
SCCS-310

Computers & Geosciences

Vol. 19, No. 7, pp. 1051-1063.

GORDIUS: A DATA PARALLEL ALGORITHM

FOR SPATIAL DATA CONVERSION

Kim Mills1, Ferenc Csillag2, Maher Kaddoura3

1Northeast Parallel Architectures Center, 2Department of Geography, 3School of Computer and

Information Science, Syracuse University, Syracuse, New York 13244-4100, U.S.A.,

kim@nova.npac.syr.edu

Abstract

A data parallel algorithm is presented for spatial data (raster-to-vector) conversion. It operates on pure

two-dimensional raster images and derives a fully topological vector data set, where polygons are de�ned

by homogeneity criteria. The algorithm is implemented in data parallel C, and makes extensive use of

scan functions that combine communication and computation along grid axes. Code segments listing

each step in building a hierarchy of points, lines, and polygons are listed. Performance evaluations on

a Connection Machine-2 reveal that run-time is not sensitive to the number of polygons in the image,

and increases sublinearly with grid size.

Keywords: Raster-to-vector conversion, data parallel algorithm, GIS.

INTRODUCTION

Spatial data in digital form, from diverse sources, must routinely be combined for geographic information

analysis. For example, census �les (Marx, 1990), standardized topographic data sets (USGS, 1983), and

satellite imagery (EOSAT, 1991) often must be combined for both local and regional, and especially global

scale analysis (Mounsey and Tomlinson, 1989).

Spatial data can be represented in many ways, for example in raster or vector format. Raster data

are based on a grid format of uniform size, with a logical record consisting of a grid cell or pixel. Vector

data are based on an object in space and de�ned by a set of points and lines, with a logical record

consisting of a polygon. Raster data are convenient for neighborhood-dependent operations such as �ltering,

because neighborhood information is implicitly encoded in the data structure. Covering large areas at high

resolution however, requires very large data sets. Data encoded in vector format are typically more compact

because one can store areal information in polygon format with points along a perimeter. Processing

neighborhood information, or multiple sets of vector data may be cumbersome because one must �rst

analyze the data to �nd all neighboring and intersecting polygons and de�ne the set of points belonging

to each polygon.

2

Di�erent applications tend to require conceptually di�erent data representations (Mark and Csillag,

1989), and while both raster and vector data formats have their own strengths and weaknesses, both forms

of data are typically required. Several tedious steps are currently required to perform routine tasks, such

as merging a vegetation cover map derived from a Landsat image with a hydrological map of lakes and

streams on a USGS Digital Line Graph.

Flexible and e�cient processing systems are required for converting attributes of location in raster data

to vector objects that have speci�c location attributes retrievable by an object-identi�er, with explicitly

recorded spatial relationships. An earlier, systematic assessment of conversion algorithms notes the use of

customized solutions to this problem, and the lack of generally accepted strategies (Peuquet, 1981). Most

reviewed procedures originated in image processing, and were published in Pavlidis (1982). All imple-

mentations of raster-to-vector conversion follow a two-step procedure of �rst extracting boundaries (lines,

or chains) and then building topology. Extracting boundaries is comprised of two speci�c subproblems:

scanning linework, and digitally representing a surface. In either case, the task is to de�ne a one-cell wide

connected set. This is primarily achieved by visiting each grid cell in the input data set, and identifying its

attribute-relationship with its neighbors. This is called thinning, or skeletonization with scanned linework,

and boundary-�nding with surfaces. Clarke (1990) reviews some straightforward algorithms for extract-

ing boundaries. Building topology starts with revisiting extracted lines (i.e., a one-cell wide connected

set) and proceeds with identifying and characterizing regions (polygons) enclosed by lines. In principle, a

sequential raster-to-vector algorithm runs in time proportional to the number of gridcells (preprocessing)

and the length of lines (building topology).

The earliest reported raster-to-vector implementation the authors know of is OEDIPUS (Dutton, 1980).

This algorithms processes raster data in three-row blocks, evaluates 8 neighborhoods of each cell, then relies

on WHIRLPOOL (Dougenik, 1980) to concatenate segments. POLYVEC in IDRISI (Eastman, 1990) also

follows a two-step procedure (Eintwaechter, 1992). Several important cartographic tasks are supported by

specialized raster-to-vector conversion (Peuquet, 1981), with all sequential line-extraction approaches (line-

following, or line-scanning) requiring processing times that are linearly proportional to total line length,

assuming the entire grid can be stored in memory. The cost of "book-keeping" can become overwhelming

if the entire map, or the portion containing a line, cannot be held in memory. The �nal step of building

topology is typically independent of the previous steps (Burrough, 1986), and, in most cases, is preceded by

some line-smoothing function. More recent implementations follow similar approaches, using for example,

neighborhood template-matching (Greenlee, 1987), or Fourier series-based shape descriptions (Illert, 1981),

although performance �gures are not reported.

Parallel processing is coming to be recognized as an attractive approach to spatial analysis because of

the performance improvements possible, and the match between the inherent structure of spatial data, and

massively parallel machine architectures. For example, Mower (1992) studied the advantages of both single

instruction multiple data (SIMD) and multiple instruction multiple data (MIMD) architectures for spatial

analytical algorithms, including labeling drainage basins, and automated line simpli�cation. Franklin et al.

(1989) reported a new approach to the polygon overlay problem, and Hopkins et al. (1992) demonstrated

3

performance improvements and scalability of that algorithm on transputer arrays. Mills et al. (1992)

illustrated the potential for expanding the scope of visibility analysis on a parallel system by orders of

magnitude over that of previous work on sequential computers. These examples suggest that parallel

processing is extremely powerful and general in purpose, and well suited to spatial analysis.

In this study, we implement an algorithm for spatial data conversion on a massively parallel computing

system. Two basic approaches to parallel computing include data parallelism, and explicit message passing.

In the data parallel model, parallelism is achieved by associating a set of data elements with a set of physical

processors, and acting simultaneously on the data (Hillis and Steele, 1986). Virtual processing extends this

notion of parallelism through simulating an arbitrarily large number of processors by allocating multiple

virtual processors per physical processor. Alternatively, in the message passing model of parallel computing,

both data and program are distributed to processors which execute asynchronously and communicate by

sending messages. We de�ne a data parallel algorithm for raster-to-vector data conversion, and implement

this algorithm on a SIMD (single instruction multiple data) architecture.

This paper is organized as follows. The methods section describes GORDIUS, the raster-to-vector con-

version algorithm in detail. The four steps we use to implement the algorithm are illustrated in commented

code and accompanying �gures. In the results section, we report on the performance of this parallel con-

version algorithm, and the e�ect of image size, number of polygons, and geometrical complexity of polygon

shapes. In the discussion and conclusion section, we summarize the potential for applying parallel com-

puters to real-world problems in geographical information analysis, and describe future plans for applying

GORDIUS.

METHODS

An overview of the process for converting data in raster format to a topological vector data structure is

illustrated in Figure 1. A simple map (Figure 1A) and its associated raster representation (Figure 1B)

must be converted to a vector format (Figure 1C) and represented by a set of points, lines, and polygons

encoding their hierarchical (topological) relationships (e.g. starting and ending-node, left and right polygon

for lines).

We implement the parallel algorithm in four steps which are detailed below. To map the raster-to-vector

conversion problem to a parallel architecture, we take advantage of data distribution and interprocessor

communication characteristics of the Connection Machine-2, a massively parallel SIMD architecture. The

resulting parallel algorithm is a new approach, rather than simply a conversion of a sequential algorithm.

Sections of C* code are listed for each step in the conversion process, and illustrated in accompanying

�gures.

Description of the algorithm

The principal task in constructing a topological data structure is building a hierarchy of points, lines, and

polygons. Points are the only objects associated with spatial coordinates, and are characterized by the

4

line(s) they belong to. Polygons are characterized by their boundary lines, and lines are the key linking

elements having pointers to points (start and end) as well as to polygons (left and right).

We imposed the following set of limitations to simplify raster-to-vector conversion: (1) no more than

four lines intersect at any point; (2) all line-segments follow the directions of the axes; (3) homogeneity

(i.e., boundary) is de�ned by equality; and (4) only closed polygons are identi�ed. The �rst two assump-

tions are clearly consequences of pure raster representation and may require post-processing (e.g. line

generalization). The latter two assumptions, although arbitrary, are realistic land-use/land cover mapping

applications based on satellite imagery, and can be upgraded without drastic modi�cations.

Implementation of the conversion algorithm includes the following steps. First, all cell boundaries

are checked for homogeneity, and boundaries, boundary points, and intersection points identi�ed (Figure

2A). The information derived from this step is listed in the �rst three columns (point identi�er, x, and y

coordinate) of the Point table in Figure 1C. By summing boundary values illustrated in Figure 2A, we assign

a unique value to each raster cell de�ning its boundary type. Once points are identi�ed, line-segments, (the

links between points) are de�ned (Figure 2B). Identifying the start and end points of each line allows

us to de�ne values for the line identi�er, the start point, and the end point in the Line table, and the

line identi�er of the Point table of Figure 1C. Links between points are established by moving from each

boundary-point along the four image axes. Finally, polygons are built by starting at any line segment and

turning \most clockwise" when at the \end intersection-point"; i.e., turning South for East running lines,

West for South running lines, North for West running lines, and East for North running lines (Figure 2C).

This step creates the Polygon table, and de�nes the left polygon, right polygon, and internal points of the

Line table.

Implementation of the conversion algorithm

Using a data parallel computing model to implement the algorithm, the two-dimensional raster image is

mapped, one cell per processor, to a two dimensional grid on the Connection Machine-2 (16K processors).

Program instructions are issued from a front-end computer to all processors which synchronously carry out

the operations. Beginning with the gray level values of the raster image (Figures 1A, 1B), we follow four

steps to implement the data parallel raster to vector conversion algorithm: step 1 computing boundary

type, step 2 connecting boundaries, step 3 making lines, and step 4 making polygons.

Step 1. Computing boundary type

To de�ne the presence/absence of boundaries, we compare the gray level in each cell with the gray levels

of North, East, West, and South neighbors. Where gray levels di�er, a boundary exists. Fifteen types

of boundaries are possible and are uniquely identi�ed by a boundary type value according to the coding

scheme illustrated in Figure 2A.

To compare gray level values between a cell and its four neighbors, we use the C* grid communication

function from torus dim. Grid communication occurs in regular patterns based on the coordinates or grid

position of the data element, allowing movement of data along axes dimensions everywhere in the raster

5

image. The expression boundary type += sums the values of the coding scheme illustrated in Figure 2A.

In four sequential steps (North, East, South, and West), the unique boundary type value for all cells in the

raster image are calculated. For example, cells with only an East boundary have boundary type values of 2;

cells with East and South boundaries have boundary type values of 6; and cells surrounded on all four sides

have boundary type values of 15. Code segment 1 de�nes the four steps in computing the boundary type.

C* Code Segment 1. Computing Boundary Type

/* Test for North Boundary:

using the grid communication function from_torus_dim, get gray_level

of nearest neighbor (one position) to North (negative direction along

axis 1), where gray_levels differ, a boundary exists, add unique

coding scheme value to boundary_type */

neighbor_gray_level = from_torus_dim(&gray_level,1,-1);

where (gray_level != neighbor_gray_level)

boundary_type += 1;

/* Test for East Boundary:

get gray_level of nearest neighbor to East (positive direction

along axis 0), where gray_levels differ, add to boundary_type */

neighbor_gray_level = from_torus_dim(&gray_level,0,1);

where (gray_level != neighbor_gray_level)

boundary_type += 2;

/* Test for South Boundary:

get gray_level of nearest neighbor to South (positive direction

along axis 1), where gray_levels differ, add to to boundary_type */

neighbor_gray_level = from_torus_dim(&gray_level,1,1);

where (gray_level != neighbor_gray_level)

boundary_type += 4;

/* Test for West Boundary:

get gray_level of nearest neighbor to West (negative direction

along axis 0), where gray_levels differ, add to boundary_type */

neighbor_gray_level = from_torus_dim(&gray_level,0,-1);

where (gray_level != neighbor_gray_level)

boundary_type += 8;

Step 2. Connecting boundaries

To connect boundaries, we use the boundary type values de�ned in step 1, and a set of nine boundary

con�gurations which de�ne all possible combinations of boundary type values, and occur only where lines

start and end. We de�ne a four-cell template around each cell in the raster image according to the pattern

6

illustrated in Figure 3A. The upper left position in the four-cell template de�nes the reference cell. The

processor mapped to the reference cell stores all values associated with the template. The reference cell

has a value of boundary type (de�ned in step 1). Boundary type values for template positions 2, 3, and 4

within the template are communicated to the reference cell (processor) and assigned to boundary type2, 3,

and 4. This set of values is then passed to a set of nine functions to de�ne the boundary con�guration

within the four-cell template. Two con�guration functions are listed in C* code segment 2.

C* Code Segment 2. Connecting Boundaries

/* Communicate boundary_type values within four-cell template, assign to

reference cell at template position 1 (Figure 3) */

void connect_boundaries() {

int:image boundary_type_2,boundary_type_3,boundary_type_4;

with(image) { /* select all positions in image */

/* get (from_torus_dim) value of boundary_type from template position 2

(nearest neighbor in positive direction along axis 1) */

boundary_type_2=from_torus_dim(&boundary_type,1,1);

/* get (from_torus_dim) value of boundary_type from template position 3

(nearest neighbor in positive direction along axis 0) */

boundary_type_3=from_torus_dim(&boundary_type,0,1);

/* in a two steps grid communication (from_torus), get boundary_type

value from one positive position along axis 0 (template position 4

to position 2), then one position along axis 1 (template position

2 to reference cell in Figure 3) */

boundary_type_4=from_torus(&boundary_type,1,1);

/* cross and T_up are two of nine possible configurations */

cross(boundary_type,boundary_type_2,boundary_type_3,boundary_type_4);

T_up(boundary_type,boundary_type_2,boundary_type_3,boundary_type_4);

The cross boundary con�guration, one of nine possible con�gurations within the four-cell template is

listed in C* code segment 3. The type of boundary con�guration de�nes whether the Boolean variables

up, down, left, and right occur within the template. These variables identify the start and end points of

lines, and are local to the the function connect boundaries which calls a set of nine boundary con�guration

functions. In the example illustrated in Figure 3A, a cross has up, down, left, and right; while a T up

7

con�guration has up, left, and right. The nine con�guration functions de�ne boundaries only at the ends

of East-West and North-South lines. We do not store intermediate points along a line.

C* Code Segment 3. "Cross" Boundary Con�guration

void cross(int:image boundary_type_1,int:image boundary_type_2,int:image

boundary_type_3,int:image boundary_type_4) {

bool :image temp_bool_1=0,temp_bool_2=0,temp_bool_3=0,temp_bool_4=0;

/* various combinations of boundary_type values determine

whether up, down, left, right occur within the four cell template */

where(boundary_type_1==6 || boundary_type_1==7 ||

boundary_type_1==14 || boundary_type_1==15)

temp_bool_1=1;

where(boundary_type_2==12 || boundary_type_2==13 ||

boundary_type_2==14 || boundary_type_2==15)

temp_bool_2=1;

where(boundary_type_3==3 || boundary_type_3==7 ||

boundary_type_3==11 || boundary_type_3==15)

temp_bool_3=1;

where(boundary_type_4==9 || boundary_type_4==11 ||

boundary_type_4==13 || boundary_type_4==15)

temp_bool_4=1;

/* a cross configuration consists of Boolean variables up and down

and left and right */

where(temp_bool_1 && temp_bool_2 && temp_bool_3 && temp_bool_4){

up=1; left=1; right=1; down=1; }

Step 3. Making Lines

The Boolean variables up, down, left, and right de�ne the end points of lines. The purpose of this step is

to connect end points into lines. Making lines is carried out in the following steps and illustrated in Figure 4.

A. De�ne extent of segmented scan for East West lines:

Cells where right is active de�ne the western end of a line, and cells where left is active de�ne the eastern

end of a line. These cells de�ne the start and stop points for scan lines.

B. Scan East West line:

A C* scan function spreads the unique cell id value from the western-most cell (where right is active) along

8

the scan line (Figure 4A). Scan with maximum replaces all temp cell id values, which were previously set

to zero, with a unique value. The unique cell id value is also assigned to the variable East West line to

identify the line.

C. De�ne North and South barriers along East West line:

Where East West lines exist (cells that have non-zero values of temp point), Boolean South barriers are

set to true along the line, and a shift one element position down the North-South axis of the image de�nes

the North barrier (Figure 4B).

Cells where Boolean variables up and down are true are used in a similar process to de�ne North South lines

and associated East West barriers. The North , South , East , and West barriers are used in the next step

to build the polygons.

Using this approach, we simultaneously build all East West lines, then all North South lines.

C* Code Segment 4. Making Lines

void make_lines() {

bool: image stop = 0;

int: image temp_cell_id=0;

int i;

with(image) {

/* where statement selects subset of cells with left and right occur,

defining the East and West ends of lines */

where(left)

stop =1;

where(right) {

stop =1;

temp_cell_id =cell_id;} }

/* scan with maximum function replaces all temp_cell_id values

(which were previously set to 0) in the line with a unique

cell_id from Western most cell */

temp_cell_id=scan(temp_cell_id,0,CMC_combiner_max,CMC_upward,

CMC_start_bit,&stop,CMC_exclusive);

East_West_line[0]=temp_cell_id;

/* where East_West_lines exist, a South_barrier is defined,

a North_barrier is defined by shifting South_barrier one position

along North-South axis (see Figure 3 B), used to make polygons */

S_barrier=temp_cell_id;

to_torus_dim(&N_barrier,S_barrier,0,1);

9

/* where statement selects subset of cells with up and down occur,

defining the North and South ends of lines */

where(up) { stop =1; }

else {stop =0;}

where(down) {

stop =1;

temp_cell_id = -cell_id; }

else{temp_cell_id = 0;}

/* scan with maximum function replaces all temp_cell_id values

(which were previously set to 0) in the line with a unique

cell_id from Northern most cell */

temp_cell_id =scan(temp_cell_id,1,CMC_combiner_min,

CMC_upward,CMC_start_bit,&stop,CMC_exclusive);

North_South_line[0] = temp_cell_id;

/* where North_South_lines exist, an East_barrier is defined,

a West_barrier is defined by shifting East_barrier one position

along East-West axis, used to make polygons */

E_barrier=temp_cell_id;

to_torus_dim(&W_barrier,E_barrier,1,1); } }

Step 4. Making Polygons

The remaining step is to build polygons from lines. This task requires grouping distinct elements into a

collection of disjoint sets, and is a form of the connected component problem (Cormen et al., 1991). As

in other applications of the connected component problem described in the image analysis literature (Gay,

1985; Dunlavey, 1983), we build polygons by �lling the area bounded by a closed set of lines with a unique

polygon identi�cation value.

At the beginning of this step, each cell is assigned a unique cell id, and each cell is initially considered

a polygon. Through a sequence of segmented scans (down, up, right, left) we spread a minimum cell id

value throughout the region bounded by a set of N , E , S and W barriers, uniquely labeling the polygon.

Segmented scans are parallel operations, allowing us to simultaneously build all polygons in the image (see

Figure 4).

Once the polygons are made, we extract neighborhood information{ which polygons are adjacent{

by listing the line, left and right polygon for each cell at the end of either an East West line or a

North South line. For example, a cell at the West end of an East West line (where left is true) is il-

lustrated in Figure 5. The line number for this point is uniquely identi�ed by the line running between

10

polygon id a and polygon id b in this example. The polygon to the left of this line is stored as the polygon id

of the cell indicated in Figure 5, and the right polygon is obtained by communication with the cell below

the active cell.

C* Code Segment 5. Making Polygons

make_polygons () {

bool : image unfinished_polygon=1;

int : image temp_min_cell_id;

with(image) {

temp_min_cell_id= cell_id;

/* while loop continues if any unfinished_polygon exists */

while (|=(unfinished_polygon == 1)) {

polygon_id=temp_min_cell_id; /* each cell is initially a polygon */

/* a sequence of scan operations spreads a unique cell_id throughout

region bounded by the North_ South_, West_ and East_ barriers,

polygons are uniquely labeled */

temp_min_cell_id = scan(temp_min_cell_id,1,CMC_combiner_min,CMC_upward,

CMC_start_bit,&N_barrier,CMC_inclusive);

temp_min_cell_id =scan(temp_min_cell_id,1,CMC_combiner_min,

CMC_downward,CMC_start_bit,&S_barrier,CMC_inclusive);

temp_min_cell_id = scan(temp_min_cell_id,0,CMC_combiner_min,

CMC_upward,CMC_start_bit,&W_barrier,CMC_inclusive);

temp_min_cell_id = scan(temp_min_cell_id,0,CMC_combiner_min,

CMC_downward,CMC_start_bit,&E_barrier,CMC_inclusive);

/* unfinished polygons have different minimum cell and polygon id values */

unfinished_polygon = (temp_min_cell_id != polygon_id);

}

/* extract neighborhood information by getting polygon id from

adjacent polygons */

East_West_line[1]=from_torus_dim(&temp_min_cell_id,1,1);

East_West_line[2]=temp_min_cell_id;

North_South_line[1]=temp_min_cell_id;

11

North_South_line[2]=from_torus_dim(&temp_min_cell_id,0,1);

} }

RESULTS

Communication is the important parallel computing issue in this application. Our spatial data conversion

algorithm is based on grid communication operations{nearest neighbor, and segmented scans, which are

implemented in hardware and optimized for speed on the Connection Machine-2. Every processor can send

data to its immediate neighbor in an n-dimensional grid. Scans require processing time proportional to

O(log N) where N is the communication distance or size of the raster image. Performance of our data

parallel conversion algorithm is not sensitive to the number of polygons being built from the raster image.

In general, the algorithm is sensitive only to the size of the image, and not to the number of polygons,

nodes, or neighbors.

In step 1, we compare the gray level of each cell with its four nearest neighbors to de�ne a boundary

type. As each cell computes this simultaneously, the algorithm is insensitive to the number of points. In

step 2, we again use nearest neighbor communication to simultaneously construct a four-cell template, and

de�ne a boundary type for each cell in the image. Then we call a sequence of boundary con�gurations to

de�ne the start and end points of lines. In step 3, we build lines using scan functions that simultaneously

connect all East-West lines, followed by all North-South lines. In step 4, we �ll the region bounded by a

set of lines to label the polygon. All polygons are labeled simultaneously.

Polygon shape has an impact on the number of iterations required to �ll the polygon with a unique

cell id, labeling the polygon. Polygons having a regular geometry, such as the example illustrated in

Figure 4, require a minimum of two iterations of the polygon �ll loop listed in code segment 5; as polygons

become more irregular, a larger number of iterations are required. In a preliminary analysis of the e�ect of

polygon shape on performance of the algorithm, we set up an experiment to generate images with random

gray values, and timed program performance as a function of polygon shape. Using a �xed image size of

128x128 elements, we varied the number of gray levels to produce images with relatively complex shapes

(a smaller number of polygons with a higher degree of spatial autocorrelation) vs. relatively simple shapes

(a larger number of polygons with a lower degree of spatial autocorrelation). As Figure 6A illustrates,

better program performance is associated with relatively simple polygon shapes (i.e., low points/polygon

ratio). In contrast to our parallel algorithm, sequential algorithms for raster to vector conversion are

sensitive to the number polygons in the image (Figure 6B). We used the routine POLYVEC in IDRISI,

which provides boundaries but not topology (Eastman, 1990) strictly to illustrate the sensitivity between

sequential algorithm performance and number of polygons.

To examine the e�ect of image size on algorithm performance, we generated a set of images with

random gray level values, this time varying the size of the image. For the Connection Machine-2 (16K), we

examined program performance as a function of image sizes for 128x128, 128x256, 256x256, and 512x512

elements (run time for the 512x512 image took approximately 7.5 seconds and is not shown in Figure 7

12

for scaling purposes). In comparison, a sequential raster to vector conversion code, which does not include

topology, ran in 64 seconds on a SPARCstation IPC for a 256x256 image (Li, 1992).

As Figure 7 illustrates for a set of experiments, program running time grows as a sub-linear function of

the number of raster elements. This e�ciency is due to the virtual processing mechanism of the Connection

Machine-2, which allows a single physical processor to simulate a number of \virtual" processors. While

each virtual processor stores a raster element, grid based communication between processors is supported

by hardware for e�cient nearest-neighbor accesses and scans along grid axes.

DISCUSSION AND CONCLUSION

More than a decade ago, Peucker and Chrisman (1979) noted the lack of \exibility, comparability and

topology" in data structures for geographic (or spatial) databases. Since then, a considerable amount

of e�ort has been devoted to the extraction and creation of topological information{the position of a

geographic entity with respect to its neighboring entities, from \pure" coordinate data. Associated issues

include storage, manipulation and processing of topological information for digital cartographic purposes

(Peuquet, 1981).

Our data parallel algorithm for raster to vector conversion provides a very fast solution to a well-

speci�ed \real-world" problem. Parallel implementation of computationally intensive algorithms, and

their application to large data sets provides a exibility of analysis with the potential for opening new

lines of inquiry, such as "transparent" data representation (Goodchild, 1991). Future improvement of the

algorithm will include more sophisticated homogeneity criteria, e.g. variance-based measures. We plan

to apply the algorithm to a suite of spatial data sets to further examine the issue of polygon geometry.

Preliminary simulation studies suggest that parallel computing is an extremely powerful tool for error

modeling (Csillag, 1992.) We view development of an industry-scale GIS project on a massively parallel

computing system as an important next step in our research and development plans.

A research issue for the future is a comparison of the performance of our algorithm on the Connection

Machine-2 with its performance on the Connection Machine-5 and DECmpp-12000. Implementation on the

CM-5 introduces the issue of data parallel programming on a MIMD architecture. Implementation on the

DECmpp- 12000 will allow us to compare the performance of grid-based communications on a hypercube

topology (CM-2) with a mesh topology (DECmpp). Conversion of the algorithm to a MIMD architecture

will raise issues of how to distribute the data over a number of processors, implement sequential algorithms

for data conversion within nodes, and matching up subregions within each node with homogeneous sub-

regions of neighboring nodes (identifying polygons that span subregions), and maintaining a global list of

polygon ids.

REFERENCES

Burrough, P.A., 1986, Principles of geographical information systems: Clarendon Press, Oxford, p. 63.

13

Clarke, K.C., 1990, Analytical and digital cartography: Prentice Hall, Englewood Cli�s.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L., 1991, Introduction to algorithms: Chapter 22: Data

structures for disjoint sets, MIT Press, Cambridge, Massachusetts, p. 440-461.

Csillag, F., 1992, Linking error models of �elds and objects: a simulation study, unpublished manuscript.

Dougenik, J., 1980, WHIRLPOOL: a geometric processor for polygon coverage data: Proceedings Auto-

Carto 4, p. 304-311.

Dunlavey, M., 1983, E�cient polygon-�lling algorithms for raster displays: ACMTransactions on Graphics,

v. 2, no. 4, p. 264-273.

Dutton, G. ed., 1980, Current research at the laboratory for computer graphics and spatial analysis,

Harvard Graduate School of Design, Cambridge, MA, p.29.

Eastman, R., 1990, IDRISI 3.2.2., A grid-based geographic analysis system, Clark University, Worchester,

MA.

Eintwaechter, T. (1992) personal communication.

EOSAT, 1991, Products and services catalog: Earth Observation Satellite Company, Iselin, NJ.

Franklin, W.R., Narayanswami, C., Kankanhalli, M., Sun, D., Zhou, M, and Wu, P., 1989, Uniform Grids:

A technique for intersection detection on serial and parallel Machines. Proc. AutoCarto-9, ACSM-

ASPRS, Falls Church, Virginia. pp. 100-109.

Gay, A. C., 1985, Experience in practical implementation of boundary- de�ned area �ll, inNATO Advanced

study institute on fundamental algorithms for computer graphics, Earnshaw, R. A., ed. p. 153-160.

Goodchild, M.F., 1991, Geographical information science: Int. J. Geog. Info. Systems, v. 6, p. 31-45.

Greenlee, D.D., 1987, Raster and vector processing for scanned linework: in Chrisman, N., ed. Proceedings

Auto-Carto 8, p. 640- 647., American Congress on Surveying and Mapping, Bethesda, MD.

Hopkins, S., Healey, R.G., and Waugh, T.C., 1992, Algorithm scalability for line intersection detection in

parallel polygon overlay. Proc. 5th International Symposium on Spatial Data Handling, IGU Comm.

GIS, Charleston, South Carolina. pp. 210-218.

Hillis, W. D., and Steele, G. L., 1986, Data parallel algorithms: Comm. ACM, v. 29, no. 12, p. 1170-1183.

Illert, A., 1991, Automatic digitization of large scale maps: in Mark, D., and White, D., eds. Technical

Papers Auto-Carto 10, p. 113-123., American Congress on Surveying and Mapping, Bethesda, MD.

Li, B., 1992, Opportunities and challenges of parallel processing in spatial data analysis: initial experiments

with data parallel map analysis, in GIS/LIS '92. ASPRS, ACSM, AAG,URISA, AM/FM. November

10-12, San Jose, CA, p. 445-458.

14

Mark, D.M. and Csillag, F., 1989, The nature of boundaries on area-class maps: Cartographica, v. 26, p.

65-78.

Marx, R.W., 1990, The TIGER system: automating the geographic structure of the United States Census,

in Peuquet, D. Marble, D.F., eds. Introductory readings in geographic information systems: Taylor

and Francis, London, p. 120-141.

Mills, K., Fox, G., and Heimbach, R., 1992, Implementing an intervisibility analysis model on a parallel

computing system, Computers & Geosciences, v. 18, no. 8, p. 1047-1054.

Mounsey, H. and Tomlinson, R., eds., 1989, Building databases for global science: Taylor and Francis,

London.

Mower, J. E., 1992, Building a GIS for parallel computing environments, Proc. 5th International Sym-

posium on Spatial Data Handling, Aug. 3-7., IGU Comm. GIS, Charleston, South Carolina. pp.

219-229.

Pavlidis, T., 1982, Algorithms for graphics and image processing: Springer Verlag, Berlin.

Peucker, T.K. and Chrisman, N., 1979, Cartographic data structures: The American Cartographer, v. 2,

p. 55-69.

Peuquet, D., 1981, An examination of techniques for reformatting digital cartographic data, Part 1: The

raster-to-vector process: Cartographica, v. 18, p. 34-48.

Peuquet, D. J., 1984, A conceptual framework and comparison of spatial data models: Cartographica, v.

21, p. 66-113.

Thinking Machines Corporation, 1990, C* Version 6.0 programming guide: Thinking Machines Corpora-

tion, Cambridge, Massachusetts. 254 p.

USGS, 1983, Digital cartographic data standards: Geological survey circular 895, U.S. Geological Survey,

Reston, VA.

15

LIST OF FIGURES

Figure 1. Overview of the input and output requirements of raster to vector conversion. The model map

(A) is represented on an 8-by-5 grid in the input data (B). The output contains a list of polygons with line-

identi�ers as their respective boundaries, a list of lines with reference to their start-point and end-point,

left-polygon and right-polygon, an a list of points with their coordinates and line-identi�ers to whom they

belong to. Note that there are points (c.f. internal points, such as d, g,h, i, j, k, and m) which do not carry

topological information, therefore they belong to only one line characterizing their geometry.

Figure 2. An illustration of the steps in the GORDIUS algorithm. Step 1 computes boundary type

by assigning a value to each cell which has at least one dissimilar neighbor. Values of 1, 2, 4, and 8 are

assigned to cells having dissimilar North, East, South, and West neighbors, respectively. Note that this

value (boundary type) uniquely de�nes nine possible boundary con�gurations. Step 2 connects points along

the image axes. Step 3 makes lines by �nding connections between points. Step 4 builds the polygons.

Figure 3. A four-cell template is de�ned around each cell in the image. Communication functions are

used to connect boundaries and make lines. Lines bound the region of a polygon.

Figure 4. Scans used in build polygon uniquely label each polygon.

Figure 5. De�ning neighborhood information from the Polygon list. This operation makes use of

communication between processors taking the left polygon identi�er from the West most end of an East-

West line and the right polygon identi�er from its South neighbor.

Figure 6. Comparison between trends in run time dependence on the number of polygons for sequential

and parallel implementation. (A) Run time statistics show that GORDIUS is not sensitive to the number

of polygons in the image. (B) Run time statistics for POLYVEC in IDRISI illustrate the trend in sequential

raster-to-vector conversion algorithms of increasing run-time with increasing number of polygons.

Figure 7. Run time statistics for GORDIUS as a function of input data size. All timings were obtained

using a randomly generated raster images with six gray level values.

