
The Phase Diagram of Fluid Random

Surfaces with Extrinsic Curvature

Mark BOWICK, Paul CODDINGTON, Leping HAN,

Geo�rey HARRIS and Enzo MARINARI(�)

Dept. of Physics and NPAC,

Syracuse University,

Syracuse, NY 13244, USA

bowick@suhep.phy.syr.edu paulc@sccs.syr.edu han@sccs.syr.edu

gharris@sccs.syr.edu marinari@roma2.infn.it

(�): and Dipartimento di Fisica and INFN,

Universit�a di Roma Tor Vergata

Viale della Ricerca Scienti�ca, 00173 Roma, Italy

March 21, 1994

Abstract

We present the results of a large-scale simulation of Dynamically
Triangulated Random Surfaces with extrinsic curvature embedded in
three-dimensional at space. We measure a variety of local observables
and use a �nite size scaling analysis to characterize as much as possible
the regime of crossover from crumpled to smooth surfaces.

ROM2F-92-48

SU-HEP-4241-517

SCCS-357

hep-lat/9209020

1



1 Introduction

In this paper we use Monte Carlo simulations to investigate a theory of

bosonic strings embedded in three target space dimensions with the addition

of an extrinsic curvature term to the action. We present a complete high-

statistics analysis of the behaviour of a set of relevant observables. Since

computing correlation functions on dynamically triangulated surfaces is a

di�cult task, we have focused on elucidating the phase diagram by analyzing

local observables in great detail.

String theory, in a number of guises, has been conjectured to describe

the underlying fundamental physics of a wide variety of physical phenom-

ena and models. These include the strong interaction at long distances, the

three-dimensional Ising model and uni�ed models incorporating gravity. In

its simplest form, the bosonic string, it is a theory of free uctuating sur-

faces. The functional integral for the Euclideanized bosonic string is just the

partition function for an ensemble of random uctuating uid surfaces. Such

surfaces are also ubiquitous in nature, being found for example in macro-

emulsions and the lipid bilayers that form an important part of cell mem-

branes [1]. These systems are uid because their component `molecules' are

loosely bound. Their constituents are arranged so that the net surface ten-

sion (nearly) vanishes; thus these membranes are subject to large thermal

uctuations. In one important respect, however, these chemical/biological

membranes di�er fundamentally from the surfaces we discuss and simulate;

they are self-avoiding. The worldsheets of the bosonic string, in contrast,

generically self-intersect.

The bosonic string for surfaces embedded in 26 dimensional space has

been studied extensively. Much progress in numerically simulating strings has

been made through the use of Dynamically Triangulated Random Surfaces

(DTRS)[4, 5]. For theories of surfaces embedded in D � 1, analysis of the

continuum Liouville theory [2, 3] and of matrix models has led to consistent

predictions for critical exponents and correlation functions. In the `double

scaling limit', in fact, exact nonperturbative solutions [6] have been found

from these matrix models; the functional integral over surfaces has been

essentially summed over all genera.

These analytical techniques have failed, for the most part, in probing the

theory of random surfaces in the more interesting embedding regime D > 1.

Indeed the formulas for critical exponents computed in Liouville theory give
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complex results when continued to the range 1 < D < 25.1 The matrix

models describing D > 1 strings have so far been too complicated to solve.

Monte Carlo simulations for D > 1 [8, 9, 10, 11] indicate that these

theories do not appear to describe the uctuations of two dimensional smooth

surfaces in the continuum limit. Extremely spiky, branched-polymer-like

con�gurations with high (perhaps in�nite) Hausdor� dimension dominate

the functional integral2.

Evidence for this pathology was obtained, for instance, when it was shown

that the bare string tension, essentially the amount of work per unit area

needed to perturb a boundary loop on these con�gurations, cannot vanish

at the critical point [12]. (This implies that the renormalized string tension

diverges in the continuum limit.) It has been speculated in ref. [13] that the

proliferation of vortex con�gurations of the internal geometry (the `Liouville

mode') induces the degeneration of these surfaces in the embedding space.

A related explanation that is often pro�ered is that a negative mass-squared

particle3, which comes on shell in the string theory for D > 1, creates insta-

bilities which are made manifest by these singular con�gurations.

The tachyon, and apparently these related instabilities, can be eliminated

in particular cases by introducing fermionic coordinates and supersymmetry

on the worldsheet and implementing an appropriate projection of states.

Presumably, the fermions e�ectively smooth out the surfaces. This would

be consistent with what has been observed for one-dimensional geometries;

the random walk of a spin one-half particle has Hausdor� dimension one and

thus appears to be smooth [14]. Many authors have proposed an alternative

modi�cation of the string action [15, 16, 17, 18] via the addition of a term

that directly suppresses extrinsic curvature4. We shall examine this class of

theories in this paper.

To write down our action we introduce an explicit parametrization of a

1More precisely, one encounters these instabilities in Liouville theory when the quantity
c� 24� > 1, where c denotes the central charge of the matter theory which describes the
embedding of the surfaces and � is the conformal weight of the lowest weight state in this
theory [7]. Since here we are considering at space, c = D and � = 0.

2In the same way singular con�gurations dominate the Gaussian theory, which is es-
sentially a theory of free random walks.

3In some contexts this is referred to as the `tachyon'.
4In fact, integrating the fermions out of the Green-Schwarz superstring yields an action

similar to the one we consider, but with the addition of a complex Wess-Zumino type term
[19].

3



generic surfaceM in R3 with coordinates (�1; �2) and the embeddingX�(�i).

� runs from 1 to 3 (since we only study the case of a 3d embedding space).

The induced metric (the pullback of the Euclidean R3 metric via the embed-

ding) is given by

hij = @�iX
�@�jX� : (1)

We will use Greek letters for the embedding space indices; they can be

raised and lowered at will since our background space is at. Associated

with each point in M are tangent vectors (t�
i
2TM) and a normal vector

n�2TM?. The extrinsic curvature matrix Kij (the second fundamental

form) can be de�ned by

@in
� = �Kijt

�j : (2)

The eigenvalues of this matrix are the inverses of the radii of curvature ofM.

One usually describes the geometry of these surfaces in terms of the mean

curvature [20, 21]

H =
1

2
hijKij (3)

and the Gaussian curvature

K = �ik�jlKijKkl : (4)

One can show that the Gaussian curvature can be computed solely from

the metric hij, while the mean curvature depends explicitly on the embedding

X�.

We shall be concerned primarily with the Polyakov form of the string ac-

tion [22], in which an additional intrinsic metric gij is introduced to describe

the surface geometry. We discretize our model by triangulating surfaces.

In this construction, each triangle is equilateral with area 1 in the intrin-

sic metric; the coordination number at each vertex determines the intrinsic

curvature of the surface. The coordinates i label the vertices of the triangu-

lation. Then the discrete analogue of the intrinsic metric is the adjacency

matrix Cij whose elements equal 1 if i and j label neighbouring nodes of the

triangulation and vanish otherwise. Two-dimensional di�eomorphism invari-

ance reduces to the permutation symmetry of the adjacency matrix at this

discrete level. One of the keys, in fact, to the power of this construction is the
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preservation of this symmetry. Each vertex of the triangulation is embedded

in R3 via the mapping X
�

i
. Given the embedding X, we can also associate

a unit normal vector (n�)
k̂
with each triangle on the surface (Roman indices

with hats label the triangles). Note that all of the surface curvature of our

triangulations is concentrated along the links and vertices. The surface is

still at in the direction tangent (but not transverse) to each link, so that

the mean curvature has support on the links, while the Gaussian curvature is

non-zero only at the vertices. The intrinsic curvature Ri at vertex i is given

by the de�cit angle determined solely by the triangulation

Ri = �
(6� qi)

qi
; (5)

where qi denotes the connectivity of the lattice at vertex i. The Gaussian

curvature K on the other hand is expressed in terms of the de�cit angle in

the embedding space.

We shall study the theory de�ned by the action

S = SGauss + �SE =
X
i;j;�

Cij(X
�

i
�X�

j
)2 + �

X
k̂;l̂;�

C k̂l̂(1� n�
k̂
� n�

l̂
) : (6)

Thus, for � > 0, we have introduced a ferromagnetic interaction in the surface

normals. The model de�ned by this action has been studied in [23, 24, 25,

26, 27, 28] and references therein.

From (2) and the de�nition of the induced metric, it follows that this is

a discretization of the continuum action

S =

Z q
jdet gj(gij@iX�@jX

� +
�

2
gijhklKikKjl) : (7)

Note that the second term in this action is manifestly positive, Weyl

and reparametrization invariant and that � is a dimensionless coupling. So,

naively, it is not clear whether it is relevant or not. If it were relevant, one

would then anticipate that (since it obeys all of the appropriate symmetries)

it should be e�ectively generated in any string action, and that it should

engender ordering of the normals. It should then lead to another RG �xed

point at a �nite value of �, which would characterize a phase transition

between the crumpled phase (observed when � = 0) and a `smooth(er)'
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phase.5 We proceed �rst to review previous work which has addressed the

question of whether or not these theories exhibit a crumpling transition.

1.1 Previous Analytical Work

A renormalization group analysis [16, 31, 32, 17] indicates, however, that

there should be no phase transition at �nite coupling when such extrinsic

curvature dependent operators are added to the action. The computations

of refs. [16, 31, 32] use the action

S =

Z
d2� (�0

p
deth+

1

�

p
deth(hijKij)

2) ; (8)

in the regime in which the string tension �0 is small (unlike the usual particle

physics limit of string theory, which is characterized by large �0). After

integrating out uctuations of the embedding X� between momentum scales

� and ~�, it is found that the renormalization of the extrinsic curvature

coupling is given to one-loop order by

�(�) � �
d�

d�
= � 3

4�
�2 ; (9)

so that � is driven to in�nity in the infra-red. This theory thus exhibits

asymptotic freedom. Surfaces are smooth (the normals are correlated) below

a persistence length [33]

�p � exp(
4�

3�bare
) (10)

and are disordered above this scale. Some intuition into this result can be

gained by observing that this theory is similar to the O(3) sigma model,

5The extrinsic curvature term is also higher-derivative, indicating that the �eld theory
described by this action is non-unitary. This fact alone does not imply that the associated
string-scattering amplitudes do not satisfy unitarity. Polchinski and Yang [29] do, however,
contend that in this case the string theory will not be unitary. Even if this were so, this
model could still be an appropriate description of the statistical mechanics of uctuating
surfaces, although not one corresponding to a physical fundamental string theory. Braaten
and Zachos [30] have also showed that the generic static classical solutions of a similar
higher-derivative theory of rigid strings are unstable. This would also imply that these
actions could only be the basis for e�ective, but not fundamental, quantum theories of
strings.

6



which is asymptotically free [14]. The normals to M are the analogues of

O(3) vectors, though in this case they are constrained to be normal to a

surface governed by the action (7).

Without the extrinsic curvature term, (8) is the Nambu-Goto action,

while (7), which we use in our simulations, is based on the action quantized

by Polyakov. Classically (when the equations of motion for the Polyakov

action are solved and substituted back into the action), the two actions are

equivalent. It has also been demonstrated [34] that the two quantizations

are equivalent in the critical dimension D = 26. In lower dimensions (note

that the Nambu-Goto action clearly does not make sense for D < 2), it is

not so clear that quantizations `based' on the two actions are indeed the

same. The work of Polchinski and Strominger [35] suggests that there are

alternative quantizations. Distler ([36]) has also questioned the equivalence

of these quantizations in D = 3. Indeed, even if the two quantizations are

equivalent, it does not automatically follow that the two theories are still the

same once an extrinsic curvature dependent term has been added.

In fact, Polyakov in [17] uses a hybrid form of the action (8) and still

obtains the same result for the beta function. He introduces an intrinsic

metric gij, chooses the conformal gauge gij = ��ij and considers

S =
1

2�

Z
d2�(�o� + ��1(@2X�)(@2X�) + �ij(@iX

�@jX
� � ��ij)) : (11)

Classically, the Lagrange multiplier �ij constrains the intrinsic metric to

equal the induced metric (this equality is not enforced by the classical equa-

tions of motion for the original Polyakov action). This constraint should be

relaxed quantum mechanically if, as Polyakov [14] argues, the condensate of

this Lagrange multiplier assumes a value of the order of the momentum cut-

o�. If this dynamical assumption is correct, then one can essentially derive

the equivalence of this Nambu-Goto like and the original Polyakov quantiza-

tions. In the large D (embedding dimension) limit, saddle point calculations

[37] show that � indeed does acquire a large expectation value, and that for

small values of the string tension �o, the coupling � is asymptotically free,

as the RG calculations suggest.

There are, however, a couple of caveats and suggestions in the analytic

literature that do allow for the existence of a crumpling transition for uid

surfaces. Polyakov remarks that if, in the infrared region, uctuations of the
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internal geometry (�) are suppressed relative to uctuations of the extrinsic

metric, then the beta function is proportional to � and hence the continuum

limit of the theory exhibits non-trivial scaling behaviour; this presumably

cannot be the case in the large D limit. Another RG calculation, performed

by Yang [38] using the Polchinski-Strominger action [35] with an extrinsic

curvature dependent term, indicates that the two-loop correction (which is

proportional to �3) might be large enough to yield a zero of the beta function

and thus a non-trivial IR �xed point. The Polchinski-Strominger action is

based on the assumption that the Liouville mode � e�ectively decouples (its

mass is much greater than the momentum scale set by the string tension); it

is not clear why this assumption should hold for the model that we simulate.

Finally, note that these computations are perturbative (in 1=D or �). It is

possible that non-perturbative e�ects could drive a crumpling transition.

1.2 Previous Numerical Evidence

Monte Carlo simulations of the action (7) on dynamically triangulated ran-

dom surfaces (DTRS) were �rst performed by Catterall [23] and shortly there-

after by Baillie, Johnston and Williams [24, 25] and Catterall, Kogut and

Renken [28]. They simulated triangulations with the topology of the sphere,

and measured the speci�c heat

C(�) � �2

N
(< S2

E
> � < SE >2) (12)

on surfaces with up to N = 144 nodes (and N = 288 nodes in the last

reference). They found a peak in the speci�c heat; the peak size appeared to

grow withN . A similarmodel that can be vectorized rather straightforwardly

was also considered; the set of planar �3 graphs was simulated [28, 39]. Each

vertex of these �3 graphs was embedded in R3 and the action (7) was used;

graphs of up to 1000 nodes were simulated (these would be dual to 500 node

triangulations). It was found that the speci�c heat peak grew with N , albeit

slowly, as

Cmax = AN! +B ; (13)

with ! = 0:185(50). Further work by Ambj�rn, Irb�ack, Jurkiewicz, Petersson

and Varsted [26, 27], using dynamical triangulations with the topology of
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the torus and lattices with up to N = 576 nodes, indicated that the rate

of increase of the peak height severely diminishes with increasing N . The

data strongly suggests that in fact the speci�c heat peak height does not

diverge as N !1. These authors also measured the bare string tension and

mass gap, by embedding the torus in a background toroidal space spanned

by a loop, and measuring the dependence of the free energy on the loop

size. They found that these measurements (when taken for � values near

the peak position) are consistent with the appropriate scaling relations (with

vanishing bare string tension and mass gap) that should characterize a phase

transition to smooth surfaces. This measurement, although it constitutes

the best evidence there is so far for a real phase transition at � = �c, is still

quite an indirect way of measuring correlation functions. As we will discuss,

these scaling relations could contradict other observed phenomena such as

the absence of diverging correlation times and increasing �nite size e�ects at

the putative critical point.

Thus it appears that numerical evidence could allow for the existence

of a crumpling transition (most probably of higher order), while analytical

calculations generally indicate that no such transition should occur.

In [40] the peak was measured in a DTRS simulation that incorporated

self-avoidance and the extrinsic curvature termSE, with a solid-wall potential

substituted for the Gaussian term in the action. The results for the speci�c

heat turned out to be very similar to those found in the simulations we

have just discussed, for example, in [27]. The speci�c heat peak is, in this

context, considered to be a lattice artifact, because the peak height levels

o� with large N (of order 500). These simulations included a crude block-

spin measurement that suggests that the renormalization group ow of � is

consistent with the analytical result of asymptotic freedom.

Simulations using other discretizations for the extrinsic curvature depen-

dent term have yielded somewhat di�erent results [23, 24]. The speci�c heat

peak, measured in simulations employing what is referred to as the `area dis-

cretization', is rather feeble and levels o� for small values of N (by N = 72)

(the authors interpret this as being indicative of perhaps a `third' order tran-

sition). Actions based on these various discretizations have been simulated

for �xed, triangular meshes. These systems model tethered or crystalline

membranes, in which the constituent molecules are tightly bound together.

In the tethered case, the speci�c heat peak obtained from simulations of the

edge action (7) grows vigorously as a function of N for very large (128�128)
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lattices [41]. This is strong evidence for the existence of a second order

transition which, in this case, is in accord with the analytic results { these

calculations are reviewed by Nelson [42] and David [1, 43] and involve mean

�eld and large D computations which suggest that the � function is linear

at leading order, with a zero for �nite �, i.e. a UV �xed point. When the

alternate area discretization is used in the tethered case, the speci�c heat

peak again stops growing. Recent work has demonstrated that this other

discretization is pathological in the tethered case; the class of `corrugated'

surfaces, which are singular in one direction and smooth in the other, then

dominates the path integral [41].

Thus, given the muddle of somewhat contradictory evidence, it is unclear

whether or not a crumpling transition exists for uid surfaces. We have pur-

sued this question by taking high statistics measurements of the speci�c heat

peak and by measuring other observables describing the geometry of these

surfaces, since observables with di�erent quantum numbers can give quite

di�erent information. For example, in the Ising model the magnetization be-

haves quite unlike the internal energy (which is invariant under the standard

Z2 transformation).

To analyze and interpret this data, we have applied insights gained from

work on better understood systems, primarily spin models and lattice gauge

theories. Issues of the equivalence of the Nambu-Goto and Polyakov quanti-

zations have also motivated us to compare the intrinsic and induced geometry

of the surfaces that we simulate.

1.3 The Plan of the Paper

We hope that in this section we have introduced the problem in su�cient

detail. In Section 2 we de�ne the quantities we have decided to measure,

and explain why they are physically interesting. Next, in Section 3, we

present the details of our numerical simulations. In Section 4 we describe

and discuss our results concerning the phase diagram of the theory and we

devote Section 5 to the discussion of correlation times. In Section 6 we

propose various interpretations of these results and in Section 7 we comment

on future possible developments.
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2 Observables

To minimize �nite size e�ects, we have considered triangulations with the

topology of the torus. The action (7) was used, with the BRST invariant

measure utilized also by Baillie, Johnston, and Williams ([24]), so that

Z =
X

G2T (1)

Z Y
�;i

dX
�

i

Y
i

q
d
2

i
exp(�SGauss � �SE) ; (14)

where d = 3, qi is the connectivity of the ith vertex and T (1) refers to the

set of triangulations of genus 1. The authors of [26, 27] do not include this

connectivity dependent term in their measure. The long-distance physics

of the simulations is presumably insensitive to the presence of this term.

Because we have chosen a di�erent measure, though, our quantitative results

cannot be precisely compared with theirs.

We measured a variety of quantities that characterize the extrinsic and

intrinsic geometry of these surfaces. These observables include:

1. The edge curvature SE and the associated speci�c heat C(�), which is

a sensitive indicator of the presence of a phase transition.

2. The squared radius of gyration RG;

RG �
1

N

X
i;�

(X
�

i
�X�

com)
2 ; (15)

where the com subscript refers to the center of mass of the surface. By

measuring the N dependence of the gyration radius, we can extract a

value for the extrinsic Hausdor� dimension, which is given by

RG � N� � N
2

dextr : (16)

3. The magnitude of the extrinsic Gaussian curvature. We measure a

discretization of
R j K j

q
j h j, with

j K j= 1

N

X
i

j 2� �
X
ĵ

�
ĵ

i
j : (17)
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Here �
ĵ

i
denotes the angle subtended by the ĵth triangle at the ith

vertex. This quantity, therefore, measures the magnitude of the de�cit

angle in the embedding space averaged over all vertices. We also record

the mean square uctuation of j K j, denoted by F [j K j].
4. The corresponding intrinsic quantity j R j, given by

j R j= �

3N

X
i

j 6� qi j ; (18)

and its uctuations. When the intrinsic and extrinsic metrics are equal,

the intrinsic and extrinsic de�cit angles are identical and K = R=2.

5. To study the correlation between intrinsic and extrinsic geometry, we

also measure the quantity which we refer to as K �R:

K �R �
R
KRqR
K2
R
R2

=

P
i(2� �

P
ĵ
�
ĵ

i
)(6� qi)rP

i
(2� �P

ĵ
�ĵ
i
)2
P

i
(6 � qi)2

: (19)

This quantity is 1 when the metrics are equal, 0 if they are un- corre-

lated, and negative when these curvatures are anti-correlated.

6. We measure, �nally, the average maximum coordination number of the

surface vertices, maxi qi.

3 The Numerical Simulation

In our simulations we have used the standard Metropolis algorithm to update

the embedding �elds X
�

i
. To sweep through the space of triangulations we

performed ips (see reference [10]) on randomly chosen links. Flips were

automatically rejected if they yielded a degenerate triangulation; i.e. one

in which a particular vertex has fewer than three neighbors, or in which a

vertex is labeled as its own neighbor, or where more than one link connects

two vertices. (It has been proven in ref. [10, 11] that the entire space of

graphs of a given topology can be spanned by only performing these ips.)

After a set of 3N ips was performed, 3N randomly selected embedding

coordinates were updated via random shifts from a at distribution
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N=36 1.375 1.400 1.425 1.475 �

3 3 3 3 �106 sweeps
N = 72 1.375 1.400 1.425 1.475 �

3 3 3 3 �106 sweeps
N=144 .8 1.25 1.35 1.40 1.45 1.50 2.0 �

3 3 3 3 3 3 3 �106 sweeps
N=288 .8 1.375 1.40 1.425 1.475 2.0 �

14.4 21.0 15.0 16.2 13.5 14.4 �106 sweeps
N= 576 .8 1.325 1.375 1.40 1.425 1.475 2.0 �

12.0 27.0 27.0 27.0 27.0 27.0 9.6 �106 sweeps

Table 1: A record of the number of sweeps performed at each di�erent �

value for di�erent lattice sizes.

X� ! X� + �X� : (20)

The mean magnitude of these shifts

< �X��X� > (21)

was chosen so that the acceptance rate for updates of the X� was roughly 50

percent. Most of the Monte Carlo simulations were performed on HP-9000

(720 and 750 series) workstations; we also collected some data by simulating

lattices on each of the 32 nodes of a CM-5. Our code was in Fortran, with a

Fibonacci random number generator.

In Table (1) we summarize our runs. Note that we have performed quite

long runs on the larger lattice sizes. We will discuss in Section (5) why we

believe runs of this length are just su�cient to yield accurate values of the

observables for the largest lattice size (N = 576).

In all of our �gures the di�erent dots will be printed with their asso-

ciated statistical error (sometimes too small to be visible). The statistical

error is computed by means of a standard binning procedure. We will explic-

itly discuss the cases in which our estimator for the statistical error is not

asymptotic.

The lines in these �gures are from a histogram reconstruction (see for

example [44, 45]). We patch di�erent histograms [46, 47, 48] by weighting

them with the associated statistical indetermination (which we estimate by
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a jack-knife binned procedure); this procedure seems to be very e�ective and

reliable. All of the reconstruction curve sets (3: dotted, dashed and contin-

uous for 3 surface sizes on each �gure) consist of 3 curves (which sometimes

appear as a single one). The middle curve is the histogram reconstruction

and the upper and the lower ones bound the data within the errors obtained

by the procedure we have just described.

For N = 144 we have patched the four histograms originating from � =

1:35, 1:40, 1:45, 1:50. For N = 288 we have used � = 1:375, 1:40, 1:425 and

1:475. For N = 576, we chose � = 1:375, 1:40 and 1:425.

We have only drawn the reconstructed, patched curves (with their reliable

errors) in the regions where we trust them. For example, close to the pseudo-

critical region we can trust a peak pattern only when we can reconstruct the

peak by starting from both sides of the transition (without multi-histogram

patching). So we have always used single histogram reconstructions to check

these criteria, before constructing the �nal, multi-histogram data.

4 The Phase Diagram

We have measured, as stated previously, a large number of local observables.

We will see that a mixed picture emerges from these measurements. For

example the observables related to the dynamical triangulations exhibit a

characteristic pattern, to be discussed in detail below.

We start by showing, in Fig.1, the edge curvature SE as a function of �.

The crossover region is around � ' 1:4. For small values of �, the surface

is crumpled (see the latter part of this section). In this region, �nite size

e�ects are already negligible for our lattice sizes, and our 3 data points are

on top of each other. We can see weak �nite size e�ects by comparing the

continuous lines in the transient region. The N = 144 dotted line is far from

the ones of the two larger lattices, which lie, on the contrary, on top of each

other. Finite size e�ects are larger in the large � phase. One would expect,

close to a phase transition with a diverging correlation length, an increase in

�nite size e�ects which we do not observe here. The lattice should feel the

presence of the zero mass excitation, and the �nite size corrections should

be larger than everywhere else (in the case of periodic boundary conditions

they would obey a power-law, rather than decaying exponentially with size).

This is surely not �rm evidence against the presence of a phase transition,
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N C(�)max �c
36 3.484(8) 1.425(35)

72 4.571(15) 1.410(15)

144 5.37(14) 1.395(30)

288 5.55(7) 1.410(25)

576 5.81(17) 1.425(30)

Table 2: The maximum of the speci�c heat and its position, with errors, for

di�erent lattice sizes.

but it does show that the putative critical behaviour is atypical.

The errors in the `at phase' (� = 2:0) are not under control. Our

estimators do not plateau under repeated iterations of the binning procedure.

In this regime, correlation times are large, as we will discuss in next section.

This caveat holds for this �gure and for all the quantities we have measured.

In Fig. 2 we show the related speci�c heat C(�) in the same � region.

In Fig. 3 we enlarge the pseudo-critical � region, in order to show the re-

constructed peak of the speci�c heat. As already noted our reconstruction

procedure is quite reliable here.

In Table 2 we give the maximum of the edge curvature speci�c heat and

its location for di�erent lattice sizes.

We see that the speci�c heat peak grows vigorously with N for small

lattices, but that this growth levels o� for larger N . From the data for the

three largest lattices, we can extract a speci�c heat exponent ! = :06 �
:05, with ! de�ned as in equation (13), and the constant B set to zero. If

we estimate an e�ective exponent from the N = 144 and 288 lattices, we

get :05 � :06, and from the two largest lattice sizes we get :07 � :06; this

demonstrates that we do not see, within our statistical precision, any sign of

a non-pure-power, non-asymptotic behavior. Note that, if the constraint that

B vanishes is relaxed, our data is not accurate enough to yield a meaningful

�t to equation (13). A very small (asymptotically �nite) correlation length

is su�cient to produce such a small e�ect on our quite small lattice sizes.

These results appear to be consistent with those of the Copenhagen group

[27], and they are not so far from the ones of the Urbana group [28, 39].

The critical value of � shifts very slowly to higher values for increasing N

for the largest lattices, although the increase is not statistically signi�cant.

In addition the shape of the speci�c heat (for example the width) is
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basically unchanged as we go to larger lattices. From Figs. 2 and 3 we do

not infer evidence of criticality.

In Fig. 4a we show the radius of gyration of the surface, RG, as de�ned

in (15). Here obviously the volume scaling is non-trivial: larger surfaces have

larger radius. The histogram reconstruction already ceases to work for quite

low values of � for the larger lattice. This e�ect could be related to the

interesting �nite size scaling behavior of this quantity, which we illustrate in

better detail in Fig. 4b. Here we plot

�(N) �
log

R(N)

R(N
2
)

log(2)
: (22)

This is an e�ective inverse Hausdor� dimension, which is a function of �.

In the large � limit � ! 1 and dextr ! 2, as expected for at surfaces. In

the low � limit dextr becomes very large. In the pseudo-critical region � is a

linear function of �. Curiously enough, the latter curve yields a Hausdor�

dimension of 4, a value characteristic of branched polymers, near the location

of the speci�c heat peak. This value is not particularly reliable though be-

cause of �nite-size e�ects and also because it changes rapidly in this region.

In ref. [27] a value compatible with ours (DH(�c) > 3:4) is quoted for the

critical theory. We stress however (and also here we are in complete agree-

ment with [27]) that the Hausdor� dimension in the pseudo-critical region

depends heavily and quite unusually on N .

In both the high and low � regions �nite size e�ects are quite small

(compatible with zero to one standard deviation). In the pseudo-critical

region, on the contrary, �nite size e�ects are large. This e�ect cannot be

explained by the shift in � which one gets from the shift of the peak of the

speci�c heat, which is far too small. This behaviour is very di�erent from

that which we discussed for SE; it seems to indicate the possibility of some

sort of critical behavior close to � = 1:4.

In Fig. 5 we plot the expectation values of the magnitude of the extrinsic

Gaussian curvature j K j. If the induced metric is equal to the intrinsic

metric, then j K j= jRj

2
.

This plot is not substantially di�erent from that of SE. We note that

�nite size e�ects are somewhat larger in this case than for the edge action,

but they follow the same pattern (exhibiting a big increase in the at phase).

The plot of the uctuations of the extrinsic Gaussian curvature, F [K],

16



which we present in Fig. 6, shows something very new. A very sharp

crossover, with perhaps a peak developing for large N , dominates the pseudo-

critical behavior. Fluctuations do not seem to depend on � in the crumpled

phase, while they drop dramatically, in a very small � interval, in the at re-

gion. Here again, �nite size e�ects are sizeable in the pseudo-critical region.

The position of the crossover does not depend sensitively on N , while the

detailed shape at �c seems to change slightly with N .

It is di�cult to give a precise interpretation of a plot like this, but, as we

said, the crossover is very clear here.

In Fig. 7 we give the intrinsic curvature R and in Fig. 8 its uctuations.

Both plots are very similar to the related, extrinsic curvature, K plots. j R j
drops o� rapidly, just as j K j does. Through the peak region, though, j K j
decreases by about a factor of 5 while j R j diminishes to only about :6 of its

value on the left-hand side of the peak. Since the action explicitly suppresses

mean curvature, and the mean and extrinsic Gaussian curvature are closely

related (for instance, H2 > K

2
), we would expect that for large � extrinsic

uctuations would be suppressed much more than uctuations of intrinsic

geometry.

In Fig. 9 we plot the intrinsic-extrinsic curvature correlation. The plot of

K �R indicates that intrinsic and extrinsic geometry are strongly correlated

for small �, but as one passes through the peak region they become decor-

related. This is not particularly surprising, given that the action directly

suppresses only extrinsic uctuations. Note that RG calculations based on

the Nambu-Goto action plus an extrinsic curvature term (with no dependence

on an intrinsic metric) perturb about a background that is both intrinsically

and extrinsically at. Given the observed decorrelation between intrinisic

and extrinsic geometry, we would not anticipate that this background ap-

pears in the low- temperature limit of the model which we simulate.

In Fig. 10a we plot the expectation value of the maximum coordination

number, which has non-trivial scaling behavior. In Fig. 10b we give its

scaling exponent, de�ned analogously to the exponent we have exhibited for

the gyration radius. In the pseudo-critical region qmax scales (for our 3 lattice

sizes) as a power, with an exponent close to 0:1; we do not know if this scaling

is meaningful.
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5 Correlation Times

We will discuss here correlation times for di�erent observables. As we already

pointed out correlation times become very large in the large � region. In

agreement with ref. [27] (see their Fig. 1) we do not see any increase of the

correlation times close to the pseudo-critical point.

We will not present precise estimates of correlation times (exponential

or integrated) { they are too large to get precise estimates. We will limit

ourselves to a discussion of a few �gures, which give quite a clear idea of

what is happening. The comparison with Fig. 1 of ref. [27] cannot be very

direct, since our action is di�erent and because their dynamics may be more

e�ective than ours. Still, the comparison is quite puzzling, since we estimate

and exhibit correlation times which are much (orders of magnitude) larger

than the ones of [27]. Applying customary methods to estimate �int can

lead to an underestimate of correlation times if more than one time scale is

present (that does surely happen with our data if we integrate it on a window

of reasonable size).

In Fig. 11a we plot SE for N = 144, � = 1:4, and in Fig. 11b the gyration

radius for these values (with a di�erent time scale). Clearly, the correlation

time is at least of order 40; 000 sweeps in the �rst case and 100; 000 sweeps in

the second one. In Figs. 12a and b, we plot the same quantities for � = 1:5.

Here correlation times are larger, of order 50; 000 steps for SE and larger than

150; 000 steps for RG. In Figs. 13 we draw the same plot on the largest lattice

we study (N = 576) for � = 1:4. Here we can see dramatic correlations, with

times of at least 100; 000 steps for SE and of at least 1; 000; 000 steps for RG.

In Fig. 14 we plot, for the same time history and on the same scale, both

SE and RG. This �gure shows a clear anticorrelation: larger surfaces are

atter and have smaller curvature (this is apparent in the region close to the

2000th step).

6 Interpretation of Results

The results of this paper show that the transition from crumpled to at

surfaces with increasing � is quite complex. Guided by the present data and

the very interesting results of ref. [27] we present in this section our current

interpretation of the situation.
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On lattices with up to 576 vertices we can clearly see a sharp crossover,

but the absence of a diverging speci�c heat, of diverging correlation times

and of strong �nite size e�ects suggests that we are not observing a usual

second order phase transition. On the other hand, quantities like the intrinsic

curvature, or the mass measurements of [27] show that something non-trivial

is happening.

Let us review the crux of our observations again. This model of crumpled

surfaces appears to exhibit sharp crossover behavior in the region around � =

1:4. The sharp growth in the gyration radius and the suppression of curvature

uctuations indicate that the normals acquire long-range correlations, up to

the size of the systems we examine. Presumably the zero string tension

measurement of [27] also shows that the disordered regime di�ers from the

regime in which the surfaces are ordered (up to scale of the lattices that

are simulated) by only a small shift in �. This evidence might indicate the

presence of a phase transition at this point. If so, it is very likely to be of

order higher than 2 (or, rather implausibly, it could be second order with

an extremely low negative speci�c heat exponent; our lattices are much too

small for us to extrapolate with con�dence the value of the speci�c heat

exponent as N !1).

If the transition were higher order, the peak should exhibit a cusp, but

we would need far more accurate data to detect this. The existence of this

phase transition would then suggest the existence of a new continuum string

theory, though many other issues would have to be resolved (e.g. unitarity)

to determine if such a theory is physically desirable.

There are other possible interpretations of our data. We need to consider

the inuence of �nite-size e�ects, since the surfaces which we simulate are

quite small, even smaller than one might naively assume because they are not

intrinsically smooth. For instance, random surfaces characteristic of D = 0

gravity have a Hausdor� dimension of roughly dintr = 2:8 [49, 50]; it has been

predicted that surfaces embedded in 1 dimension have Hausdor� dimension

2 +
p
2 [49]. Thus, for instance, if the surfaces in our simulations had an

intrinsic dimension of 3, they would have a linear size of fewer than 9 lattice

spacings6.

Perhaps the simplest alternative explanation for the presence of this peak

6Of course, our lattices are too small, by one or two orders of magnitude, to really
exhibit a convincing fractal structure.
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is suggested by the arguments of Kroll and Gompper [40]. They argue that

the peak occurs when the persistence length of the system approaches the

size of the lattice (�p � N
1

d )7. For larger �, uctuations on a larger scale

become more important, but when this scale is greater than the lattice size,

these uctuations are suppressed. Thus one might surmise that the speci�c

heat will drop for large �. (It clearly goes to zero for small � because of the

presence of the prefactor �2; the lattice implements a ultraviolet cuto� that

freezes out very short-range uctuations.)

The one-loop renormalization group calculation (10) predicts that the

persistence length grows as �p � exp(C�); C is inversely proportional to

the leading coe�cient of the beta function. We would expect that the peak

position should shift to the right with increasing N in this scenario as

�peak(N
0)� �peak(N) =

ln(N
0

N
)

dintrC
: (23)

Quite a large value of C is needed to explain the rapid crossover; roughly

values of C � 10; dintr � 3 are more or less consistent with the magnitude

of the peak shift and crossover width. The RG calculations using di�erent

forms of the action yield C = 4�
3
(see equation 10), but this may not apply

to the action we simulate.

This reasoning also indicates that the peak should widen as the lattice size

increases; we do not observe this at all. It seems plausible though that these

arguments, based only on the leading term of the high lambda expansion,

are too naive.

An alternative scenario, which builds on the ideas in the above paragraph,

is suggested by the tantalizing similarities between the results of our uid

surface simulations and what has been observed for the d = 4 SU(2) Lattice

Gauge Theory [44] and for the d = 2 O(3) model. Let us discuss the case of

the O(3) model.

TheO(3) model, which is asymptotically free, exhibits a speci�c heat peak

near � = 1:4. This peak was �rst measured via Monte Carlo simulations

by Colot [52]. It can also be obtained by di�erentiating the energy data

measured by Shenker and Tobochnik [53, 54]. The origin of this peak is

understood [54, 55]; it is due to the uctuations of the sigma particle, a

7For couplings above this point, our simulations would simply be measuring �nite size
e�ects.
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low-mass bound state of the massless O(3) pions. The sigma induces short-

range order, and contributes to the speci�c heat as a degree of freedom only

at high temperatures (when the correlation length in the system becomes

smaller than its inverse mass). The peak thus occurs at the beginning of the

crossover regime, when the correlation length is several lattice spacings.

According to the low temperature expansion, the correlation length grows

as � � exp(2��)=�. Thus one would expect a fairly rapid crossover in the

O(3) model; the correlation length should increase by roughly a factor of 9

when � is shifted by about :358. Such a crossover is indeed observed, though

it is not so apparent that it is as dramatic as the crossover behaviour observed

for uid surfaces.9

Recent simulations of the O(3) model [51] indicate that the speci�c heat

peak grows signi�cantly when the lattice size L is increased from 5 to 15,

and that virtually no growth in peak height is evident as L is increased

further up to 100. Also, the peak position shifts to the right as L grows, and

then appears to stabilize for large L. This is more or less what we observe

in our simulations of uid surfaces, on lattices of small size. We point out

these similarities largely to emphasize that there does exist an asymptotically

free theory (with low mass excitations) which exhibits crossover behavior

qualitatively similar to that observed in our simulations.

The analogy is perhaps deeper, though, since the uid surface action

(with extrinsic curvature) in certain guises looks like a sigma model action.

So, perhaps it would not be so surprising from this point of view to �nd a

sigma particle in these theories perhaps associated with (n̂2� 1), in which n̂

denotes the unit normal to our surfaces.

Another additional possibility is that uctuations of the intrinsic geome-

try (the Liouville mode) are responsible for short-range order and contribute

to the speci�c heat peak.

8In fact, the presence of the sigma signi�cantly modi�es this low-temperature expansion
result [55] in this intermediate regime, but does not qualitatively destroy the rapidity of the
crossover. Indeed, despite heroic e�orts, it has been impossible to extend computationally
beyond this regime and precisely verify the asymptotic low-temperature relation for the
correlation length [56, 57].

9To quantitatively compare the width of the crossover regimes for these two models it
would be necessary to measure a correlation length (perhaps extracted from the normal-
normal correlation function) in these random surface simulations.
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7 Further Work

There remains much to be done to clarify whether or not a crumpling tran-

sition occurs for a �nite value of the extrinsic curvature coupling �. It would

be interesting (and probably a fair amount of work) to apply Wilson renor-

malization group techniques to the actual action (7) which we simulate, to

determine the leading coe�cient of the beta function. Additionally, perhaps

a calculation of 1=D corrections to the large D computations already per-

formed could unearth evidence of a sigma-type excitation in these theories

(the e�ects of the sigma appear as 1=N corrections in the O(N) model).

We also are histogramming our data to examine the behavior of complex

zeroes (in complex � space) of the partition function of our simulations [58].

It has been shown (in the case of SU(2) lattice gauge theory) that such

zeroes, when they are near but do not approach the real axis in the in�nite

volume limit, occur in theories which exhibit speci�c heat peaks with no

associated phase transition [44]. High temperature expansions also indicate

that the O(3) model susceptibility has a complex singularity near the real

axis [59]{ presumably this corresponds to a zero of the partition function and

is a manifestation of the sigma.

Of course, simulations on large lattices, with better statistics, should

also help us evaluate whether a crumpling transition exists. We are testing

algorithms, such as simulated tempering [60], in order to evade the long

auto-correlation times that have characterized our simulations so far.

Even if no such transition exists for �nite �, one could still attempt to

study a continuum theory in the strong coupling limit, as is done for QCD,

for instance. To do so, we would like to examine global quantities, such as

masses extracted from normal-normal correlation functions, rather than just

the local quantities (energy, e.g.) that we have measured. Measuring these

correlations requires a de�nition of distance on these triangulated lattices;

the most successful de�nition of the metric is based on the propagation of

massive particles (via inversion of the Laplacian) on these lattices [61].

8 Conclusion

We have thus explored the phase diagram of uid random surfaces with

extrinsic curvature, but unfortunately we have been unable to determine if
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our model undergoes a phase (crumpling) transition at �nite coupling. We

have observed dramatic crossover behavior for particular observables in our

Monte Carlo simulations, but on the other hand, the correlation times and

certain �nite-size e�ects do not behave as one would expect in the presence

of a phase transition. The behavior of other lattice models also indicates

that it is possible that we are observing the e�ects of �nite-mass excitations

on small lattices, rather than a phase transition. We hope that future work

will clarify this murky state of a�airs, to determine if there indeed exists a

crumpling transition for uid surfaces.
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9 Figure Captions

Fig. 1 The edge curvature SE as a function of �. As in all other pictures, �lled

circles and a dotted line correspond to N = 144, crosses and a dashed

line indicate N = 288 and empty squares and a solid line represent

N = 576.

Fig. 2 The edge curvature speci�c heat, C(�).

Fig. 3 As in Fig. 2, but with the multi-histogram reconstruction in the tran-

sient region.

Fig. 4a The gyration radius RG de�ned in (15), plotted as in Fig. 1.

Fig. 4b The e�ective inverse Hausdor� dimension � as a function of �, as de-

�ned in (16). The �lled dots and the dashed curve are from a �t to

the N = 288 and N = 144 data, while the empty dots and solid curve

represent the �t to N = 576 and N = 288.

Fig. 5 The extrinsic Gaussian curvature j K j de�ned in (17), plotted as in

Fig. 1.

Fig. 6 The uctuations of j K j.

Fig. 7 The intrinsic curvature j R j de�ned in (18), plotted as in Fig.1.

Fig. 8 The uctuations of j R j.

Fig. 9 The intrinsic extrinsic curvature correlation, as de�ned in (19), plotted

as in Fig.1.

Fig. 10a The average maximum coordination number of the surface vertices,

maxi qi, plotted as in Fig.1.

Fig. 10b The scaling exponent of maxi qi, plotted as in Fig.1.

Fig. 11a SE as a function of Monte Carlo time (80; 000 steps) for N = 144,

� = 1:4.

Fig. 11b R as a function of Monte Carlo time (300; 000 steps) for N = 144,

� = 1:4.

29



Fig. 12a SE as a function of Monte Carlo time (80; 000 steps) for N = 144,

� = 1:5.

Fig. 12b R as a function of Monte Carlo time (300; 000 steps) for N = 144,

� = 1:5.

Fig. 13a SE as a function of Monte Carlo time (300; 000 steps) for N = 576,

� = 1:4.

Fig. 13b R as a function of Monte Carlo time (3; 000; 000 steps) for N = 576,

� = 1:4.

Fig. 14 SE and R from the same Monte Carlo run, N = 576, � = 1:325, 20; 000

steps.
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