
Figure 3: Expectation value of R=V for n = �5; 0; 5, N4 = 4000; 16000; curves ordered as in

�gure 1.

Figure 4: Expectation value of d for n = �5;�1; 0; 1; 5, N4 = 16000; curves ordered as in

�gure 1.
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Figure 1: Expectation value of R=V for n = �5;�1; 0; 1; 5. The curves are ordered from the

smallest n at the bottom upwards.

Figure 2: Expectation value of d for n = �5;�1; 0; 1; 5,N4 = 4000; curves ordered as in �gure

1.
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reabsorb in a simple renormalization of the critical coupling. Always keeping in mind that

a precise �nite size study is required before making quantitative statements [12], we believe

there are two basic possibilities. The �rst possibility is that there is only one universality class,

and that all the theories we have studied do asymptotically show the same critical behavior.

In this case the rate of approach to the continuum limit is strongly inuenced by n. We will

select the theory with faster convergence to the continuum.

The second possibility (which is the most interesting one) is that the measure factor changes

the universality class. Our results, albeit preliminary, seem to hint in this direction. In this

case we could have a critical value of nc, and transitions belonging to di�erent universality

classes. This is a very appealing scenario, and here the lattice discrete theory could make its

own original contribution. It could be possible to pick out the correct measure, on the lattice,

by requiring a particular expectation value and scaling behavior of some physical observable.

Such a prescription would be a powerful tool, turning the discrete version of the theory from

a source of indetermination into a completely determined scheme.

Acknowledgments

Lee Smolin has emphasized, on many occasions, the role of the measure in a theory of quantum

gravity, and we acknowledge many of his interesting comments. B.B. was supported in part

by NSF grant 90 16733. The support of Geo�rey Fox and of NPAC have been crucial to the

success of this project.

7



3-simplex faces that connect a pair of 4-simplices and average over all 4-simplices and random

manifolds.

Both �gures show that the measure operator has a pronounced e�ect. Increasing the

coupling of the measure term leads to a continuous, monotonous deformation of the curves.

Notice that the curves are not just shifted. In the case of R=V , the singularity seems stronger

for n ' 0, where the jump in R=V is quite sharp. The distance d has a sharper jump for

n = 1, where it seems to jump from one constant value to another constant. Smaller values

of n show a slower increase in d.

For large absolute values of n, especially for n = �5, the plots show a weaker singularity.

The pro�le of R=V hints less at a sharp jump than the former cases, and the distance increases

very smoothly from a critical value of k2, k
c

2(n) on. When n increases to the value of 5 the

system seems to loose criticality on an absolute scale. Its behavior through the crossover is

quite smooth.

A critical value of kc2 can be de�ned, for example, as the point where the distance value

starts to change. But for the n = 5 case the transition point is not very clear. Let us note

that such a value of kc2 changes its sign as a function of n.

Figure 3 and 4 show results for N4 = 16000 to indicate what kind of �nite size e�ects

are present. As evident from �gure 3, larger volumes amplify the e�ect of large absolute n

for k2 < kc2. Figure 4 for the average distance d displays the same qualitative behaviour as

�gure 2 for k2 < kc2, but for large k2 the average distance does not remain constant, which

might already have been guessed in �gure 2. The explanation is that the measure term SM

for positive n introduces a bias towards smaller o(a) which increases d, but for large enough

k2 and k4 the contribution of SE dominates and d approaches its n = 0 value. This may be

the case for k2 > kc2, while for k2 > kc2 the critical value kc4(k2) is such that SE � 0, and at

least for the range of negative k2 considered here SM is relevant and d remains large for n = 5.

The same holds for R=V when n = 5.

Our conclusion is that the measure term has a strong e�ect, which seems di�cult to

6



where k4 = �+ 10=G and k2 = 2�=�G.

In the discrete quantum theory there exists a critical line k4 = kc4(k2) such that if k4 is

di�erent from kc4 for a given value of k2 then the random walk tends to either zero or in�nite

volume. All measurements are made for k4 = kc4(k2).

We have selected not one but a family of measures in order to investigate the inuence of

the measure in a rather general setting. Our choice is guided by di�eomorphism invariance

of the measure [10] but ignores more sophisticated arguments like BRST invariance. We have

studied, as a function of n, a measure contribution of the form

Y
x

gn=2 ; (5)

i.e. in the triangulated theory SE [T ] is replaced by S[T ] = SE[T ] + SM [T ], where

SM = �n
X
a

log
o(a)

5
: (6)

The sum runs over all 0-simplices (sites) of the manifold, and o(a) is the number of 4-simplices

which include the site a. We considered n in the interval from �5 to 5. The case n = 0 repeats

simulations with the trivial, uniform measure, which can be compared with previous results.

Let us summarize our results. We con�rm the fact that the phase transition can be of

second order, and that it is plausible that we will be able to de�ne a sensible theory. We �nd

that the measure factor plays an important role, and that the critical behavior does depend on

n. This is very di�erent from 2d quantum gravity (see for example [11]), where modi�cations

of the measure factor of the same kind we use here do not have any non-trivial e�ect on the

critical behavior. Varying n does not only change non-universal quantities, like for example

the value of the critical coupling, but changes the actual (pseudo-)critical behavior.

In �gure 1 we plot the average curvature R=V for V � N4 = 4000 as a function of the

coupling k2 for di�erent values of n, n = �5 for the lowest curve, then n = �1, 0, 1 and

n = 5 for the upper curve. In �gure 2 we plot the average distance (in the internal space) of

two 4-simplices. We count the minimum number of steps from 4-simplex to 4-simplex across
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observation certainly warrants further careful investigations.

These �rst simulations have been run with uniform measure, where all triangulations have

the same weight in the sum which de�nes the path integral of the quantum theory. There

are no particularly good reasons for this choice to be the correct one, and in the following we

investigate the changes introduced by de�ning simplicial quantum gravity with a non-trivial

measure.

One of us has described in [8] the structure of the Monte Carlo simulations, and how

the e�ciency of the numerical procedure can be optimized. The programming of dynamical

triangulations is di�cult since a dynamical data structure is required, but it is very relevant

in many practical applications. For the same reason the implementation of DTRS on parallel

computers is a hard problem. Since a set of ergodic moves preserving the volume for canonical

simulations is not known, one has to consider a Markov chain which sweeps out the space of

di�erent volume simplicial manifolds. We have used the quasi-canonical method introduced

in [9], which allows us to control the systematic distortion arising from the ad hoc potential

that keeps the system close to a given number of 4-simplices [8]. All the details about the

system we study and about the numerical procedures are given in [8].

In the continuum the euclidean Einstein-Hilbert action for a metric g�� has the form

SE[g] =

Z
d4x
p
g(��

R(g)

G
) ; (1)

where R(g) is the Ricci scalar and � and G are the cosmological and gravitational constants,

respectively. We consider a �xed S4 topology. On a triangulation T we discretize according

to

V =

Z
d4x
p
g ! N4[T ] ; (2)

R =

Z
d4x
p
gR(g)!

2�

�
N2[T ]� 10N4[T ] ; (3)

where � ' 1:318, and Ni[T ] is the number of i-simplices of the triangulation T . The discrete

action is then

SE[T ] = k4N4[T ]� k2N2[T ] ; (4)
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without, for example, curvature squared terms. Even though the partition function formally

diverges, at �xed volume the local curvature is bounded both from below and from above.

Therefore we can study the theory at �xed (or better quasi-�xed, see later) volume, and look

for the existence of a stable �xed point in the large volume limit. A second order phase

transition with diverging correlation lengths, in the statistical mechanics language, would

allow us to de�ne a continuum limit which is universal and is not inuenced by the details

of the underlying discrete lattice structure. Precisely this scenario constitutes one of the best

hopes we have to �nd a consistent quantum theory of gravity. If euclidean quantum gravity

based on the Einstein action does have non-perturbative meaning, then we can exhibit it in

this way.

The second problem is to determine the measure one should use to de�ne the quantum

theory. This problem, far from being solved in the continuum, is completely open in the lattice

approach (for a good review see for example [3]). In quantum Regge calculus the inuence of

the measure has been examined in [4] but there is no direct relation to DTRS. The problem

of the measure is the main point we address in this note, and we want to suggest that the

DTRS approach may be powerful enough to solve it.

Recently two groups have pionereed Monte Carlo simulations of DTRS [5, 6, 7]. Numerical

simulations (even if on quite a small scale) turned out to be feasible, and lead to very non-trivial

results. One clearly observes a phase transition structure. Although quantitative statements

are not easy to make, given the limited statistics and the small lattice size, it is clear that the

situation is di�erent from the 3d case, where the phase transition is manifestly of �rst order,

and there is no continuum theory. In 4d [5] there is an open possibility that the transition

is second order (although that cannot be claimed without a much more detailed �nite size

study). One does not observe hysteresis cycles, and the crossover is less sharp then in 3d.

More involved statements about critical exponents have to be taken at this point, we believe,

cum grano salis, but there is evidence for the possible presence of a critical point with a

non-trivial continuum theory in the phase diagram for the euclidean Einstein action. This
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Dynamically triangulated random surfaces (DTRS) [1] play an important role in the ef-

forts to develop a coeherent description of quantum gravity. The (euclidian) space-time is

approximated by a d-dimensional simplicial triangulation, where the link length is constant,

equal to 1, but the connectivity matrix is a dynamical variable.

The most important advances have been obtained in two-dimensional quantum gravity,

where DTRS are simplicial triangulations of a 2d manifolds. The analytic success of matrix

models, which can be for example exactly solved in the case of pure 2d gravity [2], has strongly

encouraged this approach. The results obtained in the triangulated approach and in the

continuum lead to consistent predictions for correlation functions and critical exponents.

Dynamical triangulations are also potentially relevant in four dimensions. One can hope

that a sensible, non-perturbative de�nition of the quantum gravity theory can be obtained in

some scaling limit of the theory of 4d hyper-tetrahedra. This approach has much in common

with Regge calculus, where the connectivity is �xed but the functional integration runs over

the link lengths. The underlying principle is clearly very similar, and one could say that

DTRS have the status of an improved Regge calculus. We face the usual problem inherent in

discretizing a theory, i.e. the discretization scheme can break some of the continuous symme-

tries, which will have to be recovered in the continuum limit (if there is one). Indeed, Wilson

lattice gauge theories have taught us an important lesson. The fact that gauge invariance is

exactly conserved in the lattice theory, for all values of the lattice spacing a, is in that case

crucial: it would have been very di�cult to establish �rm numerical results if one would have

had to care about the presence of non gauge-invariant correction, which would disappear only

in the a ! 0 limit. In the case of quantum gravity, di�eomorphism invariance plays such a

crucial role, and DTRS are di�eomorphism invariant by construction, at least on the space of

piecewise at manifolds. Hence part of the di�culties Regge calculus has in forgetting about

the lattice structure are eliminated a priori in the DTRS lattice approach.

There are two more important points to stress. The �rst one is that in the DTRS approach

in 3d and 4d, as opposed to 2d, we can try to make sense out of the pure Einstein action,
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