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Abstract
In this paper, we present the first, preliminary results of HPF/Fortran-D language analysis based on compiling

and running benchmark applications using a prototype implementation of HPF/Fortran-D compiler. The analysis
indicate that the HPF is a very convenient tool for programming many applications on massively parallel and/or
distributed systems. In addition, we cumulate experience on how to parallelise irregular problems to extend the
scope of Fortran-D beyond HPF and suggest future extensions to the Fortran standard.

1



1. Introduction

Since its introduction over three decades ago, For-
tran has been the language of choice for scientific and
engineering programming. The advent of parallel com-
puters made, however, ordinary Fortran77 of Fortran
90 obsolete, in a sense that codes written in these lan-
guages do not provide sufficient information to exploit
the full capability of modern architectures. Moreover,
programming distributed-memory parallel computers is
difficult and the resulting codes are not portable.

To address these problems, the High Performance
Fortran Forum was founded, a coalition of industrial
and academic groups working to propose a new Fortran
standard. It is expected that HPF will be offered by all
major U.S. parallel computer vendors with an initial
language definition, to be agreed in December 1992.

HPF is closely based on the research language
Fortran-D, designed and implemented by research
groups at Rice and Syracuse University [1]. We
are currently implementing new features in Fortran-D
which will handle irregular problems such as adaptive
finite element calculations. These are outside the scope
of the current HPF definition and we expect Fortran-D
and similar research projects will suggest new features
for later revisions of HPF.

In this paper, we discuss a set of applications
with which we have experience in paralellizing using
explicit message-passing. We show which category of
applications can be expressed in the HPF language and
which need extensions such as those in Fortran-D.

The paper is organized as follows. Section 2
presents an overview of the HPF design. A prototype
implementation of Fortran-D is described in Section
3. In section 4, our experience of using Fortran-D
to compile and run the benchmarking applications is
presented. Finally, section 5 contains conclusions.

2. High Performance Fortran

The definition of HPF is still under discussion
and the final draft of the proposal is expected to be
agreed upon in December 1992. The detailed descrip-
tion of proposed HPF features can be found elsewhere

[2]. This section briefly summarizes the current draft
(September ’92) of HPF proposal.

2.1 Goals and Scope of HPF

The goals of High Performance Fortran are to
define language extensions and feature selection for
Fortran supporting:

• Data parallel programming (defined as single
threaded, global name space, and loosely syn-
chronous parallel computation)

• High performance on MIMD and SIMD comput-
ers with non-uniform memory access costs

• Code tuning for various architectures

These goals are to be achieved by defining a minimal
set of extensions to the current Fortran standard, min-
imizing direct conflict with Fortran-77 and Fortran-90.
The proposed new standard will also define open inter-
faces to other languages and programming styles.

HPF Forum would like to make compiler avail-
ability feasible in the near term with demonstrated per-
formance on an HPF test suite.

2.2 HPF Computational Model

The underlying intuition behind HPF computa-
tional model is that

• an operation on two or more data objects is likely
to be carried out much faster if they all reside in
the same processor

• it may be possible to carry out many such oper-
ations concurrently if they can be performed on
different processors

Thus, the main mechanism for achieving parallelism in
HPF is data partition. Distribution of control is then
derived from the data distribution using the owner com-
pute rule: each assignment is executed by processor(s)
that own the assigned variable. However, a compiler
may relax the owner rule, in order to improve perfor-
mance.
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2.3 Data Alignment and Distribution

The model of the allocation of data objects to pro-
cessor memories adopted by HPF is that there is a
two-level mapping of data object to abstract processors.
Data objects (typically array elements) are first aligned
with an abstract index space called a template; a tem-
plate is then distributed onto a rectilinear arrangement
of abstract processors. The implementation then uses
the same number, or perhaps some smaller number, of
physical processors to implement these abstract proces-
sors. This mapping of abstract processors to physical
processors is implementation dependent.

2.4 Parallel Statements

There is no consensus yet on what new language
features are necessary to explicitly express operations
to be executed in parallel. Among submitted proposals
are:

2.4.1 FORALL FORALL provides means to specify
parallel loops in a deterministic manner. In a FORALL
loop, each iteration uses only values defined before
the loop or within the current iteration . When a
statement in an iteration of the FORALL loop accesses
a memory location, it will not get any value written by
a different iteration of the loop. Instead, it will get the
old value at that memory location (i.e. the value at that
location before the execution of the FORALL loop)
or it will get some new value written on the current
iteration. Similarly, a merging semantics ensures that
a deterministic value is obtained after the FORALL if
several iterations assign to the same memory location.

Another way of viewing the FORALL loop is that
it has copy-in/copy-out semantics. In other words, each
iteration gets its own copy of the entire data space that
exists before the execution of the loop, and writes its
results to a new data space at the end of the loop. Since
no values depend on other iterations, the FORALL loop
may be executed in parallel without synchronization.
However, communication may still be required before
the loop to acquire non-local values, and after the loop
to update or merge non-local values. Single-statement

FORALL loops are identical to those supported in
CM—Fortran [3].

2.4.2 INDEPENDENT DO INDEPENDENT DO
asserts the compiler that the iterations of the loop
may be executed independently, i.e. in any order,
interleaved, or concurrently without changing the se-
mantics of the program. The compiler is justified in
producing a warning if it can prove otherwise.

2.4.3 Array Assignments and WHERE array as-
signments and masked array assignments WHERE are
defined in Fortran-90 standard.

2.5 HPF Subset

An important goal for HPF is early compiler avail-
ability. In recognition of the fact that full Fortran-90
compilers may not be available in timely fashion on all
platforms, and also that implementation of some of the
HPF extensions proposed are more complex than oth-
ers, a formal HPF extensions has been defined. Among
selected features are Fortran-90 array language and dy-
namic storage allocation.

3. Implementation of HPF/Fortran-D

The current proposal of HPF is closely based on
the research language Fortran-D, described in details
elsewhere[1]. Actually there are two dialect of this
language: Fortran-77D and Fortran-90D. Since HPF is
based on Fortran-90, in this paper we concentrate here
on Fortran-90D only. This chapter provides a general
idea on how the compiler is implemented, and more
detailed description can be found in [4].

3.1 Overall Strategy

The Fortran-D compiler consists of three parts.
The Fortran-77D and Fortran-90D front ends process
input programs into a common intermediate form. The
Fortran-D back end then compiles the intermediate
form to the SPMD (Single Program Multiple Data)
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message-passing node program. We have several rea-
sons for this strategy:

• Sharing a common back end for both the Fortran-
77D and Fortran-90D avoids duplication of effort.

• Decoupling the Fortran-77D and Fortran-90D
front ends allows them to become machine in-
dependent.

• Providing a common intermediate form helps
us experiment with defining an efficient com-
piler/programmer interface for programming the
nodes of a massively parallel machine.

3.1.1 Intermediate Form To compile both dialects
of Fortran-D using a single back end, we must select an
appropriate intermediate form. In addition to standard
computation and control flow information, the interme-
diate form must capture three important aspects of the
program:

• Data decomposition information, telling how data
is aligned and distributed among processors.

• Parallelization information, telling when opera-
tions in the code are independent.

• Communication information, telling what data
must be transferred between processors.

Finally, we believe that the primitive operations of
the intermediate form should be relatively low-level
operations that can be translated simply for single-
processor execution.

We have chosen Fortran-77 with data decomposi-
tions, FORALL, and intrinsic functions to be the inter-
mediate form for the Fortran-D compiler. We show
later that this form preserves all of the information
available in a Fortran-90 program, but maintains the
flexibility of Fortran-77. Parallelism and communica-
tion can be determined by the compiler for simple com-
putations, and specified by the user using FORALL and
intrinsic functions for complex computations.

3.1.2 Node Interface Another topic of interest in the
overall strategy is the node interface - the node pro-
gram produced by the Fortran-D compiler. It must be
both portable and efficient. In addition, the level of

the node interface should be neither so high that ef-
ficient translation to object code is impossible, nor so
low that its workings are completely opaque to the user.
We have selected Fortran-77 with calls to communica-
tion and run-time libraries based on ParaSoft’s Express
communication library [5]. Evaluating our experiences
with this node interface is the first step towards defin-
ing an ‘‘optimal’’ level of support for programming
individual nodes of a parallel machine.

3.2 Fortran-90D Front End

The function of the Fortran-90D front end is to
scalarize the Fortran-90D program, translating it to the
intermediate form. For the Fortran-90D compiler we
find it useful to view scalarization as three separate
tasks:

• Scalarizing Fortran-90 Constructs. Many
Fortran-90 features are not present in our in-
termediate form. They must be translated into
equivalent Fortran-77 statements.

• Fusing Loops. Simple scalarization results in
many small loop nests. Fusing these loop nests
can improve the locality of data accesses, sim-
plify partitioning, and enable other program trans-
formations.

• Sectioning. Fortran-90 array operations allow
the programmer to access and modify entire ar-
rays atomically, even if the underlying machine
lacks this capability. The Fortran-D compiler must
divide array operations into sections that fit the
hardware of the target machine [6,7].

We defer both loop fusion and sectioning to the Fortran-
D back end. Loop fusion is deferred because even hand
written Fortran-77 programs can benefit significantly
[8]. Sectioning is needed in the back end because
FORALL loops may also be present in Fortran-77D.

We assign to the Fortran-90D front end the re-
maining task, scalarizing Fortran-90 constructs that
have no equivalent in the Fortran-D intermediate form.
There are three principal Fortran-90 language features
that must be scalarized: array constructs, WHERE
statements, and intrinsic functions [9].
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3.3 Fortran-D Back End

The Fortran-D back end performs two main func-
tions - it partitions the program onto the nodes of
the parallel machine and completes the scalarization
of Fortran-D into Fortran-77. We find that the desired
order for compilation phases is to apply loop fusion
first, followed by partitioning and sectioning.

Loop fusion is performed first because it simplifies
partitioning by reducing the need to consider inter-
loop interactions. It also enables optimizations such as
strip-mining and loop interchange [10]. In addition,
loop fusion does not increase the difficulty of later
compiler phases. On the other hand, sectioning is
performed last because it can significantly disrupt the
existing program structure, increasing the difficulty of
partitioning analysis and optimization.

3.4 Run-time Library

Fortran-90 intrinsic functions represent computa-
tions (such as transpose and matmul) that may have
complex communication patterns. It is possible to sup-
port these functions at compile time, but we have cho-
sen to implement these functions in the run-time li-
brary instead to reduce the complexity and machine-
dependence of the compiler.

The Fortran-D compiler translates intrinsics into
calls to run-time library routines using a standard in-
terface. Additional information is passed describing
bounds, overlaps, and partitioning for each array di-
mension. The run-time library is built on top of the
Express communication package to ensure portability
across different architectures .

4. Lesson from using
Fortran–90D Compiler

4.1 Benchmarking Suite

To validate our compiler a benchmarking suite has
been developed. Currently, the suite contains about
30 application programs and is divided into several
groups. More applications will be added to the suite

soon. The applications come either from indepen-
dent research at our lab or are adopted from existing
benchmarking suites. The suite contains source codes
written in at least four Fortran dialects: Fortran–77,
Fortran–77 + hand coded message-passing (Express,
PICL and/or NX), Fortran–90 (more precisely, Think-
ing Machine’s CM-Fortran and/or Maspar’s mpfortran)
and Fortran–90D. The suite is expected to become an
official HPF benchmarking suite and is available via
anonymous ftp from minerva.npac.syr.edu

Two groups of applications (The General Section
and The Purdue Set) collects applications designed
for the initial test of the Fortran D compiler. The
applications are simple, but diverse. They selectively
address different aspects of parallel computing and thus
enable systematic, clear test of the compiler at the
development phase. Of particular value in this context
is the Purdue Set, a benchmarking suite to test parallel
language designs proposed at Purdue University [11].
Most of the computational problems included in the set
have been extracted from larger computations and even
though they are somewhat artificial by themselves, they
do comprise a rich sample of practical computations.

The other groups of applications comprise a suite
of complete, “real life” applications coming from inde-
pendent research on parallel algorithms in linear pro-
gramming, matrix algebra, computational physics, fi-
nancial modeling, weather and climate modelling, and
simulation of electromagnetic fields. The suite also in-
cludes applications from the NAS[12], GENESIS[13],
and SPLASH[14] benchmarking suites. We are also
working on paralellization of MOPACK[15].

4.2 Language Analysis

In this section we present preliminary results of
HPF/Fortran–90D language analysis. The results are
based on compiling applications from the Purdue Set,
using the Fortran–90D compiler and running them an
nCUBE-2, iPSC/860 and a network of SUN worksta-
tions. In addition, some observations has been made
by comparing Fortran-90 versions to those coded in
Fortran-77 with explicit message-passing, before con-
verting them to Fortran-90D.
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The first observation is that for many regular prob-
lems, HPF/Fortran–90D is a very convenient tool mak-
ing programming both SIMD and distributed memory
MIMD computers easy. Since (a subset of) Fortan-90 is
already a language of choice for many SIMD machines,
we concentrate on MIMD computers. The tedious and
error prone coding of message passing is generated au-
tomatically by the compiler. It significantly reduces
time necessary for coding, and allows for fast experi-
mentation with data partitioning and alignment to get
the maximum performance. This is very important,
since compilers of the current generation are not yet
expected to be able to find the optimal data distribu-
tion outomatically, and they will need programmer’s
hints (i.e. compiler directives).

The efficiency of Fortran–90D codes for simple
applications of the Purdue Set is good: the execution
time is only about 10% longer as compared to its
equivalents with hand coded Express massage-passing.
Thus, it can be expected that Fortran–90D codes will
outperform those with explicit message-passing when
all opportunities of optimization are fully exploit by
the compiler.

Therefore, we recommend developing new appli-
cations in Fortran–90, as opposed to Fortran–77, leav-
ing the option for easy parallelization of the codes
open. Few commercial Fortran–90 compilers are al-
ready available on the market (NAG, ParaSoft, etc.),
many others vendors announced the compiler avail-
ability soon.

Parallelization of the existing applications (’dusty
decks’) involves conversion of Fortran 77 codes into
Fortran 90. For small applications (hundreds lines or
so) it usually is not a difficult task, as in the case
of the Purdue set. For larger applications it may be
complicated. In some cases an automatic translators
(like VAST and others) can be used, at least at the initial
phase to save time of straight forward conversion of do
loops into array syntax. Here, the situation is similar
to the case of data partitioning: the ultimate goal is
to produce fully automatic converters, but the present
technology requires programmer assistance to handle
more complicated cases.

Nevertheless, we expect that some of dusty decks

will have to be completely rewritten before actual par-
alellization. The point is that an efficient parallelization
requires understanding data dependency, in particular,
the programmer must be aware of side effects generated
by invoked procedures. This, in many cases, may prove
to be very time consuming because of “careless” use
of Fortran–77 features of sequence and storage associa-
tions like COMMON, EQUIVALENCE, SAVE, etc. On
the other hand, it is a common experience that rewrit-
ing the code may lead to a significant improvement
of efficiency even if the application is to be run on
the same machine as before. The need for recoding is
also necessary in the case of parallelization by explicit
message passing. Since the future standards of Fortran,
including HPF, will be based on Fortran–90, it is our
recommendation to rewrite the code in Fortran–90.

An example of a troublesome application is
MOPACK[15], used in computational chemistry. The
profile of the code run on an example input data set in-
dicates that roughly 50% of the execution time is used
by only two routines DIAG (diagonalization of an ar-
ray) and DENSIT (construction of electron density ma-
trix). The rest of the execution is carried out by a large
amount of repeatedly called small routines. The two
time consuming routines can be parallelized, accepting
some algorithmic challenges. However, the key issue
for an efficient parallel implementation of MOPACK
as a complete system is concurrent execution of the
rest of the code. The difficulty arises from the fact
that there are so many global variables declared as
COMMON BLOCKs and/or EQUIVALENCEd to each
other that tracing the data dependency and possible
side effect generated by these routines seems as time
consuming as rewriting the code from the beginning.
Usage of Fortran 90 syntax may help to reshape the
control scheme which would benefit not only when
paralellizing the code but also when extending the
scope of the application and/or refining the adopted
model of molecular dynamics.

The other experience with coding the Purdue set
applications in Fortran-90D is that some algorithms
would be easier to express if some language features
were extended. One example is nested WHERE con-
structs, not allowed either by Fortran-90 or current draft
of HPF proposal. In practice, if type of data depen-
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dency permits (as in case of interpolations), lack of
nested WHERE construct force a programmer to intro-
duce complicated array mask expressions correspond-
ing to nested IF constructs in sequential Fortran-77.
This is an example, where concern about feasibility
of efficient implementation on an arbitrary architecture
was found more important than creating a convenient
tool for a programmer to generate easy to understand
codes.

On the other hand, HPF Forum endorsed the pro-
posal to accept FORALL statement even though it has
been not accepted in Fortran-90 standard. The se-
mantics of FORALL is very close to that associated
with array syntax of Fortran-90, but it allows for non-
conformable operands in the right hand side expres-
sions. It can be shown that all applications of Purdue-
set can be expressed in Fortran-90 syntax, that is,
without FORALL statements. Nevertheless, FORALL
is very convenient, and makes programming easier.
Moreover, it usually helps the compiler to optimize
the code.

Another extension to Fortran-90 standard, consid-
ered by HPF Forum is INDEPENDENT DO construct.
Essentially, it provides means to tell the compiler that
there are no loop-carried dependencies and, as a con-
sequence, all iterations of the loop can be performed in
arbitrary order, in particular in parallel. In practice, it
is a very convenient tool for programming embarrass-
ingly parallel problems. A very convincing example is
the ‘ep’ kernel of the NAS set.

Not all applications of our benchmarking suite can
by expressed in HPF syntax in the way which would
guarantee efficient implementation of their algorithms
on arbitrary computer architecture. All LAPACK[16]
routines included in the suite (LU-, QR-, and Cholesky-
factorizations) require different approaches for SIMD
and MIMD machines. The most efficient MIMD im-
plementations[17] are based on block algorithms with
computing nodes arranged as a pipeline. Such arrange-
ment of processors is not supported by HPF/Fortran-
90D. Instead, HPF makes provision which makes possi-
ble to call a foreign procedure, i.e. a procedure written
in other language than HPF, in particular, in Fortran-
77 or Fortran–90 with explicit message-passing. In

this way an HPF source can be linked with an archi-
tecture’s optimized library, which in this case seems
to be a reasonable solution. In our analyses of bench-
marking applications we try to identify computational
problems which are difficult or impossible to express
in HPF. The cumulative experience allows us to ex-
periment with our research language and compiler, and
suggest extensions to the future Fortran standards.

5. Conclusions

In this paper we presented our preliminary results
of analysis of High Performance Fortran/Fortran-D lan-
guage designs, based on compiling and running appli-
cations from our benchmarking suite. The main con-
clusions can be summarized as follows:

• We developed a prototype HPF compiler, Fortran-
90D compiler.

• Initial tests on small applications demonstrate
good performance of resulting codes, even though
not all of planned optimizations have been yet
implemented.

• HPF seems to be a very convenient and efficient
tool for data parallel programming for many ap-
plications.

• Parallelization of existing applications using HPF
requires conversion from Fortran-77 to Fortran-90.
We anticipate that for some of these applications
the conversion may be time consuming and the
effort may be similar to rewriting the code from
the beginning. We estimate, that a direct paral-
lelization of the Fortran-77 code with hidden data
dependencies an unconscious side effects will cost
a similar effort as rewriting the code in Fortran-
90. Thus, in spite of the cost of doing the con-
version, we recommend it. This will benefit not
only in easy parallelization using HPF but it also
will make the code easier to maintain and further
development.

• We will recommend to the HPF Forum some ad-
ditional extensions to the Fortran-90 standard, in
particular, new parallel statements and/or compiler
directives, as a conclusion of analysis of applica-
tions from our benchmarking suite.
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• We are gathering experience on irregular problems
which are difficult or impossible to express in
HPF. We will test various solutions extending the
scope of Fortran-D beyond HPF. This activity
should lead to modifications and/or extensions of
Fortran standard in the future.
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