtaining a well de�ned continuum string theory for d > 1.
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String Theory is a powerful model, capable of unifying the Yang-Mills in-

teractions of matter with the universal interaction of gravity. It softens the

short distance (ultraviolet) divergences of Einstein Hilbert gravity by smear-

ing out points to one-dimensional extended strings. These strings sweep out

two-dimensional Riemann surfaces as they evolve in Euclidean time. In the

�rst quantized description of string theory one may view the string coordinates

describing the embedding of the worldsheet in the target spacetime as a collec-

tion of scalar �elds living on the worldsheet. The worldsheet, however, must

uctuate as one is required to integrate over all admissible metrics to enforce dif-

feomorphism (reparametrization) invariance. In this way new intrinsic degrees

of freedom (the conformal modes of the metric) enter the theory. From the sta-

tistical mechanics viewpoint one is thus dealing with an exciting class of models

described by certain order �elds living on a uctuating substrate. Averaging

over metrics corresponds to being in the universality class of translationally and

orientationally disordered uctuating surfaces or membranes. These are often

called liquid-like membranes, as opposed to crystalline or hexatic membranes
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that are translationally or orientationally ordere

able fact is that these statistical mechanical mo

are, in a sense, easier to solve than the convent

regular lattice. This is because di�eomorphism

of e�ective degrees of freedom. It is even possi

change the topology of the surface (growth or c

This is certainly of great interest as a mo

the basis for an exploration of membranes. Rece

corresponding to certain types of conformal ma

been exactly solved including the sum over all p

of the solution together with the relation to 2d-

realistic random surfaces (exible liquid-like me

Let us start by considering the extreme case

all. All that remains is the smile on the Cheshir

This is clearly two-dimensional gravity. Since

coordinates it is also a model of strings in zero di

action with a cosmological constant term for 2d

S[g] =
�1
16�G

Z
�

d2�
p
gR+

where g��(�1; �2) is the 2d metric of the Riem

�1 and �2.
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The partition function Z then depends on two variables, Newton's constant

G and the cosmological constant �

Z[G;�] =

Z
[Dg] e�S[g] ; (2)

where the path integral is over all admissible metrics of Riemann surfaces �.

In two dimensions the action (1) is simple since the �rst term is a topological

invariant by the Gauss-Bonnet theorem

S =
��(�)
4G

+ �A(�) ; (3)

where � is the Euler characteristic of � and A is the area. � is related to the

number of handles, or genus h, by � = 2 � 2h, where for simplicity we are

assuming � to be closed (without boundaries). The partition function thus

reduces to

Z[G;�] =
X
h

Z
dAe

�

4G e��A
h(A) ; (4)

where 
h(A) is the density of states of Riemann surfaces � of �xed area A and

genus h,


h(A) �
Z
(h;A)

Dg��: (5)


h(A) is very di�cult to calculate as h increases and the sum over genus in (4)

diverges [2]. The above expressions are all, in fact, ill-de�ned. To give them

meaning we must regularize the path integrals. One approach is to discretize by

replacing � by a lattice. A particularly concrete and appealing discretization is

to consider all triangulations (or more generally cellular decompositions) of �.

The surface is thus replaced by a discrete set of n points (vertices) labelled by

an index i. The connectivity of the lattice is described by the adjacency matrix

Cij =

� 1 if i and j are connected by a link

0 otherwise
(6)

This de�nes a metric on the lattice by �xing all links to have length one. Thus

all triangles (cells) in the triangulation are equilateral and of �xed area. The

Euler characteristic follows from Euler's relation � = V �E+F , for V vertices,
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E edges (links) and F faces (triangles). Local c

the de�cit angle

Ri =
�

3

6� qi

qi

where qi is the coordination number of vertex i

qi =
X
j

Cij:

To simulate the integral over metrics the adja

to uctuate so that the coordination number o

degree of freedom. The local environment of

This considerably complicates the study of such

point of view but also makes them more intere

Dynamically Triangulated Random Surfaces D

update Cij is a ip on a fundamental parallelo

common edge. The discrete version of the part

grals over metrics by sums over admissible tria

in the form

Z[G;�] =

1X
h=0

e
2�2h

4G

1X
n=0

e

where Zh;n is the number of distinct triangula

h. Zh;n is a discrete version of 
h(A), since

�xed area elementary triangles. The combinato

is related to the quantum �eld theory problem

distinct Feynman diagrams of a matrix �3 �eld
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constructs the dual of each triangulation. It may then be shown that the

original partition function (9) is related to the solution of the matrix model

de�ned by the integral

�(g;N ) =

Z
dN

2

� exp
�
� NTr(

�2

2
�
g

3
�3)
	

(10)

over NxN -Hermitian matrices �. The exact relation is

Z[G;�] = log �(g;N ) ; (11)

where one must identify

N = e
1

4G and g = e��: (12)

It is necessary to take � to be a matrix to generate topologically non-trivial

triangulations. In fact it is easy to see that N appears weighted as N� for a
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Feynman diagram of Euler characteristic � in t

in a double power series in g and N [7].

In the continuum it has been shown [8{10]


h(A) � e�cAAh�

where the string susceptibility h is

h = �
1

2
+
5

2
h:

This result can be generalized to include particu

surface. These are the so-called minimal confor

integers p and q. A key parameter of these mod

measures the response of the free energy to loc

and is roughly a measure of the number of e�e

model. For a (p; q) model c is given by

c = 1�
6(p� q)2

pq

Note that c is less than one. Since a single sca

of (p; q) conformal matter coupled to 2d-gravi

than one target-space dimension. The result (14

more generally

h = 2�
(1� h)

12

�
25� c +

p
(1

It turns out that pure gravity corresponds to p

(15) that c = 0 as expected. Near the critica

equivalently critical coupling gc) we see that

Z
1

0

dAe��A
h(A) � (� �

and the mean surface area

hAi = �
@ logZ

@�
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diverges as 1
���c

. The string susceptibility h is clearly the critical exponent

for the speci�c heat. Diverging surface area is an indication of criticality. Near

�c one may thus construct a continuum limit with associated critical exponents

that are universal in the sense that they do not depend on the �ne details of

the lattice. The linearity of h in the genus h implies that Z[G;�] is actually a

function of only one scaling variable

x = (�� �c) exp

�
1

4G

�
1�

r
1� c

25� c

��
: (19)

In the Fall of 1989 it was discovered that the complete partition function Z =

Z(x) may be determined by taking the so-called double-scaling limit in which

�! �c and N !1 with x = (�c � �)N2m=2m+1 held �xed [12{15]. To reach

the double-scaling limit for a �xed m requires �ne tuning the parameters of a

degree 2m polynomial potential in the matrix model. The integer m is called

the order of multicriticality. The critical behavior at the mth multicritical point

is governed by a universal scaling of the density of eigenvalues of the matrix

model at the edge of its support [16]. The order of multicriticality is related to

the particular conformal matter being coupled by p = 2 and q = 2m � 1. The

speci�c heat f(x) = �@2lnZ=@�2 is given in this limit by an ordinary nonlinear

di�erential equation of Painlev�e I type. For m = 2 (pure gravity), for example,

it is

f2(x) +
1

3
f 00(x) = x: (20)

The string susceptibility determining the behavior of f around the critical point

f � (�c � �)�h , is given by

h = �
2

p + q � 1
= �

1

m
: (21)

More general (p; q) models are described by introducing multi-matrix models.

Note that the original matrix integral for pure gravity is unbounded from

below at the critical point gc = e��c since it corresponds to a cubic poten-

tial. There seems to be no escape from this pathology. Pure gravity is still

not non-perturbatively well-de�ned by the matrix model. Models with matter
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corresponding to m odd are well-de�ned, how

able lesson. It may be necessary to add certain

to render the model non-perturbatively sensib

de�ned model may be obtained by introducing

in the one-dimensional string [17]. The target

anticommuting (�; ��) dimension. The total ce

Grassmannian dimension cancelling the d = 1 c

Suppose now that we wish to describe mo

sponding to surfaces embedded in a target sp

than one. The surface is given by x�(�1; �2)(�

viously have c > 1. An immediate problem i

According to the continuum results the string

1 < c < 25. This suggests that the model has a

understanding of this instability is gained by ex

the discrete versions of these models with the

either by the Nambu-Goto action

SNG =

Z
d2�

p
h

where h is the determinant of the induced metr

simply the area of the surface in the induced m

SP =

Z
d2�

p
grx�r

Analytical and computational investigations cl

uum limit of these models is dominated by su

branched tree of tubes of diameter of order t

called branched polymer con�gurations and are

dimensional.

The origin of these spikes is clear in the Na

in�nitesimally thin long tube has vanishing area

by the area action. The large entropy for such

nates the statistical mechanics of these surfaces

shown to be in the same universality class.
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A bending rigidity may be added to the action to suppress branched poly-

mer con�gurations [18{20]. Consider the extrinsic curvature matrix (Gauss'

second fundamental form) Kij given by

K
�

ij
= DiDjx

�; (24)

where Di is the covariant derivative along the surface. This is the only addi-

tional term relevant under rescaling x ! �x that may be added to the string

action and so will eventually be generated by radiative corrections in any case.

In three dimensions the trace ofK is the mean curvature H = 1=r1+1=r2, where

ri are the principal radii of curvature of the surface. The extrinsic curvature

action is

SEC = �

Z
d2�

p
g(TrK)2: (25)

Its discrete form may be written as

SEC = �
X
<ij>

(1� n̂i � n̂j) ; (26)

where i and j represent triangles that share a common edge and n̂i is the unit

normal to triangle i. SEC clearly suppresses local uctuations in the mean

curvature of the surface. But the key question is whether there is long-range

order in the normals to the surface. The bending rigidity is, in fact, a running

coupling | it depends on the scale at which it is measured. A perturbative

calculation in the inverse coupling ��1 reveals that strings with bending rigid-

ity are asymptotically free in the same sense as Quantum Chromodynamics.

Fluctuations screen the theory and soften the e�ective bending rigidity as the

length scale increases. The momentum p dependence of � is found to be [18]

��1(p) =
��10

1� d

2

�
�1

0

2�
log�

p

; (27)
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where � is the cuto� or inverse lattice spacin

of the target space. At large length scales �

suppression of uctuations in the alignment o

two-point function decays exponentially

< n̂(�1; �2) � n̂(0) >=

with persistence length �p. Thus the surface is

at length scales r exceeding �p. This conclusio

the study of liquid membranes as well. A typica

found in nature (which can also be manufactur

bilayer. It consists of two layers of amphiphilic m

heads and long hydrophobic hydrocarbon tails

selves in thin extended sheets. Within the bilaye

free to di�use, so that the in-plane elastic con

Another candidate liquid membrane is a mono

an oil-water interface in a microemulsion. In fac

three-dimensional phases is a candidate system

We see here a beautiful interplay between strin
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the statistical mechanics of uctuating liquid membranes.

In the last few years such systems have been extensively explored via nu-

merical simulations on a wide range of computers, including parallel machines

[21{24]. There are some novel but not fully understood results. The full action

which is simulated is given by a quadratic interaction term plus the extrinsic

curvature term

S =
X
<i;j>

(x�
i
� x

�

j
)2 + �

X
[i;j]

(1� n̂i � n̂j) (29)

where the �rst sum is over nearest neighbors and the second over adjacent

triangles. For � < �c ' 1:5 one sees the expected crumpled surface (see �g. 7).

The radius of gyration of these surfaces grows only logarithmically with their

area corresponding to in�nite Haussdorf dimension dH de�ned by

R2
G ' A

2

d
H ; (30)

where RG is the radius of gyration. For � > �c the surfaces become extended

and considerably smoother with dH approaching two, which would be the value

one would get for a at surface (see �g. 8). The nature of the cross-over at �c is

still uncertain. It may be that the system is undergoing a true thermodynamic
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phase transition. If it is of second order then t

at the critical coupling would be an interesting

a real extended 2d surface rather than a branch

dimensional character. In this case it must be

vary with scale (there is a �xed point of the be

coupling �c. At this point there is said to be a c

most exciting possibility from the string point

that we have successfully regularized and de�n

string with more than one embedding dimension

The challenge would then be to understand the

string theory at the crumpling transition and t

It may also be that the observed cross-ove

and that the persistence length is simply reach

that is simulated on the computer. In this case

is always crumpled on su�ciently large distan

bility for a liquid membrane but would still le

regularization of a string in d > 1 dimensions

large-scale simulations in three and four embedd

of the above possibilities is in fact correct [25].

Finally it is of great interest to extend th

angulated surfaces to manifolds of higher dim

and four dimensional manifolds. One can then

Einstein-Hilbert quantum gravity and seek criti

perturbative de�nition of a perturbatively non

theory. This would be a very exciting developm

seems to indicate that there are indeed phase t
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