
Scheduling Regular and Irregular Communication

Patterns on the CM-5

Ravi Ponnusamy Rajeev Thakur Alok Choudhary Geo�rey Fox
Northeast Parallel Architectures Center, 1-019 CST, Syracuse Univ., Syracuse, NY 13244-4100

Abstract

In this paper, we study the communication charac-
teristics of the CM-5 and the performance e�ects of
scheduling regular and irregular communication pat-
terns on the CM-5. We consider the scheduling of
regular communication patterns such as complete ex-
change and broadcast. We have implemented four al-
gorithms for complete exchange and studied their per-
formances on a 2D FFT algorithm. We have also
implemented four algorithms for scheduling irregular
communication patterns and studied their performance
on the communication patterns of several synthetic as
well as real problems such as the conjugate gradient
solver and the Euler solver.

1 Introduction

The performance of a distributed memory com-
puter depends to a large extent on how fast inter-
processor communication can be performed. Despite
signi�cant improvements in design, scalability and the
underlying technology of parallel computers, the im-
provements in communication time have lagged far be-
hind those in the computation power of each node. It
is still two orders or more expensive to access a remote
datum than to access a local datum.

This paper presents an experimental study of the
communication capabilities of the Connection Ma-
chine 5 (CM-5) and the problem of scheduling regular
and irregular communication patterns on the CM-5.
Similar studies have been performed for other parallel
machines such as Intel iPSC/2 [3], Symult 2010 [5],
Intel iPSC/860 [1, 2] and CM-2 [15]. We have done
this study taking into account the fact that the current
version of CM-5 software supports only synchronous
communication.

Section 2 presents some details of the CM-5 archi-
tecture. The problem of scheduling regular communi-
cation patterns is considered in section 3. We have im-
plemented four algorithms for complete exchange and
two for broadcast and studied their performance for
various message and machine sizes. Section 4 presents
four algorithms for scheduling irregular communica-
tion patterns. We have studied the performance of
these problems on several synthetic as well as real

problems such as the conjugate gradient solver and the
Euler solver [12]. Finally, conclusions are presented in
Section 5.

2 The CM-5 Architecture

The CM-5 is a scalable distributed memory multi-
processor system [6]. It can be scaled up to 16K pro-
cessors. It supports both SIMD and MIMD program-
ming models. Each node on the CM-5 is a SPARC
processor which can operate at a peak speed of 32
MIPS and has four optional vector processors. Thus,
each node is capable of peak 128 MFLOPS The nodes
can be organized into a single partition or multiple
partitions. Each partition has a manager which gov-
erns the allocation of parallel resources.

The CM-5 has two internal networks that support
interprocessor communication - 1) control network
and 2) data network. The control network supports
operations that require global communication such
as global reduction operations, parallel pre�x oper-
ations and processor synchronization. It has a latency
of about 2{5 microseconds. The data network sup-
ports point-to-point communication. The data net-
work topology is a fat tree as shown in Figure 1.

Both data and control networks have a peak band-
width of 20 MBytes/Sec. The maximum bandwidth
is obtained when communication takes place among
nodes in the same cluster of four processors. A data
message is broken into a collection of packets. The
packet size is 20 bytes, of which 16 bytes are for user
data and the remaining 4 bytes contain control in-
formation such as destination and size. The CM-5
router employs a random routing scheme, and there-
fore, the packets may be received in random order.
The data network guarantees a system-wide minimum
bandwidth of 5 MBytes/sec no matter where the data
is being sent in the system. The data network has a
communication latency - sending a 0 byte message of
88 microseconds. We used CMMD library functions
to do all our experiments. A detailed discussion of
interprocessor communication overhead on the CM-5
can be found in [14, 4]. Further details of the CM-5
architecture can be found in [6].

Figure 1: CM-5 Data Network with 16 Processing Nodes

Table 1: 8 Processor Communication Schedule for Lin-
ear Exchange

3 Scheduling Regular Communication

Patterns
A regular communication pattern is one in which

the pattern of data access is regular and can be de-
tected at compile time; for example shift, complete
exchange, broadcast etc.

The complete exchange (all-to-all personalized)
communication pattern is commonly encountered in
computations such as matrix transpose and two-
dimensional FFT [2, 10]. Scheduling regular commu-
nication patterns on hypercubes can be done using
CrOS III communication system described in [7]. In
this section we study the behavior of four algorithms
for complete exchange on the CM-5.

3.1 Linear Exchange (LEX)
This is the simplest of the four algorithms. For

an N processor system, there are N steps in the al-
gorithm. In step i, 0 � i < N , processor i receives
messages from every processor except itself. The en-
try i j in table 1 indicates that processor i re-
ceives a message from processor j. The current ver-
sion of CM-5 supports only synchronous communica-

Table 2: 8 Processor Communication Schedule for
Pairwise Exchange

tion. Since at each step all processors send messages to
a particular processor i, synchronous communication
will adversely a�ect the performance. If asynchronous
(or non-blocking) communication is allowed, proces-
sors need not wait for their messages to be received in
step i in order to proceed to step i+ 1.

3.2 Pairwise Exchange (PEX)

The Pairwise Exchange algorithm is shown in Fig-
ure 2. There are N�1 steps in anN processor system.
The communication schedule for this algorithm is as
follows. At step i, 1 � i � N � 1, each processor ex-
changes a message with another processor determined
by taking the exclusive-or of its processor number with
i. Therefore, this algorithm has the property that the
entire communication pattern is decomposed into a
sequence of pairwise exchanges. The communication
schedule of the pairwise exchange algorithm for 8 pro-
cessors is given in Table 2. The entry i $ j in the
table indicates that processors i and j exchange mes-
sages.

The PEX algorithm is better than LEX in terms of
utilizing the bandwidth of the network and reducing

do j= 1, nproc - 1

node = xor(mynumber, j)

if (mynumber < node)

receive(node)

send(node)

else

send(node)

receive(node)

end if

end for

Figure 2: Pairwise Exchange Algorithm

Table 3: 8 Processor Communication Schedule for Re-
cursive Exchange

Step 1 Step 2 Step 3
0$ 4 0$ 2 0$ 1
1$ 5 1$ 3 2$ 3
3$ 6 4$ 6 4$ 5
5$ 7 5$ 7 6$ 7

processor idle time. This algorithm is known to per-
form well on Intel hypercubes and has been used in
other studies such as in [2, 8, 16].

3.3 Recursive Exchange (REX)
The Recursive Exchange algorithm is a lgN step al-

gorithm for a system withN processors. Each message
is of size n�N=2 for an exchange involving n bytes per
processor. The algorithm is shown in Figure 3. The
communication schedule of the REX algorithm for 8
processors is given in Table 3.

Although this algorithm takes less number of steps
than the other two algorithms, the amount of data
transmitted in each step is much higher. Since it is
a store-and-forward algorithm, each step incurs addi-
tional overhead of reshu�ing data [10].

3.4 Balanced Exchange (BEX)
In the pairwise exchange algorithm, the communi-

cation schedule is such that in the �rst four steps, all
processors in a cluster of four processors communicate
with each other. That is, in the �rst four steps, all
the communication is between nearest neighbors. In
the next four steps, all processors in a cluster of four
communicate with processors in a neighboring cluster
and so on. Since all four processors try to do so si-
multaneously, there is contention. Instead of having a
communication schedule in which all processors �rst
communicate within a cluster and then all communi-
cate with some remote cluster, one can have a more
balanced schedule in which at every step two proces-

bytes = Size/2

for i = 0, lgN � 1

k = N/pow(2, i)

if (mod(mynumber, k) < k/2)

node = mynumber + k/2

else

node = mynumber - k/2

if (mynumber < node)

pack message to send

send (node)

receive(node)

unpack received message

else

receive(node)

unpack received message

pack message to send

send(node)

end if

end for

Figure 3: Recursive Exchange Algorithm

sors in a cluster communicate with each other and
two communicate with processors in a remote cluster.
This balances the amount of local and remote com-
munication, so that all processors do not try to simul-
taneously communicate over a long distance. We call
this algorithm as balanced exchange algorithm (BEX).
BEX algorithm is particularly suitable for CM-5 fat-
tree architecture as contention at the root of the tree is
reduced. Unlike pairwise exchange algorithm, in this
algorithm messages passing through the root of the
fat-tree are optimally distributed across each step in
the algorithm.

Such a balanced exchange algorithm (BEX) can
be obtained by a simple modi�cation of the pairwise
exchange algorithm as shown in Figure 4. For the
purpose of determining the communicating pairs of
processors, we de�ne a mapping between the physical
number of a processor and its virtual number as

virtual no. = physical no. - 1
If virtual no. = -1 then virtual no. = N - 1

where N is the total number of processors in the sys-
tem.

With this mapping, if we apply the pairwise ex-
change algorithm using the virtual processor numbers,
we get the communication schedule shown in Table 4
which is balanced with respect to local and remote
communications. In an N (Nmod16 = 0) processor
system, 3N=4�N=2 exchange pairs (global exchanges)
use the root of tree to perform complete exchange.
The PEX algorithm schedules complete exchange in

virtual = (mynumber + 1) MOD nprocs

do j= 1, nprocs - 1

node = xor(virtual, j) - 1

if (node == -1)

node = nprocs - 1

end if

if (mynumber < node)

receive(node)

send(node)

else

send(node)

receive(node)

end if

end for

Figure 4: Balanced Exchange Algorithm

Table 4: 8 Processor Communication Schedule for Bal-
anced Exchange

N � 1 steps such that 3N=4 steps have all global ex-
changes. But, the BEX algorithm schedules complete
exchange in N�1 steps such that the global exchanges
are distributed across N � 1 steps.

3.5 Performance of the Complete Ex-

change Algorithms

Figure 5 compares the communication time of the
four exchange algorithms on a 32 node CM-5. The
message size was varied between 0 and 2048 bytes.
Due to the synchronous communication constraint,
the LEX algorithm performs much worse than the
other algorithms. Therefore we did not consider it
for any further analysis. For small message sizes, the
performance of PEX, REX and BEX is virtually indis-
tinguishable on this scale. However, for large message
sizes, PEX performs much better than REX and BEX
performs better than PEX. This is because of the fol-
lowing two reasons. First, even though the number of
steps in REX is only lgN , as compared to N steps
in PEX, the message size in REX remains constant at
n�N=2, whereas the size of each message in PEX is n.
Second, each node needs to bu�er and reshu�e data

Figure 5: Complete Exchange Algorithms on 32 nodes

Figure 6: Complete Exchange Algorithms on Varying
Multiprocessor Sizes (message sizes = 0, 256 Bytes)

in REX so that appropriate data can be sent to the
appropriate node. These two overheads outweigh the
savings in the number of communication steps. BEX
performs the best because it balances local and remote
communication at each step.

We selected a few message sizes in di�erent ranges,
and collected the communication times for several ma-
chine sizes. Figures 6, 7 and 8 show the communica-
tion times on up to 256 processors for algorithms REX,
PEX and BEX. Figure 6 shows times for messages of
size 0 bytes and 256 bytes, Figure 7 shows times for
messages of size 512 bytes and Figure 8 shows times
for messages of size 1920 bytes.

Clearly for messages of size 0 byte, REX performs
better than PEX and BEX for all multiprocessor sizes
because there is no data shu�ing involved and it has
only lgN exchanges compared to N � 1 exchanges in
PEX and BEX. For messages of size 256 bytes, PEX
performs better than REX for small multiprocessor

Figure 7: Complete Exchange Algorithms on Varying
Multiprocessor Sizes (message size = 512 Bytes)

Figure 8: Complete Exchange Algorithms on Varying
Multiprocessor Sizes (message size = 1920 Bytes)

sizes because the overhead of message size and num-
ber of steps dominate for REX. As the number of pro-
cessors increases, the overhead of the larger number
of messages dominates the overhead of larger message
size and reshu�ing in REX, and therefore, REX per-
forms better. BEX performs the best for messages
of size 256 bytes. For message sizes of 512 and 1920
bytes, and small multiprocessor sizes, BEX and PEX
perform better than REX. But for large multiproces-
sor sizes, REX performs the best.

We implemented a 2D FFT algorithm using these
complete exchange algorithms. The 2D array is dis-
tributed along rows among processors. Each Processor
initially performs 1D FFT operation on its local data
and performs a complete exchange using anyone of the
algorithms described. Each processor then, performs
1D FFT on new data. The performance of this 2D
FFT on various sizes of data are shown in table 5.

for j = 1, lgN

distance = N/pow(2, j);

if (mod(mynumber, distance) == 0) then

if (mod(mynumber/distance, 2) == 0) then

send(node);

else

receive(node);

end if

end if

end for

Figure 9: Recursive Broadcast Algorithm

3.6 Broadcast

Broadcast is a very common communication prim-
itive encountered in many applications. We con-
sider one-to-all broadcast (also known as single source
broadcast) [11]. This section presents the performance
of two broadcast algorithms; namely, Linear Broad-
cast (LIB) and Recursive Broadcast (REB). We com-
pare these algorithms with the system broadcast func-
tion.

The LIB is the simplest broadcast algorithm. It has
N � 1 steps. The processor broadcasting a message
simply sends the message one by one to all the pro-
cessors. In the REB algorithm, there are lgN steps.
Without loss of generality, consider processor 0 to be
the broadcasting source. In the �rst step, it sends the
message to processor N=2, in the second step processor
0 sends the message to processor N=4 and processor
N=2 sends the message to processor 3N=2, and so on.
The REB algorithm is given in Figure 9.

Figure 10 shows the performance of the two algo-
rithms and the broadcast function provided by the sys-
tem [4] as a function of message size for a 32 node ma-
chine partition. Clearly, the LIB algorithm performs
much worse than the REB algorithm. Therefore, we
did not consider the LIB algorithm any further. The
REB performs better than the system broadcast when
the message size is more than 1K byte. The REB selec-
tively broadcast to a particular group of processors in
a partition whereas, the current version of the system
broadcast function requires all processors in the par-
tition to participate in the process. Selective broad-
casting is sometimes necessary for instance, when pro-
cessors are con�gured as a mesh and broadcast along
a row or a column is required.

Figure 11 shows the performance of the REB algo-
rithm and the system broadcast as a function of mul-
tiprocessor size for various message sizes. The perfor-
mance of the built-in broadcast was almost the same
irrespective of the number of processors in the sys-
tem. So, we have shown only one curve for it in the

Table 5: Performance of Scheduling Algorithms on 2D FFT (Time in Secs.)

No. Procs = 32 No. Procs = 256

Scheduling Algorithm Scheduling Algorithm

Array Size Linear Pairwise Recursive Balanced Linear Pairwise Recursive Balanced

256x256 0.215 0.152 0.112 0.114 4.340 0.076 0.077 0.076

512x512 0.845 0.470 0.467 0.470 4.750 0.120 0.120 0.120

1024x1024 3.135 2.007 2.480 2.005 5.968 0.314 0.313 0.312

2048x2048 14.780 9.032 9.245 8.509 18.087 1.738 2.160 1.668

Figure 10: Broadcast Algorithms on 32 nodes

�gure. For small size messages, the system broadcast
function performs better than the REB. However, as
the message size, the REB is better than the system
broadcast. For instance, the REB is better than the
system when the message size is more than 2K bytes
when the number of processors is 256.

4 Scheduling Irregular Communica-

tion Patterns
An irregular problem is one in which the pattern of

data access is input-dependent [13, 7]. Hence, when an
irregular problem is implemented on message passing
machines, the communication between the processors
will also be irregular and will not be known before-
hand. Such irregular communication patterns occur
in a large number of computationally intensive prob-
lems such as unstructured mesh methods used to solve
problems in computational
uid dynamics. To opti-
mize communication between processors, the commu-
nication patterns in these problems can be captured
and scheduled at runtime. Such dynamic scheduling
of messages on hypercube can be done by using crys-
tal router described in [7]. The performance e�ects of
irregular communication patterns on the CM-2 have
been studied in [15]. In this section we study their

Figure 11: Recursive Broadcast Algorithm on Varying
Sizes of Nodes

e�ects on the CM-5.
We have implemented four di�erent algorithms for

scheduling irregular communication patterns namely
Linear Scheduling (LS), Pairwise Scheduling (PS),
Balanced Scheduling (BS) and Greedy Scheduling
(GS). We have studied the performance of these al-
gorithms for communication patterns of synthetic as
well as real problems such as conjugate gradient solver
and Euler solver for several data sets. A communica-
tion pattern is represented as a two-dimensional array
called 'Pattern'. The element Pattern[i][j] indicates
the number of bytes to be sent from processor i to
processor j.

4.1 Linear Scheduling (LS)
Linear Scheduling is a modi�cation of the linear ex-

change algorithm discussed previously to include the
fact that the communication is irregular. At every
step, each processor checks the communication ma-
trix to see whether the operation to be performed is
either an exchange, send, receive or no communication
at all. If the matrix indicates no communication, the
processor remains idle in that step. An example ir-
regular communication pattern 'P' for 8 processors is
given in Table 6. The communication schedule of the

Table 6: An Irregular Communication Pattern 'P'

0 1 0 1 0 1 1 0
1 0 1 0 1 1 1 1
0 1 0 1 0 0 0 0
1 0 1 0 1 1 1 0
0 1 1 1 0 1 0 1
0 1 0 0 1 0 1 0
1 0 1 1 0 1 0 1
1 1 0 0 1 0 1 0

Table 7: Communication Schedule for Pattern 'P' us-
ing Linear Scheduling

linear scheduling algorithm for 8 processors with com-
munication pattern 'P' is given in Table 7. The entire
communication schedule is completed in 8 steps.

4.2 Pairwise Scheduling (PS)

The Pairwise Scheduling algorithm is a modi�ca-
tion of the Pairwise Exchange algorithm of Figure 2
to take into account the irregular communication. The
communicating pairs are determined in the same way
as in pairwise exchange. But, in addition, each proces-
sor checks the communication matrix to see whether
the operation to be performed is either an exchange,
send, receive or no communication at all. If the matrix
indicates no communication, the processor remains
idle in that step. The communication schedule of the
pairwise scheduling algorithm for 8 processors with
communication pattern 'P' is given in Table 8. The
entire communication is done in 6 steps.

4.3 Balanced Scheduling (BS)

The Balanced Scheduling algorithm is a modi�ca-
tion of the balanced exchange algorithm given in Fig-
ure 4. The communicating pairs are determined in
the same way as in balanced exchange. But, in addi-
tion, each processor checks the communication matrix
to see whether the operation to be performed is ei-
ther an exchange, send, receive or no communication
at all. If the matrix indicates no communication, the
processor remains idle in that step. The communica-
tion schedule of the balanced scheduling algorithm for
8 processors with communication pattern 'P' is given

Table 8: Communication Schedule for Pattern 'P' us-
ing Pairwise Scheduling

Table 9: 8 Processor Communication Schedule for Bal-
anced Exchange

in Table 9. The entire communication is done in 7
steps.

4.4 Greedy Scheduling (GS)

In this algorithm each processor �rst uses a greedy
strategy to determine the processors it has to commu-
nicate with at every step, and then uses this sched-
ule to perform the communication. For a complete
exchange operation this algorithm creates the same
communication schedule as pairwise exchange. But
when the communication is irregular, the greedy algo-
rithm creates a di�erent communication schedule than
that by the pairwise scheduling algorithm. This is be-
cause in the greedy algorithm, if processor i does not
have to communicate with processor j, it will commu-
nicate with the next available processor with which
it needs to communicate. In the pairwise scheduling
algorithm, if a pair of processors [i; j] determined by
the algorithm do not have to communicate, they re-
main idle in that step. The communication schedule of
the greedy scheduling algorithm for 8 processors with
communication pattern 'P' is given in Table 10. The
entire communication is done in 6 steps.

4.5 Performance Comparison

The communication schedule needs to be created
only once and can be used thereafter to perform the
communication for as many iterations as required.
Hence the time to compute the schedule can be amor-
tized over all the iterations. We have created synthetic
communication patterns with di�erent communication

while (msgs to send != 0) do

iteration = iteration + 1

for i = 1 to nprocs do

Pi selects the next available Pj

among the processors it has to send to

If Pj also sends to Pi then do an exchange

Mark Pi and Pj as unavailable for this iter

Decrement msgs to send appropriately

end for

end while

Figure 12: Greedy Scheduling Algorithm

Table 10: Communication Schedule for Pattern 'P'
using Greedy Scheduling

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
0$ 1 0$ 3 0! 5 0$ 6 1! 6 1$ 7
2$ 3 1$ 2 1$ 4 1$ 5 3! 5 6! 2
4$ 5 4$ 7 3$ 6 3$ 4 2 4
6$ 7 5$ 6 7! 0

densities of 10%, 25%, 50% and 75% of complete ex-
change and studied the performance of the above al-
gorithms on these patterns for message sizes of 256
and 512 bytes on a 32 processor system. The results
are given in Table 11. We see that the linear schedul-
ing algorithm performs the worst in all cases because
of the synchronous communication constraint. The
performance of the pairwise and balanced schedul-
ing algorithms is comparable. The greedy algorithm
performs the best for communication densities of less
than 50%, because the number of steps involved in the
communication is the minimum of all the algorithms.
But when the communication density is higher than
50%, the greedy algorithm may require more number
of steps than the pairwise and balanced algorithms,
which degrades the performance. In this case, bal-
anced scheduling performs the best.

The performance of these algorithms on real prob-
lems such as the conjugate gradient solver and Eu-
ler solver for unstructured meshes of di�erent sizes,
is given in Table 12. The table shows the communi-
cation time for each algorithm as well as the average
number of bytes transferred in each problem and the
percentage of communication operations with respect
to complete exchange. The communication percent-
age varies from 9% in the conjugate solver to 44%
in the Euler solver for meshes with 2K and 9K ver-
tices. The average number of bytes transferred per
communication operation varies from 85 bytes for the

Euler solver for a mesh with 545 vertices to 643 bytes
for the conjugate gradient solver. The performance of
the algorithms on the real problems is consistent with
that on the synthetic patterns. Since the communica-
tion density is less than 50% in the real problems, the
greedy algorithm performs the best.

5 Conclusions
This paper presented experimental results for com-

munication overhead on the CM-5 and the perfor-
mance e�ects of scheduling regular and irregular com-
munication patterns on the CM-5. We studied the
communication overhead of four complete exchange
algorithms. For a large number of processors, the Re-
cursive Exchange algorithm performs the best. Bal-
anced exchange performs the best for small message
sizes. For large message sizes in a small multiproces-
sor system, pairwise exchange performs better than
the other algorithms.

We implemented two algorithms for one-to-all se-
lective broadcast; namely, Linear Broadcast and Re-
cursive Broadcast. The recursive broadcast algorithm
performs better than linear broadcast and it is also
better the system broadcast functions when the mes-
sage size is large.

For irregular communication patterns, the greedy
algorithm performs the best when the communication
density is less than 50%. The balanced exchange al-
gorithm performs the best when the communication
density is higher than 50%. The linear scheduling al-
gorithm su�ers because of the synchronous communi-
cation constraint.

Acknowledgments
The authors would like to thank Joel Saltz for

fruitful discussions about irregular communication
scheduling. This work was sponsored in part by
DARPA under contract no. DABT63-91-C-0028 and
in part by NSF grant MIP-9110810.

References

[1] Bokhari,S.H., Communication overheads on the

Intel iPSC/860, ICASE Interim Report 10, 1990.

[2] Bokhari,S.H., Complete Exchange on the iPSC,

ICASE Technical Report 91-4, 1991

[3] Bomans L. and Roose D., Benchmarking the

iPSC/2 hypercube, Concurrency: Practice and

Experience, 1:3-18, 1989.

[4] Bozkus, Z., Ranka, S., and Fox, G.,Modelling the

CM-5 Multicomputer, in proceedings of Frontiers

`92, October 92.

[5] Chittor S. and Enbody R., Performance analysis

of Symult 2010's interprocessor communication

Table 11: Performance of Scheduling Algorithms for Synthetic Irregular Patterns on 32 Processors

Time (ms.)

Algorithms 10% Pattern 25% Pattern 50% Pattern 75% Pattern

256 bytes 512 bytes 256 bytes 512 bytes 256 bytes 512 bytes 256 bytes 512 bytes

Linear 4.723 6.116 11.67 15.34 29.01 38.27 50.14 66.63

Pairwise 1.766 2.275 3.977 5.193 6.324 8.360 7.882 10.52

Balanced 1.933 2.494 3.724 4.861 6.034 8.013 7.856 10.50

Greedy 1.597 2.044 3.266 4.192 6.009 7.934 9.241 12.29

Table 12: Performance of Scheduling Algorithms for Real Irregular Patterns on 32 Processors

Time (ms.)
Algorithms Conj. Grad. 16K Euler 545 Euler 2K Euler 3K Euler 9K

9%, 643 bytes 37%, 85 bytes 44%, 226 bytes 29%, 612 bytes 44%, 505 bytes
Linear 8.046 25.87 48.88 50.78 77.13
Pairwise 6.623 7.374 15.04 19.98 21.91
Balanced 7.188 7.386 15.07 17.57 20.19
Greedy 5.799 5.656 12.30 14.34 17.01

network, TR CPD-89-19, Michigan State Univer-

sity, CS, 1989.

[6] CM-5 Technical Summary, Thinking Machines

Corp., Cambridge, MA., 1991.

[7] Fox, G. et al., Solving problems on concurrent

Processors Vol I, Printice Hall, 1988.

[8] Furmanski, W., and Fox. G., Hypercube Commu-

nication for neural network algorithms, Caltech

report C3P � 405, Feb 1987.

[9] Lee, M., Seidal, S.R., Concurrent communication

on the Intel iPSC/2, Technical Report CS-TR

9003, Dept. of Computer Science, Michigan Tech.

Univ., April 1990.

[10] Lennart Johnsson S. and Ho C. T.,Matrix trans-

position on boolean n-cube con�gured architec-

tures, SIAM J. Matrix Anal. Appl., 9(3):419-454,

July 1988.

[11] Lennart Johnsson S. and Ho C. T., Opti-

mum broadcasting and personalized communica-

tion in hypercubes, IEEE Trans. Computers, C-

38(9):1249-1268, Sept., 1989.

[12] Mavriplis, D., Three dimensional unstructured

multigrid for the Euler equations, In AIAA 10th

Computational Fluid Dynamics Conference, June

1991.

[13] Ponnusamy, R., Saltz, J., Das, R., Koelbel, C.,

and Choudhary, A., A Runtime Data Mapping

Scheme for Irregular Problems, in Proc. Scalable

High Performance Computing Conference, April

1992.

[14] Ponnusamy, R., Choudhary, A., and Fox, G.,

Communication Overhead on CM-5 : An Exper-

imental Performance Evaluation, Technical Re-

port SCCS-252, Syracuse Center for Computa-

tional Science, March 1991.

[15] Saltz, J., Petiton, S., Berryman, H., and Rifkin,

A., Performance E�ects of Irregular Communica-

tion Patterns on Massively Parallel Multiproces-

sors, Journal of Parallel and Distributed Com-

puting, Oct. 1991, pp 202-212.

[16] Schmiermund, T., Seidal, S.R., A communication

model for the Intel iPSC/2, Technical Report CS-

TR 9002, Dept. of Computer Science, Michigan

Tech. Univ., April 1990.

[17] Seidal, S.R., Lee, M., and Fotedar, S., Con-

current bidirectional communication on the Intel

iPSC/820 and iPSC/2, Technical Report CS-TR

9006, Dept. of Computer Science, Michigan Tech.

Univ., April 1990.

