
SCCS-279

New SIMD Algorithms for Cluster

Labeling on Parallel Computers

John Apostolakis, Paul Coddington

and Enzo Marinari(�)

Physics Department,

Syracuse University,

Syracuse, NY 13244, U.S.A.

September 16, 1992

Abstract

Cluster algorithms are non-local Monte Carlo update schemes which

can greatly increase the e�ciency of computer simulations of spin

models of magnets. The major computational task in these algorithms

is connected component labeling, to identify clusters of connected sites

on a lattice. We have devised some new SIMD component labeling

algorithms, and implemented them on the Connection Machine. We

investigate their performance when applied to the cluster update of

the two dimensional Ising spin model. These algorithms could also be

applied to other problems which use connected component labeling,

such as percolation and image analysis.

(�): and Dipartimento di Fisica, Universit�a di Roma Tor Vergata, Via E.

Carnevale, 00173 Roma, Italy.



1 Introduction

Monte Carlo simulation is a very important numerical technique for studying a wide

range of problems in the physical sciences, and in particular, the statistical mechanics

of spin models of magnets1, 2. Unfortunately, traditional Monte Carlo algorithms for

these models, such as the commonly used Metropolis algorithm3, su�er from critical

slowing down near the regions of interest { the critical points separating di�erent

phases of the system. This means that the autocorrelation time (the number of

iterations needed to generate a new, statistically independent, data point) increases

as Lz at the critical point, where L is the linear size of the system, and z is the dynamic

critical exponent4, 5. z is at least 2 for most local algorithms, such as Metropolis, so

the e�ciency of these methods decreases rapidly as the size of the system is increased.

The reason for this poor performance is that standard Monte Carlo algorithms

are local. In the lattice of spins which represents, for example, a magnetic material,

only a single spin at a time is changed, and this change is in
uenced only by the

spins on neighboring sites. Information undergoes a random walk on the lattice, and

thus takes a time of order L2 to propagate throughout the lattice. In the last few

years, algorithms have been invented for certain types of spin models which make

large-scale, non-local changes, and greatly reduce critical slowing down6, 7. In these

so-called cluster algorithms, clusters of spins (rather than single spins) are changed at

each step of the Monte Carlo procedure. The clusters are formed by generating bonds

connecting neighboring sites, using a probabilistic procedure which varies between

di�erent models and algorithms (for reviews of cluster algorithms, see Refs. [4, 5, 8, 9]

).

The major computational task of these cluster algorithms is the identi�cation and

labeling of the clusters of connected sites, given the con�guration of bonds. This is

an instance of a connected component labeling problem for an undirected graph10, 11,

where the vertices are the lattice sites and the edges are the bonds between connected

sites. The goal of the component labeling algorithm is to end up with the same label

on all connected sites, and di�erent labels for all disconnected clusters.

Sequentially, this can be done in time of order V (the number of vertices, which

in our case is the volume, or number of sites, in the lattice), and consequently the

cluster algorithms run about as fast as the local algorithms (see Refs. [10, 12, 13]

for a discussion of sequential labeling algorithms). However this may not be the

1



case if our computer is a distributed memory parallel machine. Local algorithms

perform very e�ciently on parallel machines, whereas e�cient component labeling

on a parallel machine is a very di�cult problem12. Here the information concerning

the connectivity of a given physical part of the lattice is only contained in a single

processor, and obtaining information from distant regions of the lattice (and hence

also of the computer) can be very slow if the clusters are large, and thus contain sites

which are distributed over many processors.

Let us assume that the time taken to label the clusters scales asymptotically as

Ld+y for a lattice of Ld sites, where y is an exponent indicating computational slowing

down, in analogy with the dynamical exponent z expressing the critical slowing down

of a Monte Carlo simulation. This means that the overall computational cost of a

Monte Carlo cluster algorithm simulation at the critical point will scale as Ld+y+z .

If we cannot �nd a parallel labeling algorithm for which y is zero, the advantages of

cluster update algorithms over traditional local algorithms may be eliminated on a

parallel machine by the computational complexity of labeling the clusters.

Our aim is to �nd a parallel component labeling algorithm with no computational

slowing down (i.e. y = 0). We will consider here the case where the parallel computer

is a Single Instruction Multiple Data (SIMD) machine, although the ideas described

here could also be applied to Multiple Instruction Multiple Data (MIMD) machines.

We have implemented all the algorithms on the CM-2 Connection Machine, which is

a typical massively parallel SIMD computer14.

In order to test the algorithms we have studied the clusters formed in the physically

interesting case of the Swendsen-Wang cluster algorithm applied to the Ising spin

model at its critical point6. These clusters are very similar to those created by the

simple procedure of randomly connecting neighboring sites on a two dimensional

lattice with probability 1
2 . Clusters created in this way are very di�cult to label

e�ciently on a parallel machine, since the clusters in a particular con�guration of

the connections come in many di�erent sizes, have extremely irregular shapes, with

small clusters embedded in larger ones, and typically including a very large cluster

which will span the lattice. This type of problem is consequently an excellent test of

parallel component labeling algorithms.

We also note that the worst case behavior of the labeling algorithms is not rele-

vant for this problem { what we are really interested in is the average time to label

physically realistic con�gurations of clusters which occur in the cluster update of the

2



spin model. We have therefore obtained all our data by averaging over a large number

(typically 400) of di�erent realizations of the site connections, taken from di�erent

Swendsen-Wang bond con�gurations for the Ising model at its critical point. This is

in order to get statistically signi�cant results from which we can obtain the scaling

behavior of our algorithms, and timings for our implementations of these algorithms

on the CM-2.

2 Simple Parallel Algorithms

The simplest and most obvious SIMD component labeling algorithm is local label

propagation12, 15. We start with a di�erent label on each site, and with a list of

nearest neighbor connections (these will be Boolean variables in the following: o�

means no connection is present and on means that there is a connection). Each site

then looks to each of its neighbors in turn. If it is connected to this neighbor, and if

its neighbor's label is smaller than its own label, then it replaces its label with that

of its neighbor. This procedure is repeated until there is no change to the labels, at

which time each cluster will be labeled by the minimum initial label of all the sites

in that cluster.

This local algorithm su�ers from computational slowing down, and for many prob-

lems of interest (such as spin models at their critical point) its performance degrades

very fast with increasing volume. This is because there is typically a large cluster

whose graph-theoretic diameter or chemical distance, de�ned as the maximum value

of the shortest path length between two points in the cluster, scales as Lf , where

the exponent f is approximately 1 for the two dimensional Ising model16, i.e. the

diameter of the largest cluster scales approximately linearly with L. For any local

labeling algorithm, the minimum label has to di�use across this large cluster, so we

expect that y = f � 1.

This algorithm can be improved by making the propagation step non-local. One

way of doing this is, instead of propagating the labels only to neighboring connected

sites, to propagate them as far as we can along a given direction, until we come to a

site with no connection in that direction. On the CM-2 this can be done very quickly

by using the intrinsic scan with minimum function17. This routine operates on a

row of numbers (labels in our case), each of which has an associated Boolean 
ag

(the connections). It runs along each connected section of the row and deposits at

3



each site the minimum of the numbers in the section up to that point (this is done

in a distance doubling way, taking log2 L steps). One step of this labeling method

consists of a scan in each of the forward and backward directions of every axis. If

periodic boundary conditions are used, this must be supplemented by a local label

propagation step, since the scan routine does not wrap around the lattice.

Another way of improving the above algorithms is the notion of connection im-

provement. So far we have considered the bonds between sites to be static, in other

words they are set up at the beginning and remain unchanged throughout the labeling

procedure. However it is actually very useful to change, or improve, the connections

as the labeling procedure progresses, and we learn more about the connectivity of

the sites. It will often happen that neighboring sites will not have a bond between

them, but will still be part of the same cluster, as shown in Fig. 1. If we compare

the labels of neighboring sites at each step of the labeling algorithm, then at some

point we will �nd that these two neighboring sites have the same label. We could

then place a connection between these sites, since we now know that they are in the

same cluster. Improving the bonds in this way means that new labeling information

can now 
ow directly between these two sites, rather than by an indirect route via

the original bonds.

Connection improvement is especially useful when applied to the scan algorithm,

since in that case the addition of extra connections means that labels may be prop-

agated much further in a single scan operation. This can be seen in Fig. 2, which

shows a log-log plot of the average number of iterations required to complete the

cluster labeling for the local algorithm and the scan algorithm, both with and with-

out connection improvement. In Table 1 we show the exponent y for computational

slowing down for each of these algorithms, which are obtained from the straight line

�ts shown in Fig. 2. As expected, the exponents are all near 1, except for scan with

connection improvement, which is substantially smaller, although still far from zero.

However we should note that these results are very dependent on the type of bond

con�gurations used. Note for example that con�gurations for which the clusters are

fully connected, smooth, regular shapes, such as may occur in labeling objects in

image processing applications, would be labeled in a very small number of scan op-

erations. We might expect that y would be zero for the scan algorithm for those

particular types of con�gurations.

4



3 A Multi-Scale Algorithm

In this section we describe a regular, synchronous, multi-scale algorithm for cluster

labeling18. We present numerical evidence that the average number of iterations and

the average time taken do not undergo any power-law computational slowing down

(i.e. y = 0) for our application of labeling Ising model clusters.

The algorithm is e�ective on a general SIMD machine provided that the switching

network has some very basic non-local connections. In the following we will assume

that the machine allows very fast communication between sites which are a distance

of 2m sites away in any direction of the physical lattice. These are the only non-local

connections we need in order to build an algorithm which is not a�ected by power-law

slowing down. Such connections would be provided, for example, by a machine with

a hypercube topology.

On the CM-2 the mapping of the physical structure of the lattice to the (al-

most) hypercube processor communication network provides speci�c communication

to nodes of the lattice that are at a distance of any power of two away, known as

power of two operations. This involves the transfer of information over not more

than two links of the hypercube, and should thus be executed at not less than half

the speed of local communications; however the relative timing compared to a local

communication depends on the virtual processor to physical processor (VP) ratio (i.e.

the number of lattice sites per processor), as we will see later.

In common with the method proposed by Brower, Tamayo and York15, this

method uses a multi-scale approach in propagating cluster labels, in order to over-

come the slowing down inherent in local labeling algorithms. However this algorithm

is much simpler, and seems to have better scaling properties.

Our algorithm works for a lattice of any dimensionality d, but for ease of descrip-

tion we will consider a two dimensional problem. In this case the key variables used

are Boolean connections that are set up in the x and the y axis at a distance 2m, for

m = 1; :::; l � 1 (where the lattice size L � 2l), by a logical AND of connections at

level m� 1. For example, the distance 2 connection between sites i and i+ 2x̂ is set

(i.e turned on) if both the connections between sites i and i + x̂ and sites i+ x̂ and

i+ 2x̂ are already on. These connections are rebuilt in this way at each iteration. In

addition to building up the long distance connections in this manner, at each iteration

we also use connection improvement, thus a connection between two sites at a generic

5



distance M which was originally o� can be set (i.e. declared to be on) if the two sites

are found to have the same label. Using connection improvement greatly reduces the

number of iterations needed to converge to the �nal values of the labels.

Thus, during one multi-grid label updating cycle each site will look in turn at

each of its 2d neighbors at each levelm of the multi-scale connections. It will update,

when possible, its label and also update its connection by merging the level m � 1

connections and by using connection improvement. A full cycle of the algorithm

sweeps all l connection levels, and a single such cycle solves the trivial case where all

connections are on. As the labeling progresses, what happens is that an increasing

fraction of ever longer distance connections are set as sites are recognized as belonging

to the same cluster, and these connections become fast long distance communication

channels.

In Fig. 3 we show the average number of iterations needed to label the Ising

clusters as a function of logL. The logarithmic slowing down is very clear. We

do not see any sign of power-law behavior, or of a higher power of the logarithm.

Each iteration of the algorithm involves a multi-grid cycle of log2 L steps, with each

step taking approximately the same amount of time, which is proportional to Ld=N ,

where N is the number of processors (N � Ld). Thus the total CPU time goes as

Ld(log L)2=N , or (logL)2 for a machine with Ld processors. Hence this algorithm adds

only a (logL)2 term to the overall slowing down of a spin model cluster algorithm.

The average labeling time per site as a function of log L is shown in Fig. 4.

The e�ect of di�erent VP ratios means that the times for the multi-scale algorithm

on a �xed number of processors for di�erent lattice sizes do not scale simply as

Ld(log L)2=N . Firstly, we note that local operations are more e�cient at higher

VP ratios, since a greater proportion of the neighboring sites will be on the same

processor, so less inter-processor communication is required. This e�ect decreases as

the depth of the multi-scale procedure is increased, since more sites at a distance 2m

are going to be on di�erent processors as m increases. Eventually the communication

distance will be greater than the the size of the subdomain on each processor, so

that all data must be communicated between processors. The communication time

will therefore be roughly constant at this level and higher, and at the highest levels

it is roughly independent of the VP ratio. (The situation is actually slightly more

complicated than this, since on the CM-2 there are 16 processors per chip, and it

is inter-chip, rather than inter-processor, communication which is costly.) Thus the

6



ratio of the time taken to do a step at the largest depth to the time to do a local

labeling step increases from about 2 at L = 128 to about 6 at L = 2048 on a 16394

(16K) processor CM-2.

There is a way however to combat the higher cost of deep iterations and signif-

icantly reduce the running time of our algorithm with only a simple modi�cation.

Clearly at the beginning of the labeling procedure the long distance connections are

all o�, and due to the fractal structure of the connections, it takes several iterations

before a signi�cant number of long distance connections are generated. It is thus very

useful to tailor the number of multi-grid levels as a function of the cycle number:

a lower depth is useful at the beginning, while using longer distance connections is

more useful towards the end of the procedure. Fig. 3 shows the average iterations for

the simplest case, where the depth is constant, while Fig. 4 gives the timings for both

the full depth version and the optimized method.

In order to investigate the e�ect of varying the depth of the multi-grid procedure,

we have measured the number of connections at every multi-grid level after each

iteration of the full depth algorithm. We show this for a typical con�guration in

Fig. 5. It can be seen that the points where the di�erent levels become useful,

i.e. where there are a reasonable number of connections (of the order of 10%, for

instance), increases roughly linearly with the number of iterations. We therefore

chose in our modi�ed algorithm to make the depth a linear function of the iteration

number. Since the usefulness of a connection at a certain level depends on the relative

timings of di�erent operations on a speci�c machine, this relation must be determined

empirically.

Although Fig. 5 shows that a large number of connections at higher levels exist, we

found that steps at the highest levels cost too much and were thus of comparatively

little use, so a maximum depth of dmax = log2 L � Nmax steps was used. We thus

parametrize the depth at each iteration by

depth = minfslope � iteration; dmaxg; (1)

and seek to �nd the optimum value for the slope and the maximum depth parameter

Nmax, which is the number of high level iterations that are not used.

The behavior of the average labeling time versus the slope for some di�erent values

of L and Nmax can be seen in Fig. 6. A minimum exists between 0:3 and 0:5 in all

cases. The minimum is fairly broad and its breadth tends to increase as L increases.

7



Fig. 4 shows the average labeling time per site for the optimized algorithm as well as

the full depth multi-scale procedure. Note that the time for the optimized procedure

is signi�cantly smaller. The optimal value of Nmax is 3 (i.e. the 3 highest levels are

not used) for most lattice sizes, although for large L it is slightly more e�cient to

exclude the fourth highest level as well, since the ratio of the time taken at the higher

levels to the time for a local iteration is greater at large L.

We also tried a very simple telescoping scheme in order to determine whether any

bene�t could be derived from reducing the size of the problem in such a way. For this

we used only the top level and one lower level, consisting of the even-even coordinate

sites, and attempted to solve this partial problem by iterating until the labels of this

sublattice did not change. Neither this nor an attempt to do a �xed number of multi-

scale iterations on the lower level managed to reduce the amount of time required for

the full labeling procedure. We note that only a single reduction and expansion was

tried. This poor result was not due to the overhead of communicating between the

di�erent lattices, which cost very little time, but must have been due to the lack of

information at the lower level about enough of the important connections.

4 Get/Send : An algorithm using general com-

munications

We now present a di�erent component labeling algorithm19 that was inspired by the

e�ciency of the SIMD algorithm of Hillis and Steele20 for �nding the end of a linked

list. We treat the labels as pointers in a dynamic tree-like structure, making our

method similar to the sequential algorithms of Galler and Fisher21 and of Hoshen

and Kopelman22 and the paralell algorithm of Shiloach and Vishkin23.

All the cluster labeling algorithms discussed to this point start with each site being

given a unique label. It is convenient to set the original label to be the site number.

We will again label a cluster by the smallest starting label of all the sites in that

cluster. For a two dimensional lattice we could assign the original cluster label C of

the site (x; y) to be (y � L) + x, for example. During the cluster labeling procedure

we can consider the current label as a pointer to the site where it originated (i.e.

xorig = C mod L , yorig = C=L ). The site (xorig,yorig) started with the current label

of the site (x; y), and as we shall see, at any later time in the labeling procedure it

must have a label which is less than or equal to this value. Thus at any time each

8



site can get the label of the origin (xorig,yorig) of its current label and use it as its

new label. On the Connection Machine this is done using the general communication

routine get. To ensure that the algorithm eventually gives the correct result, at each

stage a local label propagation step must be performed as well.

By itself this method will correctly label any lattice but performs very badly,

because in many places labels propagate only with the local step, on paths that can

be very long. To overcome this problem we have added an important supplement {

an inverse step which propagates information large distances in the opposite direction

and proceeds as follows. Each site saves its label, and then performs a local iteration.

It then compares its current label with that old label and, if they are di�erent, sends

the current label to the originating site of its old label. For this step we use the

Connection Machine routine send with minimum, for which any site that is sent

more than one value keeps only the smallest. Each site then takes the minimum of

the labels it is sent, if that is smaller than its current label.

Doing a send step before each get means that if the label of any site is changed,

the new label is then propagated immediately (by the get) to all sites with the old

label. Thus we can wholly relabel a large area, or subcluster, in one step as soon as it

contacts another large subcluster with a smaller label. In Fig. 3 we show the average

number of iterations required to label the Ising model clusters. The data �t perfectly

to a logarithmic increase with the lattice size.

The costliest parts of this algorithm are the get and send steps, which require

general communication routines which take about ten times longer than local grid

communications on the CM-2. This is compensated of course by the value of the

information which is passed over large distances. However a way of doing some of the

work by a less costly method will reduce the total running time. Since in the �rst

few iterations the get/send step is able to do very little useful work, at a large cost, it

is always faster to wait for i initial iterations before using it. Also, depending on the

machine speci�cs and the e�ciency with which get and send are implemented, it may

be more e�cient to do the get/send step only at every pth iteration of the algorithm,

with just local label propagation for the other iterations. The parameters i and p can

be tuned to optimize the algorithm for any particular application, system size, and

parallel computer. We found that for our application on the CM-2, p = 1 or 2 and i

between 4 and 8 generally gave the best results.

We also note that for large lattices it is not necessary to get the label of the

9



originating site for every point since, in any sizable cluster, most neighboring points

belong to the same cluster. We have experimented with having only a portion (we

use a quarter) of the sites perform a get. The new labels received are then transferred

to neighboring sites by the subsequent local iteration. Whether this modi�cation

proves to be the fastest option depends of course on the communications hardware

and software of the particular machine. For the CM-2, the time for each get is roughly

halved, although the number of iterations required is increased slightly, so there is a

trade-o�. For an earlier implementation of the get routine on the CM-2 this method

was substantially faster; however, an improved get now means that it is about 10%

faster to do the get step at every site.

Another way of improving the performance of this algorithm is to combine it with

the scan operation. Using scan in some of the initial iterations pushes the label more

e�ciently over moderate distances. On the CM-2, doing a get and a send is about

as expensive as doing the 4 scans (one in each direction) of a scan step, however

it provides a much better way to propagate labels by making large changes at ever

increasing length scales, and of handling the large, irregular and labyrinthine clusters

for which the scan algorithm fares poorly. Including a few initial scan steps makes

the algorithm slightly more e�cient at large VP ratios (i.e. larger lattice sizes), but

again this will be highly dependent on the speci�cs of the problem and the machine.

Of course we continue to use connection improvement for the local steps, and see

a bene�t for all the variations of the algorithm. Fig. 7 shows the average time per

site to label lattices of di�erent sizes. It is evident that between sizes of 128 and 512

the e�ciency of large VP ratios reduces the average time, while for larger lattices

this behavior subsides and it is dominated by the increase in the number of iterations

needed to converge.

The average labeling time per site for the basic get/send algorithm (i = 0, p = 0,

and no scans), as well as the optimized algorithm, is shown in Fig. 4. We can see

that this method is substantially faster than the multi-scale algorithm.

5 Discussion and Conclusions

Our labeling algorithms are very general, and can be applied to any application where

component labeling is necessary, such as percolation24, image analysis11, and for the

various cluster Monte Carlo algorithms which have been proposed for many di�erent

10



spin models4, 5, 9.

We have presented numerical evidence that the average number of iterations re-

quired by our algorithms to label percolation-like Swendsen-Wang clusters at the

critical point of the Ising model, which are highly irregular in both shape and size,

scales with the logarithm of the lattice size. Up to corrections caused by di�ering

VP ratios on the Connection Machine, the times required for the labeling using these

algorithms scale as (log2 L)
2 per lattice site.

There is only a subtle di�erence between the multi-scale and scan algorithms: both

methods look at connections at distances 1, 2, 4, etc., but for multi-scale we also do

a comparison at each distance and set the connection accordingly. This connection

improvement is enough to give the multi-scale algorithm signi�cantly better scaling

behavior.

Our multi-scale algorithm is simpler than that of Brower et al.15, and appears

to scale better with increasing lattice size. For the lattice sizes of interest (of order

1024 � 1024), our optimized algorithm gives an average labeling time for the Ising

problem of 6.5 microseconds per site on a 16K CM-2 running at 7 MHz, which is

comparable with the time of 6.0 �s per site obtained by Brower et al. for the same

size machine. However this time for the optimized get/send algorithm is substantially

better, at 2.6 �s per site.

These kind of SIMD algorithms work quite well on massively parallel �ne grained

SIMD machines like the CM-2, as long as the objects to be labeled are fairly small, for

example in image processing applications such as analyzing images on a radar screen.

However �ne grained SIMD parallelism does not usually work well for problems which

are very irregular and require a lot of non-local communication. Unfortunately the

clusters to be labeled in spin model and percolation applications are very large and

irregularly shaped, and we would therefore expect that it would be very hard to get

good performance for labeling algorithms on these problems using �ne grained SIMD

machines. This is re
ected in our results, since cluster labeling for the Ising model

can be done at a rate of about 5 �s per site on a single IBM RS/6000-550 workstation,

compared to 2:6 �s per site with our best algorithm on a 16K CM-2.

However we have previously obtained quite good e�ciencies on coarse grained

MIMD machines for parallel component labeling algorithms which use only local

propagation of labels12, and thus do not scale well for very large numbers of processors.

Incorporating the above multi-scale and general communication (get/send) ideas into

11



these MIMD algorithms promises to allow us to greatly improve their e�ciency and

scalability, and thus exploit the power of large MIMD parallel supercomputers such

as the nCUBE, the Intel machines, and the CM-5.

Note added: After this work had been substantially completed, and preliminary

results reported at a conference19, we found that the get/send algorithm had been

independently proposed by P. Rossi and G.P. Tecchiolli25.

Acknowledgements

This work was done using Connection Machines at the Northeast Parallel Architec-

ture Center at Syracuse University, Sandia National Laboratory, and Rice University.

Work supported in part by the Center for Research on Parallel Computation with NSF

cooperative agreement No. CCR-9120008, and a grant from the IBM Corporation.

12



References

[1] G. Parisi, Statistical Field Theory, (Addison-Wesley, Reading, Mass., 1988).

[2] Monte Carlo Methods in Statistical Physics, Topics in Current Physics 7, Sec-

ond Edition, Ed. K. Binder (Springer-Verlag, Berlin, 1986); Applications of the

Monte Carlo Method in Statistical Physics, Topics in Current Physics 36, Second

Edition, Ed. K. Binder (Springer-Verlag, Berlin, 1987).

[3] N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953).

[4] A. D. Sokal, in Computer Simulation Studies in Condensed Matter Physics: Re-

cent Developments, eds. D. P. Landau et al. (Springer-Verlag, Berlin, 1988).

[5] A. D. Sokal, in Proc. of the International Conference on Lattice Field Theory,

Tallahassee, October 1990, Nucl. Phys. B (Proc. Suppl.) 20, 55 (1991).

[6] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

[7] U. Wol�, Phys. Rev. Lett. 62, 361 (1989).

[8] U. Wol�, in Proc. of the Symposium on Lattice Field Theory, Capri, September

1989, Nucl. Phys. B (Proc. Suppl.) 17, 93 (1990).

[9] J.-S. Wang and R. H. Swendsen, Physica A 167, 565 (1990).

[10] E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms: Theory and

Practice (Prentice-Hall, Englewood Cli�s, N.J., 1977); E. Horowitz and S. Sahni,

Fundamentals of Computer Algorithms, (Computer Science Press, Rockville,

Maryland, 1978).

[11] A. Rosenfeld and A. C. Kak, Digital Picture Processing, (Academic Press, New

York, 1982).

[12] C. F. Baillie and P. D. Coddington, Concurrency: Practice and Experience 3,

129 (1991).

[13] R. G. Edwards, X.-J. Li and A. D. Sokal, Sequential and Vectorized Algorithms

for Computing the Connected Components of an Undirected Graph, in prepara-

tion.

13



[14] D. Hillis, The Connection Machine, (MIT Press, Cambridge, Mass., 1985).

[15] R. C. Brower, P. Tamayo and B. York, J. Stat. Phys. 63, 73 (1991).

[16] E. N. Miranda, Physica A 175, 229 (1991).

[17] Programming in Paris, (Thinking Machines Corporation, Cambridge, Mass.,

1989).

[18] J. Apostolakis, P. Coddington and E. Marinari, Europhys. Lett. 17, 189 (1992).

[19] Talk presented at the conference \Physics Computing '91", San Jose, California,

June 1991.

[20] W. D. Hillis and Guy L. Steele Jr., Comm. of the ACM 29, 1170 (1986).

[21] B. A. Galler and M. J. Fisher, Commun. ACM 7, 301 (1964); D. E. Knuth,

Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Addison-

Wesley, Reading, Mass., 1968).

[22] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976).

[23] Y. Shiloach and U. Vishkin, J. Algorithms 3, 57 (1982).

[24] D. Stau�er, Introduction to Percolation Theory, (Taylor and Francis, Philadel-

phia, 1985).

[25] P. Rossi and G. P. Tecchiolli, Finding Clusters in a Parallel Environment, un-

published.

14



Tables

algorithm y

local 1.08(2)

scan 1.09(3)

local improved 1.01(2)

scan improved 0.84(3)

Table 1: Exponents y of computational slowing down for some simple component

labeling algorithms applied to clusters of Swendsen-Wang bonds for the Ising model.

15



y y y y

(a) (b)

Figure 1: An illustration of connection improvement. The original bonds are shown

as the thick lines. If at some point in the labeling algorithm it is found that sites i
and j (denoted by the �lled circles) have the same label, then a new bond (the dashed
line) is introduced, so that changes in the labels are now propagated faster between

these two points. For the multi-scale algorithm the same idea is used, except that i

and j do not have to be neighboring points.

16



Figure 2: A log-log plot of the average number of iterations versus lattice size for
labeling Ising model clusters using the local propagation and scan algorithms, with

and without connection improvement. The errors are not shown, but are smaller than

the points.

17



Figure 3: Average number of iterations versus log L for labeling Ising model clusters

using the full depth multi-scale and the get/send algorithms.

18



Figure 4: Average times per site versus log L for labeling Ising model clusters on the
CM-2 using the scan with connection improvement, multi-scale (optimized and full
depth) and get/send (with and without optimization) algorithms.

19



Figure 5: The number of connections at di�erent levels (shown at right) as a function
of iteration number for the multi-scale algorithm, for a lattice of size L = 1024.

20



Figure 6: Average times per site on the CM-2 for labeling Ising model clusters using
the multi-scale algorithm as a function of the slope parameter, for di�erent lattice
sizes and maximum depths.

21



Figure 7: Average times per site as a function of lattice size for labeling Ising model

clusters on the CM-2, for di�erent values of the parameters for the get/send algorithm.
isend is the initial number of steps without a get or send. Here the interval between
gets is pget = 1, while psend = pscan = 2. lscan denotes the number of steps after which

scans are not performed.

22


