
Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 0

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures

Gregor von Laszewski, Manish Parashar

A. Gaber Mohamed, Geo�rey C. Fox

gregor@npac.syr.edu

Contents

1 Introduction 1

1.1 Parallel Computational Model : 5

2 Basic Linear Algebra Subprograms 6

3 Noblock algorithm 7

3.1 jik-Noblock Algorithm : 7

3.2 Naming convention : 8

4 Parallel Blocked Algorithms 9

4.1 Parallel Blocked jki-GAXPY : 9

4.2 Parallel Blocked jik-SDOT : 11

4.3 Parallel Blocked kji-SAXPY : 16

5 Results 17

6 Future 20

7 Conclusion 26

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 1

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures

Gregor von Laszewski, Manish Parashar

A. Gaber Mohamed, Geo�rey C. Fox

gregor@npac.syr.edu

Abstract

Our experimental results showed that block based algorithms for numerically in-

tensive applications are superior to their noblock counterpart[10]. It is desirable to

parallelize block based algorithms on distributed memory MIMD architectures since

many scienti�c and engineering applications make use of these algorithms. Our goal

is to optimize sample applications from LAPACK, develop them in Fortran 77D and

Fortran 90D, and have them available as a scalable compiler library. In the presented

study, we show ways to parallelize sequential block algorithms for the LU factorization.

The goal of this paper is twofold.

On one hand, since these algorithms are di�cult to parallelize they will be included

in a benchmarking suite for the Fortran 90D project [7]. We point out problems inherent

in the sequential nature of the block based algorithms. We learn that it is not intuitively

clear which algorithm might perform best on a distributed memory architecture. The

problems described here will help to improve the design of a source to source code

compiler applied to numerically intensive applications.

Beside these conclusions, experiments done on the iPSC Hypercube show which

parallel block algorithm should be used depending on the number of available processors,

the matrix size, and the block size. Three algorithms for the column oriented Fortran

are compared.

Keywords: LU factorization, blocked LU factorization, iPSC Hypercube, BLAS 3.

1 Introduction

Solutions of a system of linear equations are required in many scienti�c applications. [6]. Consider

the solution of the dense system of linear equations,

A~x = ~b; (1)

where A is an n-by-n matrix and ~b is a vector of dimension n and ~x is the solution vector of

dimension n. One method of solving this problem is to proceed by �rst factorizing A into a unit

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 2

lower triangular matrix L and an upper triangular matrix U, i.e.,

A = LU; (2)

and then solving for ~y and ~x in two consecutive substitution steps:

L~y = ~b and U~x = ~y: (3)

Experimental results show that in programs which need to solve a linear equation, more than 50%

of the CPU time is usually spent in matrix factorization. This occurs because

1. the computational e�ort to factorize the matrix A is higher than for the two substitution

steps.

2. most standard programming practices used to factorize the matrix result in more memory

accesses than oating point operations. This cause the processor to be idle during the time

data is transferred from memory for the computation.

The �rst observation motivates why it is desirable to build a fast LU factorization algorithm. The

second observation shows where optimization can be successful: It is worthwhile to optimize a fac-

torization algorithm so that it makes e�cient use of the way data is transferred to the computational

unit.

To understand why the algorithms described in this paper are e�cient (not only for multiprocessor

computers but also for sequential machines), it is necessary to review the concept of a memory

hierarchy.

Normally, the computation done in a central processing unit (CPU) is much faster than the time

necessary to move the required data from the memory to the registers of the CPU. The process of

moving the data is called fetching and the time required for transferring data from a part of the

memory to the CPU is called memory access time. In order to use the processor e�ciently it is

important to keep the memory access time as small as possible. Unfortunately, it is too expensive to

build very fast memories with su�cient capacity for scienti�c applications requiring huge amounts

of data. Therefore, a memory hierarchy is used to decrease the cost of the memory system while

retaining e�cient memory access times. Figure 1 shows a typical memory hierarchy. The closer

the memory level is to the registers of the processor the faster is the access.

For example, to use data stored in the external memory it has to pass through all levels of the

memory hierarchy. Often, access time can be decreased if the usage of speci�c data can be predicted,

so that data is transferred into a faster part of the hierarchy before it is actually referenced.

One simple way to evaluate if a program can make use of the hierarchy in an e�cient way is to keep

the ratio of operations to data movement as large as possible. This ratio is important to achieve

high performance when exploiting concurrency.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 3

Register

Cache

RAM

External Memory

faster
access

larger
capacity

Figure 1: Typical memory hierarchy in a computer

For example, the following statement inside a loop performing matrix multiplication,

cij cij + aik � bkj

requires three memory accesses to obtain the data cij ; aik; bkj , and one to store the result in cij .

Addition and multiplication count as one oating point operation each. The ratio of oating point

operations to memory access time is r = 1
2
.

A simple programming trick to improve this ratio is to �gure out how data is stored in the memory.

One has to know that most memory organizations use speci�c strategies to reduce the memory

access time. A common rule on many machines is to fetch a block of data instead of only one

datum at a time. The distance between elements in the memory is called stride.

Therefore, it is best to formulate the algorithms in such a way that data elements used in consecutive

computation steps are stored in contiguous addresses of the memory. Hence they are fetched in a

block requiring fewer memory accesses. Figure 2 shows how data (a matrix) is stored in a memory

using the Fortran programming language. Having this in mind it is obvious why Fortran is called

a column oriented programming language.

...
...

...
... a1n

amn

a2n

a3n

..
.

a13

a23

am3

a33

..
.

A

a11

a21

a31

am1

..
.

a12

a22

a32

am2

..
.

Figure 2: Storage of a two dimensional array in column oriented programming languages like

Fortran

Under the assumption, that a machine is able to fetch � contiguous data elements from the memory

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 4

in one time step, some statements of the loop performing the matrix multiplication steps can be

rewritten as

cij cij + ai;k � bk;j

+ ai;k+1 � bk+1;j

.

.

.

+ ai;k+��1 � bk+��1;j (4)

This leads to 2� oating point operations, 2 memory accesses for storing and fetching cij , � memory

accesses for fetching the aik's and one memory access for all bkj 's. The ratio is r =
2�
3+�

.

By storing the matrix A as its transpose, At
, one can rewrite the multiplication as

cij cij + atk;i � bk;j

+ atk+1;i � bk+1;j

.

..

+ atk+��1;i � bk+��1;j (5)

where atki speci�es the element in the k-th row and i-th column of At
.

Now there is only one memory access necessary to fetch vector at (ai;1; : : : ; ai;k+��1). Therefore,

the ratio is r =
�
2 . The prediction of a maximal vector length � depends on many factors: the

machine used, the memory hierarchy, and their fetching algorithm. Algorithms which update a

block of contiguous vectors instead of only one vector at a time are known as blocked algorithm.

This way the work is done locally on a block of data.

Previous numerical experiments [9] showed that traditional linear algebra algorithms do not achieve

high performance on distributed-memory multiprocessors because of the lack of data locality. There-

fore, data locality is the fundamental problem in parallel computing and has great inuence on the

performance on such machines. The use of block based algorithms is one of the most e�cient ways

to improve the performance of numerical algorithms on distributed memory machines.

Dongarra, Gustavson, and Karp [4] discussed six ways of implementing the LU factorization ob-

tained by reordering the three nested loops that constitute the algorithm. Algorithm 1 explains

the generic Gaussian elimination. The loop indices are i; j and k.

Only three of these ways are applicable to the column oriented Fortran. These algorithms will be

introduced later as block based algorithms with pivoting. Furthermore, the pivoting operation can

be embedded in matrix multiplication if the elements akj are scaled by �akk such that

aij aij + aik � a
0

kj

where a0kj is de�ned as �
akj
akk

.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 5

do ||||

do ||||

do ||||

aij aij �
aik � akj

akk
end do

end do

end do

Algorithm 1: Gaussian Elimination Algorithm

1.1 Parallel Computational Model

In order to de�ne a parallel algorithm to solve a system of linear equations it is necessary to de�ne

the computational model on which the implementation is based. A study on shared memory MIMD

machines using blocked based algorithms for LU factorization can be found in [10].

The results presented in this paper concentrate on distributed memory MIMD machines. These

machines have a natural bound on the number of available processors. At a time, each processor can

execute di�erent instructions in parallel on di�erent data. Message passing allows interprocessor

communication. To transfer a datum of speci�c length between two processors a startup time is

needed to establish a communication path, and a transfer time which is proportional to the length

of the message is needed to complete the transmission.

P
0

P
1 P

2
P

N-1

. . . .

Figure 3: Parallel computing modell

In order to incorporate a wide variety of architectures, the communication relation between the

processors is based on a unidirectional ring.

Now it is clear that an e�cient implementation has to �nd the trade o� between communication

time and computation time. If the algorithm sends too many messages and computes too less, the

communication time dominates the computation time. Furthermore we assume that the memory

capacity of each processing element is restricted.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 6

2 Basic Linear Algebra Subprograms

In many applications, vector and matrix operations can be used to formulate algorithmic solution

to scienti�c problems. Programming languages like Fortran77 do not provide these kinds of opera-

tions. To make programming easier for a scientists and engineers, it is desirable to have a library

supporting such a class of routines.

A public domain set of Basic Linear Algebra Subprograms, called BLAS, has been very successful

in scienti�c applications. Many algorithms and software packages make use of these programs [3].

Di�erent levels of BLAS are distinguished by the amount of data used for an operation and its

arithmetic complexity.

The complexity of programs at the same level of BLAS is equal. Computations on vectors of

order n can be found in level 1 BLAS. For example the dot product of two vectors each with

n elements is calculated in 2n arithmetic operations. Level 2 BLAS provides matrix-vector com-

putations of order n2, and level 3 BLAS provides matrix-matrix computations of order n3 (table 1).

Level Data type of operation Arithmetic

complexity

1 vectors O(n)

2 matrix, vectors O(n2)

3 matrix, matrix O(n3)

Table 1: Arithmetic complexity of the di�er-

ent BLAS levels

Abbreviation stands for

M Matrix

V Vector

GE GEneral

TR TRiangular

Table 2: Abbreviations used in BLAS

There are a number of important subprograms included in BLAS used for the algorithms presented

in this paper. For example the matrix multiplication subprogram, called GEMM, and a subprogram

for solving a triangular system, called TRSM.

The nomenclature of the BLAS programs is simple and gives information about the semantic of

the subprograms. Table 2 shows the abbreviations necessary to explain the algorithmic codings

presented in this paper. Table 3 shows the BLAS subprograms used in the di�erent implementations

of the LU factorization algorithms.

Looking at the computational e�ort of the BLAS routines it is clear that the ratio between oating

point operations and memory accesses for the level 1 and 2 BLAS is not as good as for the level 3

BLAS which consists of more computations per memory access. Therefore, it is obvious that the

strategy is to maximize the use of level 3 BLAS.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 7

BLAS Name (Level) Description as used in this

paper

Arithmetic

Complexity

IAMAX (1) �nds the index of the element

of a vector with the maximal

absolute value

O(n)

SCALL (1) scale a vector by dividing with

a constant

O(n)

SWAP (1) swap two vectors O(n)

GEMV (2) multiply a general matrix with

a vector

O(n2)

TRSV (2) solve a triangular system

where the result is a vector

O(n2)

GEMM (3) multiply a general matrix with

another general matrix

O(n3)

TRSM (3) solve a triangular system

where the result is a matrix

O(n3)

Table 3: List of BLAS routines used for blocked factorization algorithms

3 Noblock algorithm

Now a necessary basis has been established to formulate the factorization algorithms. A noblock

factorization algorithm forms the building block for the block based algorithms. To be most e�cient

a fast noblock algorithm has to be selected. The noblock algorithms are distinguished by the order

of loops in which the factorization is done. The suitable loop orders for the column oriented

FORTRAN are jik, kji, and jki. For example, the abbreviation jik points out that j is the loop

index for the outermost loop and k for the inner most loop (compare to algorithm 1).

Since the number of memory touches for the kji noblock algorithm is twice as high as for the

jki-noblock and the jik-noblock algorithm [4], the running time for this algorithm is slower. Ex-

periments show that the jki noblock algorithm performs better than the two others.

3.1 jik-Noblock Algorithm

Before the algorithm is described in detail it is useful to visualize the data dependencies of the

n � n matrix elements between the computational steps (Figure 4) of the jik-noblock algorithm.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 8

Data dependencies are expressed by the height of the matrix element in the �gure. If a datum is

higher than another then this datum has to be calculated �rst.

In Figure 4 the state of the algorithm is shown at time step j. Following the data dependencies

�rst the vector l(j) is updated with the help of A(j)
and the vector u

(j)
r ; next the element of l

j
1 is

computed and u(j) is updated with the help of U (j) and l
(j)
r .

Therefore, at time step j the jik-noblock algorithm updates one column of L and one row of U.

This noblock algorithm is also also known as Crout's Algorithm.

m

n

t

u

A

L

(j)

(j)

l
(j) (j)

l
(j)

r

U
(j)

(j)
u r

Figure 4: jik noblock

Let l(j) represent the jth column vector of the matrix L and u(j) the jth row vector of the matrix

U beginning at ajj . The matrix A
(j) speci�es a submatrix of A which includes all elements from

the �rst column to the column j � 1 and from the rows j + 1 to n. The matrix U(j)
speci�es a

submatrix ofA which includes all elements from the �rst row to the row j�1 and from the columns

j + 1 to n.

0. Initialization: j 1

1. Update l(j): l(j) l(j) �A(j)u(j)

2. Select pivot and exchange: p j +min

�
j
���jljj = max

1�i�m�j+1
fjl

(j)
i jg

�
� 1

Exchange row j and row p

3. Scaling: l
(j)
i l

(j)
i =ap;j 8i 2 [1; m� j + 1]

IF j = n THEN stop

4. Compute row u(j): u(j) u(j) � U (j)l
(j)
r

5. Iterate: j j + 1

GOTO Step 1.

The detailed description of the algorithms using BLAS can be found in [10].

3.2 Naming convention

In literature, LU factorization algorithms are often named by the basic operations inherent in

the algorithms[8]. The basic operation of the kji algorithm is based on the following operation:

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 9

~z a~x + ~y; where a is a scalar and ~x; ~y; ~z are vectors. This operation of a Scalar A multiplied by

the vector X Plus the vector Y is called SAXPY.

The basic operation of the jki algorithm is based on the following operation: ~z A~x+ ~y, where

A is a matrix and ~x; ~y; ~z are vectors. Therefore, it is a generalized SAXPY operation working on

a matrix rather than on a vector. Hence the name GAXPY is used.

The basic operation of the jik algorithm is based on the dot product: ~z a~xT ~y; where ~x; ~y; ~z are

vectors and a is a scalar. Therefore, it is called SDOT. The names introduced above are used in

the later sections.

4 Parallel Blocked Algorithms

The trade o� between the communication time and the computation time, as introduced earlier,

can be achieved by rewriting the LU decomposition with the help of matrix blocks, with properly

de�ned block sizes.

To understand the parallel block factorization algorithm the corresponding sequential block based

algorithms are also introduced. This way one is able to observe the data dependencies inherent in

the algorithms. The parameter � speci�es the block size which is the number of column vectors

used by the noblock algorithm for factorization in each iteration of the block based algorithm.

4.1 Parallel Blocked jki-GAXPY

The sequential jki-GAXPY algorithm computes a block column of both matrices L and U at the

jth step of the elimination. The following operations are required (compare with Figure 6):

0. Initialize: Start with �rst block.

j 1

1. Pivot and Update U
(j)
2 : Apply previous interchanges to the block U

(j)
2 .

The jth superdiagonal block of U is computed using TRSM:

U
(j)
2 (L(j))

�1
U

(j)
2

2. Update C(j): The jth diagonal and subdiagonal blocks of C are computed using

GEMM:

C(j)
 C(j)

�A(j)U
(j)
2

3. Factorize C(j): The jth block column is factorized into LU factors using a noblocked

algorithm (jik-noblock).

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 10

(j)A

(j)
C

Step 2

Step 1
(j)

L

L
(j)

(j)
C

L
(j) Step 3

(j)
U
2

(j)
U

(j)
U
2

1

Figure 5: jki-GAXPY

Step 1

Step 2

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

L

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

(j)

U (j)

A(j)

C (j)

U (j)

Send Message

Data Dependency

Send Message
Data Dependency

Figure 6: Parallel GAXPY a) update Uk , b)

update Ck

4. Iterate: IF no more blocks THEN stop

ELSE GOTO Step 1.

Because the sequential algorithm updates only one block at a time, a corresponding parallel ver-

sion of this algorithm should be restricted to this block. Nevertheless, to be e�cient the parallel

algorithm has to work interleaved. Therefore, the data is spread in a scattered fashion over the

processors as shown in Figure 6. Information is exchanged between the processors after the fac-

torization step is completed using the noblock algorithm. Looking at the data dependencies of the

sequential algorithm it is clear that in order to update the matrix each processor has to know the

data L computed so far and A(j) even if they are generated in another processor. Hence, each

processor has to store a complete copy of the original matrix.

To simplify the description of the parallel GAXPY algorithm a submatrix A from row y0 to y1

and from column x0 to x1 is indicated by the Fortran 90 statement A(y0 : y1; x0 : x1). The

command
def
= indicates a macro statement. Its variables are expanded at runtime. The de�nition

L
def
= A(1 : j; 1 : j) leads to the statement A(1 : 4; 1 : 4) for L if the value of the variable j equals 4.

The following de�nitions of submatricies are used in the parallel GAXPY algorithm, where Ly0; Lx0

denotes the �rst row and column of the current block to be factorized, and Lx1 = Lx0 + �, and

Ly1 = Ly0 + � :

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 11

L
def
= A(1 : j; 1 : j) , the lower triangular matrix calculated so far

A(j) def
= A(Ly1 + 1 : n; 1 : j) , the matrix used for updating C(j)

Work block
def
= A(Ly0 : n; Lx0 : Lx1) , a submatrix of U (j)

of the seq. alg.

L(j) def
= A(Ly0 : Ly0 + �; Lx0 : Lx1) , a submatrix of L

C(j) def
= A(Ly1 + 1 :m;Ux0 : Ux0 + � � 1) , a submatrix of C(j) of the seq. alg.

Di�erent U (j)'s must be distinguished. One for the sending processor

U
(j)
s

def
= A(1 : Ly0; Ux0 : Ux0 + � � 1)

and the others for the receiving processors

U
(j)
r A(Ly0 : Ly0 + �; Ux0 : Ux0 + � � 1)

The Process ID 2 [0; Processors� 1] is used to distinguish the processors from each other. Note

that the variable Ux0 is dependent on the Process ID.

With this semantical abbreviations the parallel algorithm can be formulated as shown in algorithm

2.

Figure 6 shows the algorithm at time step j = 1 (note that the time steps start from 0). Only

one processor calculates the factorization at a time. The others are updating their matrix with the

result of this computation. First the block L(j) is obtained with the help of the noblock factorization

algorithm. The result of the computation is submitted to its neighbor processor. Then the part of

U
(j)
s assigned to this processor is calculated. The neighbor processor receives the factorized block

and sends it itself to its neighbor. As soon as the block is sent, the processor updates its part of

U
(j)
r . In addition each processor performs pivoting to all the columns smaller than U (j)

. With the

help of A(j) it is now possible to update C(j).

In the example shown in Figure 6 three processors are involved in the computation. Therefore, the

update is split into three parts. The processor which does the factorization has to update its part

of C(j) with all blocks of U (j) directly above C(j). In contrast, the other processors update their

part only with the �rst block above their part of C(j)
. Looking at the next time steps it is easy to

see that the update of C(j)
is completed after three time steps (which is the number of processors).

The disadvantage of this algorithm is clearly the need for storing the matrix in each processor.

This data redundancy limits the use of this algorithm to small matrices. The advantage of the

algorithm is that it is fast due to the data redundancy and the interleaved execution.

To allow even bigger matrices to be calculated on a parallel machine with restricted memory

capacity, other algorithms are needed. They are introduced in the next two sections.

4.2 Parallel Blocked jik-SDOT

In the blocked jik-SDOT or Crout's algorithm [2], one block column of L and one block row of U

are computed in each iteration. The basic steps involved in the jth iteration are shown Figure 7

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 12

SUBPROGRAM jki-GAXPY-parallel (m;n; a; lda; ipiv)

Factorization Counter Process ID

Ux0 process ID �� + 1

DO j = 0; n=� � 1

Lx0 Ly0 j � � + 1; Lx1 Lx0 + � � 1

IF Factorization Counter = 0 THEN

Factorize the work block

SEND L(j) and the pivot vector to the right neighbor processor

Apply pivoting to the columns before L(j), and after L(j) up to

the end of the block where this processor will factorize the next time

Ux0 Lx0 + Processors � �

IF Ux0 � n THEN

Update U
(j)
s using L computed so far

Update C(j) using U
(j)
s and A(j)

ENDIF

Factorization Counter Processors

ELSE

RECEIVE L(j)
and pivot vector from the left neighbor processor

IF (Factorization Counter + 1) 6= Processors THEN

SEND L(j)
an pivot vector to the right neighbor processor

ENDIF

Store L(j) in A

Apply pivoting to the columns before L(j)
, and after L(j)

up to

the end of the block where this processor will factorize the next time

Ly1 Ly0 + � � 1

IF Ux0 � n THEN

Update U
(j)
r using L(j)

Update C(j)
using U

(j)
r and A(j)

ENDIF

ENDIF

Factorization Counter Factorization Counter - 1

END DO

Algorithm 2: jki-GAXPY-parallel

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 13

(j)A

Step 1

(j)
C

(j)
B

Step 2

(j)
C

L
(j)

(j)
A

(j)
EU

(j) Step 3(a)

2
1

1

U
(j)

L
(j)

Step 3(b)
2

U
(j)

Figure 7: jik-SDOT

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

L(k)

U (k)

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

L(k) U (k)
Step 3a

Step 3b

Step 1

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

A(k)

C (k)

U (k)

Send Message

Data Dependency

Send Message
Data Dependency

Figure 8: Parallel SDOT

along with the data dependencies involved in each step. The steps are described below:

0. Initialize Start with the �rst block

j 1

1. Update C(j) The diagonal and subdiagonal blocks of the jth block column are computed

using GEMM:

C(j)
 C(j)

�A(j)B(j)

2. Factorize C(j) The jth block column, C(j) is factorized into LU factors using the jik-noblock

algorithm.

The row interchanges are applied to blocks on both sides of the current block.

3. Update U
(j)
2 a) The jth block row of U is updated using GEMM:

U
(j)
2 U

(j)
2 �A(j)E(j)

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 14

b) The jth block row of U is computed using TRSM:

U
(j)
2 (L(j)

)
�1
U

(j)
2

4. Iterate: IF no more blocks remaining THEN stop

ELSE goto Step 1.

In the jth iteration, the jth block depends on the j � 1 previously factorized blocks. With the

matrix laid out onto the processors (shown in Figure 8) in a manner similar to that presented

in the parallel GAXPY algorithm, this dependency requires the factorized matrix to be stored in

each processor. As a consequence, the size of the matrix which can be factorized by this algorithm

is limited by the available memory at each node. This limitation can be overcome to a certain

extent by observing that in each iteration, the block to be factorized depends only on the portion

of the factorized submatrix which includes and which is located below the current block row. In

the presented implementation, we store the factorized submatrix in a work array. At the beginning

of each iteration, the work array is reshaped so as to retain only that portion of the factorized

submatrix required for subsequent computations, thereby overcoming the memory limitation.

The structure of the algorithm requires the matrix blocks to be factorized in a sequential order.

In order to o�set this inherent bottleneck, a pipelined approach is used [5]. In this approach, the

iterations of the algorithm are pipelined so as to overlap the factorization of the jth block column

(steps 1 and 2) with the update of the block row associated with the j� 1th block column (step 3).

The pseudo-code for the pipelined version of the algorithm is given in Algorithm 3. Here, n =

number of columns of the matrix, m = number of rows of the matrix, lda = leading dimension of

the matrix, Processors = number of allocated processor, proc = number of the processor currently

performing the factorization and shipping of the factorized panel, and myid = id of a processor.

A is the matrix to be factorized. Note that SGETF2 refers to the noblock factorization routine

used. (Since, in our experimentation with the algorithms we used single precision data, all BLAS

routines used have a \S" pre�x). Figure 8 shows the layout of the matrix onto the processor along

with the operations in the third iteration. The activities of each of the processors in the pipelined

algorithm are shown in Figure 9 for a four processor system.

Although, using the pipelined implementation did provide some performance improvement for large

matrices when compared with the non pipelined version, this improvement was very limited. The

reason being that the amount of work involved in updating and computing the block row, i.e.

step 3 (rest of the processors) is small compared to work required to update and factorize the

subdiagonal block (current processor). This unbalance of work along with the overhead involved in

reshaping the work matrix in each iteration prevents the pipeline from remaining full and limits the

improvement in performance that can be obtained. Numerical results for the jik-SDOT algorithm

for various matrix and blocks sizes are presented in a later section.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 15

subprogram jik-SDOT-parallel (m;n; a; lda; ipiv)

1. Processor 0 starts the pipeline

proc = 0

IF (myid = proc) THEN

call noblock routine (SGETF2) to factorize �rst panel

SEND factorized panel & pivots to all processors using BLACS routine (SGESD)

ENDIF

2. Repeat for each panel

DO i = 1, n, �

IF (i > 1) THEN

Reshape work matrix

ENDIF

IF (proc = myid) THEN

copy factorized panel into work matrix

apply pivoting permutations to work matrix and rest of my panels

ELSE

RECEIVE factorized panel & pivots from processor proc (SGERC)

apply pivoting permutations to work matrix and rest of my panels

ENDIF

proc = mod(proc+1,Processors)

IF (I have panels left to factorize) THEN

IF (proc = myid) THEN

call SGEMM to update ith block row of next panel only

call STRSM to compute ith block row of next panel only

call SGEMM to update the next panel

call SGETF2 to factorize next panel

SEND factorized panel & pivots to all processors (SGESD)

ENDIF

all processors update their remaining panels by calling SGEMM & STRSM

ENDIF

ENDDO

Algorithm 3: Pipelined Parallel jik SDOT

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Figure 9: Spacetime diagram for the pipelined jik-SDOT algorithm

4.3 Parallel Blocked kji-SAXPY

In the jth step of the kji-SAXPY algorithm, one block column of L and one block row of U are

computed and the corresponding transformations are applied to the remaining submatrix. The

basic steps involved in the jth iteration (shown in Figure 10) are described below.

0. Initialize Start with the �rst block

j 1

1. Factorize C(j) The jth block column is factorized into LU factors using the jik-noblock

algorithm. The row interchanges are applied to blocks on both sides of the

current block.

2. Update U
(j)
2 The jth block row of U is computed using TRSM:

U
(j)
2 (L(j))

�1
U

(j)
2

3. Update C(j)
The remaining matrix is updated using a block outer product (GEMM):

C(j)
 C(j)

� L(j)U
(j)
2

4. Iterate: IF no more blocks remaining THEN stop

ELSE goto Step 1.

This algorithm is best suited, of the three presented algorithms, for distributed memory MIMD

architectures. The reason for this is the data dependencies involved in the steps above (shown

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 17

Step 2
L
(j)

U
(j)

L
(j)

(j)
C

Step 3

Step 1

(j)
C

L
(j) U

(j)

1

U
(j)

2

2

Pivoting

U
(j)

2A
(j)

1

Figure 10: kji-SAXPY

Step 2

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

C

U

PP P
0 1 2 PP P

0 1 2
PP P

0 1 2

Step 3

U
2

(j)
L

(j)

(j)

2

L
(j)

(j)

. . .

Send Message

Data Dependency

Send Message
Data Dependency

Figure 11: Parallel SAXPY

in Figure 10.) In the jth iteration, the jth block depends only on the j � 1
th

factorized block.

Hence, each node has to store only the last factorized block. As a result the memory limitations

encountered in the parallel SDOT and GAXPY algorithms do not exist here. Furthermore, the

amount of work involved in updating and computing the block row, i.e. steps 2 and 3 (rest of the

processors) is comparable to work required to update and factorize the subdiagonal block (current

processor). Hence, the pipelined version of this algorithm produces a signi�cant improvement in

performance. The pseudo-code for the pipelined version of the algorithm is given in Algorithm 4.

The notations are the same as those de�ned in the previous section for the parallel SDOT algorithm.

Figure 11 shows the layout of the matrix onto the processor along with the operations in the second

iteration. The activities of each of the processors in the pipelined algorithm are shown in Figure 12

for a four processor system.

5 Results

The presented study was conducted on a 32 node Intel iPSC/860 which is an Intel i860 processor

based Hypercube. Each i860 node has an 8 KByte cache and 8 MBytes of main memory. The

clock speed is 40 MHz, and each node has a theoretical peak performance of 80 MFLOPS for single

precision and 40 MFLOPS for double precision. Communication is supported by direct-connect

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 18

subprogram kji-SAXPY-parallel (m;n; a; lda; ipiv)

1. Processor 0 starts the pipeline

proc = 0

IF (myid = proc) THEN

call noblock routine (SGETF2) to factorize �rst panel

SEND factorized panel & pivots to all processors using BLACS routines (SGESD)

ENDIF

2. Repeat for each panel

DO i = 1; n; �

IF (proc = myid) THEN

copy factorized panel into work matrix

apply pivoting permutations to work matrix and rest of my panels

ELSE

RECEIVE factorized panel & pivots from processor proc (SGERC)

apply pivoting permutations to work matrix and rest of my panels

ENDIF

proc = mod(proc + 1,Processors)

IF (I have panels left to factorize) THEN

IF (proc = myid) THEN

call STRSM to compute ith block row of next panel only

call SGEMM to update the next panel only

call SGETF2 to factorize next panel

SEND factorized panel & pivots to all processors (SGESD)

ENDIF

all processors update their remaining panels by calling STRSM & SGEMM

ENDIF

ENDDO

Algorithm 4: Pipelined Parallel kji-SAXPY

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Figure 12: Spacetime diagram for the pipelined kji-SAXPY algorithm

modules present at each node [11] which allow the nodes to be treated as though they are directly

connected. The communication time for a message is a linear function of the size of the message.

Hence, the time, tm to transmit a message of length n from an arbitrary source node to an arbitrary

destination node is given by:

tm = ts + tb � n

where ts is the �xed startup overhead and tb is the transmission time per byte.

PICL(Portable Instrumented Communication Library) is used in the presented implementations

and provides a simple and portable communication structure. PICL also provides tracing facil-

ities which can be used in conjunction with ParaGraph, a tool for visualizing the behavior and

performance of parallel programs.

In addition to the above, the presented implementations also make use of the BLACS [1] (Basic

Linear Algebra Communication Subprograms) library for data movement. BLACS is a portable,

high level communication library, developed for linear algebra applications. It is a part of the

e�ort to implement LAPACK on distributed memory MIMD architectures. The matrices used in

the experiments were dense matrices where each matrix element was a randomly generated real

number between 0 and 1.

In order to compare the parallel implementations of the three factorization algorithms we �rst

compared the performance achieved for a constant matrix size with di�erent block sizes and on

di�erent numbers of processors. Figure 13 shows the results for a 512� 512 matrix computed on

4,8,16 and 32 processors and with di�erent block sizes. The parallel GAXPY algorithm performs

better than the other two algorithms for a smaller number of processors. It shows that the maximal

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 20

performance is achieved by the parallel GAXPY algorithm using 16 processors and a block size of

8. The performance of the of the SAXPY algorithm is close to the GAXPY algorithm and achieves

the best performance for block sizes in the range 8� 4. The SDOT algorithm achieves very little

improvement over the the noblock algorithms because of its data dependencies as described earlier.

The performance obtained for very small block sizes is low for all the three algorithms. Although

small block sizes provide better load balancing, this advantage is o�set by the increased communi-

cation between the processors and the decrease in the amount of computation at each processor.

Very large block sizes on the other hand, lead to low communication overheads but have poor load

balancing. This leads to a fall in performance for the parallel GAXPY and SAXPY algorithms

as the block size increases. The observation however, does not hold true for the parallel SDOT

algorithm which shows a slight improvement in performance for very large block sizes. The reason

for this is that large block sizes imply smaller number of reshapes which means a smaller penalty

is paid by the SDOT algorithm.

Figures 14, 15 and16 show the graphs for SAXPY and SDOT algorithms for larger matrices. The

parallel GAXPY algorithm could not be used for these matrices because of its inherent limitation

on the the matrix size. The penalty paid for reshaping and work unbalance in the SDOT are

obvious in each of these plots. The SAXPY algorithm continues to perform well and achieves high

MFLOP's as the matrix size increases.

The peak performance in MFLOPS per processor for various matrix sizes is shown in Figures 17

and18 for 4 and 16 processors respectively. An absolute peak performance of about 26 MFLOPS/Processor

is achieved by the parallel SAXPY algorithm for a 1536� 1536 matrix with � equal to 12 and on 4

processors. These Figures (17 and 18) also show that the optimal number of processors is problem

dependent. A larger number of processors does not necessarily imply better performance.

Figure 19 show the scalability of the algorithms for di�erent block sizes for 4, 8, 16 and 32 processors.

SAXPY scales almost linearly with the problem size for large number of processors as is clear from

the �gure.

6 Future

Currently, we are testing the three blocked LU factorization algorithms in di�erent FORTRAN

dialects on a variety of parallel platforms machines. We have already implemented versions for

SIMD and shared memory MIMD machines.

The target machines to be used in this research include the Intel iPSC/860 [12], nCube, Alliant

FX/80 [10], IBM 3090, Decmpp 12000, CM2, and the CM5.

This work is being done as a part of our e�ort to develop a benchmark suite for FORTRAND and

the proposed HPFF (High Performance Fortran Forum).

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 21

0

20

40

60

80

100

0 8 16 24 32 40

Block Size

M
F

LO
P

S

Matrix Size=512, Processors=4

GAXPY
SAXPY panel
SDOT panel
SDOT noblock

0

20

40

60

80

100

0 8 16 24 32 40

Block Size

M
F

LO
P

S

Matrix Size=512, Processors=8

GAXPY
SAXPY panel
SDOT panel
SDOT noblock

0

20

40

60

80

100

0 8 16 24 32 40

Block Size

M
F

LO
P

S

Matrix Size=512, Processors=16

GAXPY
SAXPY panel
SDOT panel
SDOT noblock

0

20

40

60

80

100

0 8 16 24 32 40

Block Size

M
F

LO
P

S

Matrix Size=512, Processors=32

GAXPY
SAXPY panel
SDOT panel
SDOT noblock

Figure 13: Performance of the di�erent algorithms on a constant matrix size.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 22

0

50

100

150

200

250

300

350

400

0 8 16

Block Size

M
F

LO
P

S

Matrix Size=1024, Processors=16

SAXPY panel
SDOT panel

0

50

100

150

200

250

300

350

400

0 8 16

Block Size

M
F

LO
P

S

Matrix Size=1536, Processors=16

SAXPY panel
SDOT panel

0

50

100

150

200

250

300

350

400

0 8 16

Block Size

M
F

LO
P

S

Matrix Size=1792, Processors=16

SAXPY panel
SDOT panel

0

50

100

150

200

250

300

350

400

0 8 16

Block Size

M
F

LO
P

S

Matrix Size=2048, Processors=16

SAXPY panel
SDOT panel

Figure 14: Performance of the di�erent algorithms using constant number of processors.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 23

0

50

100

150

200

250

300

350

400

0 8 16

Block Size

M
F

LO
P

S

Matrix Size=1024, Processors=4

SAXPY panel
SDOT panel

Figure 15: 1024 �1024 Matrix, 4 Processors,

Pipelined SDOT SAXPY.

0

50

100

150

200

250

300

350

400

0 8 16

Block Size

M
F

LO
P

S

Matrix Size=2048, Processors=32

SAXPY panel
SDOT panel

Figure 16: 2048 �2048 Matrix, 32 Processors,

Pipelined SDOT SAXPY.

0

5

10

15

20

25

30

0 512 1024 1536 2048

n

M
F

LO
P

S
/P

ro
ce

ss
or

Processors=4

SAXPY panel
SDOT panel

Figure 17: Best Ratio of MFLOPS per pro-

cessor for di�erent matrix sizes and variable

block size (4 processors).

0

5

10

15

20

25

30

0 512 1024 1536 2048

n

M
F

LO
P

S
/P

ro
ce

ss
or

Processors=16

Figure 18: Best Ratio of MFLOPS per pro-

cessor for di�erent matrix sizes and variable

block size (16 processors).

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 24

0

50

100

150

200

250

300

350

0 512 1024 1536 2048

n

M
F

LO
P

S

Processors=4
SAXPY panel
SDOT panel

0

50

100

150

200

250

300

350

0 512 1024 1536 2048

n

M
F

LO
P

S

Processors=8
SAXPY panel
SDOT panel

0

50

100

150

200

250

300

350

0 512 1024 1536 2048

n

M
F

LO
P

S

Processors=16
SAXPY panel
SDOT panel

0

50

100

150

200

250

300

350

0 512 1024 1536 2048

n

M
F

LO
P

S

Processors=32
SAXPY panel
SDOT panel

Figure 19: Best performance of the di�erent algorithms on di�erent numbers of processors using

the optimal block sizes

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 25

To obtain a copy of all the software used in this study, send a one-line e-mail message \send index"

to npaclib@minerva.npac.syr.edu or use anonymous ftp from minerva.npac.syr.edu. Npaclib is a

free software distribution electronic service. The index lists information on how to access all the

programs used in this study. Users who have problems accessing these programs should send e-mail

to haupt@npac.syr.edu.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 26

7 Conclusion

This paper describes the Fortran-oriented methods for block LU factorization on distributed mem-

ory MIMD architectures. These methods are also applicable on shared memory parallel vector

computers [10]. Our numerical results and performance comparisons show the following:

GAXPY � The parallel GAXPY algorithm is very fast for small matricies. However, it does

not scale up due the fact that the entire matrix needs to be stored in each nodal memory.

� Because of the need to store the matrix in each node, the memory capacity of the node

limits the maximal problem size for this algorithm.

SDOT � With the help of reshaping, the paneled version of the parallel SDOT algorithm is

able to factorize large matricies, which could not be solved otherwise. Since the reshaping

is time insensitive, this algorithm has the worst performance of the three studied. It is only

slightly better than the sequential program for large enough block sizes since this implies

that reshaping is done more seldom.

SAXPY � The data dependencies inherent in the parallel SAXPY algorithm are most suited

for distributed memory MIMD architectures.

� No reshaping of the matrix is necessary since only a small portion of the factorized matrix

has to be stored in each processor.

� Parallel SAXPY provides an e�cient algorithm which scales e�ectively with the matrix size

and can be used with a wide of number of processor.

A further observation from our experimentation with LU factorization is that the best performance

is achieved at block sizes where the computation at each node outweighs the tradeo� between high

load balancing (small block sizes) and low communication overhead (large block sizes). This optimal

block size is dependent on the algorithm used, the size of the matrix and the number of processors

available.

In conclusion we make the following recommendations:

� The parallel GAXPY algorithm should be used in case of small matricies and few available

processors.

� The parallel SAXPY algorithm should be used for larger matrices or if the matrix size varies

over a wide range and the is the number of processors is variable.

� The block size should be chosen depending on the algorithm used, the size of the matrix and

the number of processors used so as to maximize performance. Graph of the type provided

in this paper my help in making this decision.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 27

Acknoledgement

We would like to thank Neng-Tan Lin and Nangkang Yeh for their helpful contribution and discus-

sions.

The presented research is sponsored by DARPA under contract #DABT63-91-k-0005. The content

of the information does not necessary reect the position or the policy of the Government and no

o�cial endorsement should be inferred.

Use of the Intel iPSC/860 was provided by the Center for Research on Parallel Computation under

NSF Cooperative Agreement Nos. CCR-8809615 and CDA-8619893 with support from the Keck

foundation.

We would like to thank Jack Dongarra for making a preliminary version of LAPACK available to

us and to Susan Ostrouchov for her help with the LU factorization on the iPSC/860.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 28

References

[1] Anderson, E., Benzoni, A., Dongarra, J., Moulton, S., Ostrouchov, S.,

Tourancheau, B., , and van de Geijn, R. Basic Linear Algebra Communication Sub-

programs. In Sixth Distributed Memory Computing Conference Proceedings, IEEE Computer

Society Press (1991), pp. pp. 287{290.

[2] Dayde, M. J., and Duff, I. S. Level 3 BLAS in LU Factorization on the CRAY-2, ETA-

10P, and IBM 3090-200/VF. The International Journal of Supercomputer Applications, Mas-

sachusetts Institute of Technology Vol. 3, No. 2 (1989), pp. 40{70.

[3] Dongarra, J., Croz, J. D., Hammarlin, S., and Duff, I. A Set of Level 3 Basic Linear

Algebra Subprograms. ACM Transactions on Mathematical Software 16, 1 (Mar 1990), pp.

1{17.

[4] Dongarra, J., Gustavson, F. G., and Karp, A. Implementing Linear Algebra Algorithms

for Dense Matrices on a Vector Pipeline Machine. SIAM Review 26, 1 (Jan 1984), pp. 91{112.

[5] Dongarra, J., and Ostrouchov, S. LAPACK Block Factorization Algorithms on the Intel

iPSC/860. Tech. Rep. LAPACKWorking Note 24, Department of Computer Science Technical

Report, University of Tennessee, 1990.

[6] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and Walker, D. Solving

Problems on Concurrent Processors. Prentice Hall, New Jersey, 1988.

[7] Fox, G. C., Kennedy, K., and et al. Compiling Fortran 77D and 90D for MIMD Dis-

tributed Memory Machines. Tech. Rep. SCCS-251, CRCP#TR92203, Northeast Parallel Ar-

chitectures Center at Syracuse University, Rice University, May 192.

[8] Golub, G. H., and Loan, C. F. V. Matrix Computations. John Hopkins University Press,

1989.

[9] Mohamed, A. G. Block-based Solvers for Engineering Applications. In Mechanics Com-

puting in the 1990's and Beyond, Proceedings of the ASCE Engineering Mechanics Speciality

Conference (Columbus, Ohio, May 1991), H. Adeli and R. L. Sierakowski, Eds., ASCE, New

York, pp. pp. 19{22.

[10] Mohamed, A. G., Fox, G. C., and von Laszewski, G. Blocked LU Factorization on

a Multiprocessor Computer. Tech. Rep. SCCS 94b, Northeast Parallel Architectures Center,

Syracuse University, CRPC-TR92212, Center for Research on Parallel Computation, Rice

University, Houston, TX, April 1992.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Technical Report:

SCCS-271

High Performance Scalable

Matrix Algebra Algorithms

for Distributed Memory Architectures 29

[11] Nugent, S. F. The iPSC/2 Direct-Connect Technology. Third Conference on Hypecube

Concurrent Computers and Applications 1 (1988), pp. 51{60.

[12] von Lasewski, G., Parashar, M., Mohamed, A. G., and Fox, G. C. High Perfor-

mance Scalable Matrix Algebra Algorithms for Distributed Memory Architectures. In Proc.

of Supercomputing (October 1992), to be published.

Northeast Parallel Architectures Center

at Syracuse University, NY

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

