
Figure Captions

� Fig. 1.

Energy time decay (eq. 1) versus Monte Carlo time for a chain done

of N = 15 points, relaxing from � = 1:0 to � = 2:0; 3:0; 8:0; 10:0. The

point labelled with � = 1 is the starting value of the energy for the

four di�erent relaxation runs.

� Fig. 2a.

Energy time decay (eq. 1) versus Monte Carlo time for a chain done

of N = 15 points, relaxing from � = 1:0 to � = 2:0. The open dots

are from the Monte Carlo data (average over 500 time periods), the

smooth curve is the best, stretched exponential �t, with a stretching

exponent 
 = :54

� Fig. 2b.

As in �gure 2a, but for a normal homopolymer.

� Fig. 3.

The reconstructed correlation functions, for � = 6 and for the pure

homopolymer � = 0, for N = 30 sites.
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(� = 6). We have computed the HFP eigenvalues for the minimum energy

states (at T = 0) by using an imsl routine.

We have obtained a stretched exponential behavior for times up to � 100

in equation 15. In the direct evaluation of the correlation function of section

2 we have found it holds up to � 10000 Monte Carlo chain sweeps. This

is very smaller than the experimental time scales, which are of order of one

second (corresponding to � 1010 Monte Carlo chain sweeps).

In Fig. 3 we plot the reconstructed correlation functions, for � = 6 and for

the pure homopolymer � = 0, for N = 30 sites. The stretched exponential �t

(with 
 = :39) works very well in the disordered case, while the best �t (with


 = :47) is very inadequate for the homopolymer. We found a very similar

qualitative behavior for N = 15: here 
 = :33 for � = 6, and the � = 0 �t,

with 
 = :56, is very bad.

For this region of time we have been able to exclude a simple pure expo-

nential behavior in the folded phase. We have found a stretched exponential

behavior on the time scales where the system is close to a minimum. On

longer time scale we could have new relaxation phenomena, but this has not

been analyzed in this work. For long times, as expected, the behavior be-

comes exponential. We have checked that an exponential �t gives, in this

region, a very good result, with a decay which is characterized from the

lowest eigenvalue of HFP .
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y(n) �
X

i

 
(n)
i �xi : (12)

It is easy to check that such new variables satisfy the equations

dy(n)

dt
= ��(n)y(n) + g(n) ; (13)

where the g(n) are again an uncorrelated white noise with variance

g(n)(t)g(m)(t0) = 2 T � �n;m �(t� t0) : (14)

The correlation functions can be computed by employing the usual tech-

niques. We �nd

hy(n)(t) y(m)(t0)i =
T�m;n

�(n)
e��

(n)jt�t0j : (15)

In the same way we can compute the energy-energy correlation function,

�nding

hH(t)H(t0)i = N T 2 e�2�
(n)jt�t0j : (16)

We will use this relation to reconstruct the energy time dependent corre-

lation functions from the knowledge of the eigenvalues of the Fokker-Planck

Hamiltonian HFP . The correlation function has been expressed in 15 as a

sum of time exponential, with decay factors

� (n) �
1

�(n)
: (17)

Such an in�nite sum can (and will indeed) generate a stretched exponen-

tial. This can happen if the smallest �i is not very di�erent from the larger

ones, i.e. if there is no large gap. We expect that to happen. Indeed it is

well known, for simple disordered systems (for example a disordered chain

in d = 1, see ref [10]), that the frequency spectrum of the normal modes has

a sizeable tail (in the small frequency region), which is absent in the corre-

sponding ordered system. Such a di�erence from the ordered case tends to

become more important with increasing space dimensionality.

We have looked at chains of N = 15 and N = 30 sites, by comparing the

homo-polymeric chain (� = 0) with the strongly disordered heteropolymer
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where �(t) is the relaxation function (which coincides with the correlation

function a part from some factors T ).

In the case the have discussed in the previous section the perturbation

�eld can be identi�ed with the temperature variation

~h = T2 � T1 ; (7)

where T1 is the initial equilibrium temperature (� = 1 in our case), and T2
is the �nal one.

In the following we will discuss how to compute time dependent correla-

tion functions hA(t)A(0)i (where h has been switched o� at t = 0). In order

to do that we analyze the time evolution of the system. We will describe it

by means of the usual Langevin equation

@xi

@t
= ��

@H(x)

@xi
+ fi ; (8)

where w=the fi are random variables with zero expectation value and corre-

lation

hfi(t)fj(t
0)i = 2 T � �(t� t0) �i;j : (9)

Let us seat at low T , and look at the system when it is close to a minimum

ofH. In these conditions we can limit ourselves to consider small 
uctuations

around the minimum, by introducing the matrix A such that

H(x) '
X

i;j

�xiAi;j�xj (10)

where the �x are the displacements of the system from the position of the

minimum. At this stage it is convenient to introduce the eigenvalues and

the eigenvectors of A, which we denote respectively by �(n) and  
(n)
i . They

satisfy the equation:

X

k

Ai;k 
(n)
i = �(n) 

(n)
i : (11)

Let us now project over the normal modes, so introducing the new variables

y(n), by
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In Fig. 1 we show the energy decay, as a function of the Monte Carlo time

(in logarithmic scale), for four di�erent values of the �nal �, i.e. for stronger

and weaker perturbations.

In Fig. 2a we show, as an example, the decay of the energy for � = 2:0

in a system made of N = 15 sites. We get a very good stretched exponential

�t of the form

e�(
t

�
)
 ; (5)

with 
 ' :54. A �t with a pure exponential behavior would not match the

data. We found the same dependence for � = 3:0: in this case 
 is smaller,

� :38. For higher values of � (i.e. for stronger perturbations) we did not

succeed to get good �ts. In this region the validity of the linear approximation

is far from being clear.

To stress our point we show in �gure 2b the time decay of the energy-

energy correlation function for an ordered homopolymer. We have followed

the same procedure we used in the case of the heteropolymer, i.e., we have

selected all the con�gurations which go, for T ! 0, in the same con�guration.

After doing that the exponential behavior is clear. We have used the same

time scale we used in �gure 2a, to show how dramatic is the di�erence. In

the exponential �t we �nd a value of the decay time of order 102, compatible

with our rough estimate of the dynamical correlation times.

3 The Normal Mode Analysis

The 
uctuation-dissipation theorem shows that a simple relation between the

equilibrium 
uctuations of a system and its linear response to an external

perturbation exists.

Let us consider the case where a constant �eld h = ~h is applied to the

system for a long time. Eventually the system reaches equilibrium. At a

time we de�ne as t = 0 h is switched o�. The change in h, �h = �~h changes

the average value of the physical quantities from their original values at

equilibrium with h = ~h. If the �eld is weak we can assume that the change

is a linear functional of the �eld

hA(t)ih � hAi0 = ��(t) ~h (6)

6



where hi indicates the expectation value over the quenched distribution,

which we have chosen to be uniform, � characterizes the disorder strength,

and �i;j = �j;i.

The Hamiltonian of the model is de�ned as

H �

NX

i=1

X

j>i

Ei;j : (4)

In our typical runs we have selected values of the parameters close to the

ones of ref. [6]. The system is, indeed, in what in ref. [6] we have recognized

as the folded phase of the heteropolymeric chain. We have studied chains

done of N = 15, for R = 2:0, A = 3:8 and � = 6:0. Here using N = 30 would

have been computationally too demanding. On the contrary in next section

we used con�gurations obtained in [6], at one given value of the temperature.

We have tried to build a numerical experiment close to the experimental

conditions of the Frauenfelder group true experiments[4] (also if, as we said,

our time scales are very shorter). We have been starting from a chain ther-

malized at � = 1, and we have abruptly decreased its temperature T (T � 1
�
)

to values ranging from � = 2 to � = 10. We have computed the relaxation

function (1) by choosing as observable A the internal energy, the gyration

radius of the chain and the link length (for detailed de�nitions see ref. [6]).

For each � value we have averaged the relaxation functions over 500 Monte

Carlo stories.

We have been careful to check that the perturbation was small enough

not to produce big changes in the conformation of heteropolymer. Since the

perturbation was small the system was only allowed to change in similar

quasi-states (in Frauenfelder terminology) and not to have a transition to

a completely di�erent state. That was checked by freezing the system at

T = 0 and verifying that it would have not moved to a completely di�erent

conformational state.

This is for us good evidence (consistently with Frauenfelder experiments)

that the non-exponential behavior we are discussing is not generated from the

visiting of di�erent minima with di�erent underlying time scales, but from

the fact that the dynamics in a single minimum is itself non-exponential.

All our runs are consistent with a stretched exponential relaxation for the

correlation function with a stretching parameter 
 in the range of order :5.
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introduction of a stretching parameter will lead us to a very good �t of the

numerical results.

An analytical study of the Langevin equation normal modes decomposi-

tion will show how such temporal evolution can be associated to the existence

of a long tail (in the small frequency region) in the eigenvalue spectrum of

the relevant dynamical operator.

In Section 2 we recall the de�nition of our model (IMP in the following,

see ref. [6]. For further developments on this model see refs. [7, 8, 9]), we

de�ne our Monte Carlo procedure, and we present the results of numerical

simulations. In Section 3 we introduce the Langevin Equation approach and

its connection to a stretched exponential dynamics, and we discuss our results

from a normal mode decomposition.

2 Monte Carlo Simulations

Let us start by recalling the de�nition of the IMP model [6]. We consider a

chain formed of N sites. They would be identi�ed, in the protein analogy,

with sequences of amino-acids, i.e., segments of the secondary structure [6].

In our model we consider a single link (with no form factor) as representa-

tive of a pre-assembled piece of the secondary structure. At this level we

cannot specify details of the short distance dynamics. We are interested in

understanding if the disordered nature of the chain is enough to explain, for

example, folding in a given shape. The site position in continuum 3 dimen-

sional space is characterized by the 3 values of the coordinates x
�
i . We de�ne

the energy between two sites of the chain as

Ei;j � �i;j+1 r
2
i;j +

R

r12i;j
�

A

r6i;j
+
�i;j

r6i;j
; (2)

where ri;j is the usual Euclidean distance between the sites i and j.

The harmonic term couples the �rst neighbors on the chain. The de-

terministic part of the potential has the usual Lennard-Jones form. The

quenched disordered part of the potential is built on the � variables, which

are distributed with a zero expectation value and with a second moment

h�i;j �k;li = �2 �(i;j);(k;l) ; (3)
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1 Introduction

The potential relevance of disordered systems[1, 2] for understanding protein

folding has received much attention in the last few years (see for examples

refs. [3]). They di�er from their ordered counterpart in being characterized

from a dynamical behavior which is di�erent on di�erent (and many) time

scales. A large number of experiments (for a discussion see for example

ref. [2]) has been done in order to probe such complex dynamical features

(where up to 15 di�erent orders of magnitude can be relevant).

In the following we will look at the problem of the relaxation dynamics

of a disordered system not far from equilibrium. The system, at equilibrium

for some given values of the external parameters, undergoes an external per-

turbation (some of the parameters values are abruptly modi�ed). We will

study the subsequent search of a new equilibrium con�guration.

Let us assume that the system just goes out of its local (free energy)

minimum, without moving too far away from its initial conformation. Even-

tually we expect the system to relax in the free energy valley of the chosen

minimum. Here the system will only undergo very small conformational

modi�cations. We will show this relaxation to have a stretched exponential

form.

This matter has been studied experimentally in the pioneering work

on proteins by Frauenfelder and collaborators (see ref. [4] and references

therein). They measure di�erent quantities A(t; T ), which depend on the

time t and on the temperature T , and de�ne the correlation functions as

�(t) �
A(t; T )�A(1; T )

A(0; T )�A(1; T )
; (1)

where the time t = 0 is the one just after the perturbation was applied. After

a stress in temperature or pressure �(t) was shown to have a non-exponential

behavior.

In the next sections of this note we will study the dynamical behavior of a

heteropolymeric system. We will look at what we believe to be the relaxation

in a given free energy minimum (see the former discussion), but we will be

working at times which are very shorter than the experimental ones (which

can be of the order of seconds). We will show that in this case we cannot

explain our results with a simple exponential relaxation law, and that the
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Abstract

We study the dynamics of an heteropolymeric chain relaxing to-

ward a new equilibrium con�guration after the action of an external

perturbation. We compare the results from Monte Carlo simulations

with the results of a Langevin normal mode decomposition. We dis-

cuss, for sake of comparison, the case of an ordered homo-polymeric

chain. We discuss the dependence of the relaxation stretching expo-

nent over the system size by studying chains constituted by 15 and 30

points.
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