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Abstract

We present an overview of the state of the art and future trends in

high performance parallel and distributed computing, and discuss tech-

niques for using such computers in the simulation of complex problems in

computational science. The use of high performance parallel computers

can help improve our understanding of complex systems, and the converse

is also true | we can apply techniques used for the study of complex sys-

tems to improve our understanding of parallel computing. We consider

parallel computing as the mapping of one complex system | typically a

model of the world | into another complex system | the parallel com-

puter. We study static, dynamic, spatial and temporal properties of both

the complex systems and the map between them. The result is a better

understanding of which computer architectures are good for which prob-

lems, and of software structure, automatic partitioning of data, and the

performance of parallel machines.



1 Introduction

The power of high performance computing is being used in an increasingly wide variety of applica-

tions in the physical sciences, and in particular in the study of complex systems. The performance of

supercomputers has increased by roughly a factor of two every 18 months since electronic computers

were �rst developed. A number of supercomputer manufacturers are aiming to deliver Teraop (1012

oating point operations per second) performance well before the end of the decade.

Hardware trends imply that all computers, from PCs to supercomputers, will use some kind of

parallel architecture by the end of the century. Until recently parallel computers were only marketed

by small start-up companies (apart from Intel Supercomputer Systems Division), however recently

Cray, Hewlett-Packard and Convex, IBM, and Digital have all begun marketing commercial parallel

computers. Software for these systems is a major challenge, and could prevent or delay this hardware

trend toward parallelism. Reliable and e�cient systems software, high level standardized parallel

languages and compilers, parallel algorithms, and applications software all need to be available for

the promise of parallel computing to be fully realized.

A characteristic feature of the research on parallel computing at the Caltech Concurrent Com-

putation Program (C3P), and more recently the Northeast Parallel Architectures Center (NPAC)

at Syracuse University, is that many of the people who have worked in these groups (including

ourselves) have a background in physics, so much of this research has made use of ideas from both

physics and computer science. The goal of this work has been to make parallel computers more

e�ective and easier to use for a wider variety of applications [12, 30, 14, 1, 32].

Parallel computers are complex entities used to simulate complex problems. While the physical

sciences have developed several qualitative and quantitativemethods to understand complex systems,

other �elds, in particular computer science, have not. Thus, it is not surprising that physics concepts,

especially those related to complex systems, are helpful in developing a theory of computation and

indeed may become more important as the computers and the problems they simulate get larger

and more complicated. Here we present a review of these concepts. Several references contain more

detailed discussions [34, 33, 25, 26, 27, 30, 28, 17, 21, 22, 24, 32].

In Section 2 we give an overview of the state of the art and future trends in parallel comput-

ing, concentrating on the use of parallel computers for simulation, particularly of complex systems.

We describe recent progress in de�ning a standardized, portable, high level parallel language called

High Performance Fortran, an extension of Fortran 90 designed for e�cient implementation of data

parallel applications on parallel, vector and sequential high performance computers. An outline of

the language is presented, and we discuss its ability to handle di�erent applications in computa-

tional science, particularly the di�culties of implementing irregular problems. We also discuss other

problems such as software integration and the use of concepts such as visualization, virtual reality

and metacomputing to enhance the usability of high performance computers. Further discussions of

issues concerning parallel computing can be found in [30, 15, 20, 47, 23, 32].

We have found that when trying to understanding the use of parallel computers it is often very

helpful to view the application, the software and the computer as complex systems. We have used

these concepts to develop a theory of computation for parallel computers. In Section 3 we lay

the foundations for this theory by presenting the view of computation as a set of maps from one

of these complex systems to another, and introducing the concepts of space and time for these

complex systems. Section 4 describes spatial properties | size, topology, dimension, and a physical

analogy for data partitioning of slowly-varying problems leading to concepts of temperature and

phase transitions.

In Section 5, we discuss temporal properties | a string model for very adaptive problems and a

duality between the temporal structure of problems and the memory hierarchy of computers. Just

as in physics, locality is a critical issue in high performance computing. We need to ensure that the

data needed for a computation is readily available for the arithmetic unit. Delays increase as the

data is placed in memory which is further away from the processor. Locality underlies the design
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and use by compilers of caches in \ordinary" sequential computers and the nature of the networks

used to link the individual computer nodes in a parallel system. Matching the problem locality to

the computer locality is a key to good performance.

In Section 6, we briey discuss the concept of problem architecture and its relation to the better

understood computer architecture, in order to understand which problems are suitable for which

computers. We also apply these ideas to compilers, which are viewed as mapping one space-time

system into another.

Finally, in Section 7, we discuss the idea of physical computation, or adapting techniques from

the physical sciences to create useful computational algorithms for such general problems as opti-

mization. Such techniques are also applied to problems in parallel computing, such as balancing the

computational load between processors.

2 Parallel Computers and Simulation

2.1 Parallel Computing

Carver Mead of Caltech in an intriguing public lecture once surveyed the impact of a number of

new technologies, and introduced the idea of \headroom" | how much better a new technology

needs to be for it to replace an older, more entrenched technology. Once the new technology has

enough headroom, there will be a fairly rapid crossover from the old technology, in a kind of phase

transition. For parallel computing the headroom needs to be large, perhaps a factor of 10 to 100,

to outweigh the substantial new software investment required. The headroom will be larger for

commercial applications where programs are generally much larger, and have a longer lifetime, than

programs for academic research. Machines such as the nCUBE and Thinking Machines CM-2 were

comparable in price/performance to conventional supercomputers, which was enough to show that

\parallel computing works" [30, 32], but not enough to take over from conventional machines. It will

be interesting to see whether the new batch of parallel computers, such as the CM-5, Intel Paragon,

IBM SP-2, Maspar (DECmpp) MP-2, Cray T3D, etc., have enough headroom.

Parallel computers have two di�erent models for accessing data:

� Shared Memory | processors access a common memory space,

� Distributed Memory | data is distributed over processors and accessed via message passing

between processors,

and two di�erent models for accessing instructions:

� SIMD (Single Instruction Multiple Data) | processors perform the same instruction syn-

chronously on di�erent data,

� MIMD (Multiple Instruction Multiple Data) | processors may perform di�erent instructions

on di�erent data.

Di�erent problems will generally run most e�ciently on di�erent computer architectures, so a range

of di�erent architectures will be available for the some time to come, including vector supercomput-

ers, SIMD and MIMD parallel computers, and networks of RISC workstations. The user would prefer

not to have to deal with the details of the di�erent hardware, software, languages and programming

models for the di�erent classes of machines. So the aim of supercomputer centers is transparent

distributed computing, sometimes called \metacomputing"| to provide simple, transparent access

to a group of machines of di�erent architectures, connected by a high speed network to each other

and the outside world, and to data storage and visualization facilities. Users should be presented

with a single system image, so they do not need to deal with di�erent systems software, languages,
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software tools and libraries on each di�erent machine. They should also be able to run an application

across di�erent machines on the network.

Parallel computing implies not only di�erent computer architectures, but di�erent languages, new

software, new libraries, and will open up computation to new �elds and new applications. It also

o�ers a di�erent way of viewing problems. Virtually all complex real-world problems are inherently

parallel, in that many di�erent elements of the problem domain interact with one another at any

given time. In a sequential language, the structure of the problem must be arti�cially broken up to

�t within the con�nes of the sequential computer, for which only one computation can occur at a

time. Using parallel computers and parallel languages allows the programmer to better preserve the

problem structure in the software, and perhaps also in the algorithm.

Over the last 10 years we have learned that parallel computing works | the majority of com-

putationally intensive applications perform well on parallel computers, by taking advantage of the

simple idea of \data parallelism", which means obtaining concurrency by applying the particular

algorithm to di�erent sections of the data set concurrently [38, 39, 30]. Data parallel applications

are scalable to larger numbers of processors for larger amounts of data.

Another type of parallelism is \functional parallelism", where di�erent processors (or even di�er-

ent computers) perform di�erent functions, or di�erent parts of the algorithm. Here the speed-ups

obtained are usually more modest and this method is often not scalable, however it is important,

particularly in multidisciplinary applications.

Surveys of problems in computational science [1, 8, 23] have shown that the vast majority (over

90%) of applications can be run e�ectively on MIMD parallel computers, and approximately 50% on

SIMD machines (probably less for commercial, rather than academic, problems). Currently there are

many di�erent parallel architectures, but only one | a distributed memoryMIMDmulticomputer|

is a general, high performance architecture that is known to scale from one to very many processors.

2.2 Parallel Languages

Using a parallel machine requires rewriting code written in standard sequential languages. We would

like this rewrite to be as simple as possible, without sacri�cing too much in performance. Parallelizing

large codes involves substantial e�ort, and in many cases rewriting code more than once would be

impractical. A good parallel language therefore needs to be portable and maintainable, that is,

the code should run e�ectively on all current and future machines (at least those we can anticipate

today). This means the language should be scalable, so that it can work e�ectively on machines

using one or millions of processors. Portability also means that programs can be run in parallel over

di�erent machines across a network (distributed computing).

There are some completely new languages speci�cally designed to deal with parallelism, for

example occam, however none are so compelling that they warrant adoption in precedence to adapting

existing languages such as Fortran, C, C++, Ada, Lisp, Prolog, etc. This is because users have

experience with existing languages, good sequential compilers exist and can be incorporated into

parallel compilers, and migrating existing code to parallel machines is much easier. In any case, to

be generally usable, especially for scienti�c computing, any new language would need to implement

the standard features and libraries of C and Fortran [19, 21].

The purpose of software, and in particular computer languages, is to map a problem onto a

machine, as described in Section 3.1. A drawback of current software and languages is that they

are often designed around the machine architecture, rather than the problem architecture. This

can make it very di�cult to port the code from one machine to another, and in particular from a

sequential computer to a parallel computer. It is possible for compilers to extract parallelism from a

dependency analysis of sequential code (such as Fortran 77), however this is not usually very e�ective.

In many cases the parallelism inherent in the problem will be obscured by the use of a sequential

language or even a sequential algorithm. A particular application can be parallelized e�ciently if,

and only if, the details of the problem architecture are known. Users know the structure of their
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problems much better than compilers do, and can create their algorithms and programs accordingly.

If the data structures are explicit, as in Fortran 90, then the parallelism becomes much clearer.

Each class of problem architectures requires di�erent general constructs from the software, and a

study of problem architectures is helpful in formulating the requirements for parallel languages and

software (this is described in more detail in Section 6). Currently there are two language paradigms

for distributed memory parallel computers: message passing and data parallel languages. Both of

these have been implemented as extensions to Fortran and C. Here we will concentrate on Fortran.

2.2.1 Message Passing Fortran

Message passing is a natural model of programming distributed memory MIMD computers, and

is currently used in the vast majority of successful applications using MIMD machines. The basic

idea is that each node (processor plus local memory) has a program that controls, and performs

calculations on, its own data (the \owner-computes" rule). Non-local data may need to be obtained

from other nodes, which is done by communication of messages.

In its simplest form, there is one program per node of the computer. The programs can be

di�erent, although they are usually the same. However they will generally follow di�erent threads of

control, for example di�erent branches of an IF statement. Communication can be asynchronous, but

in most cases the algorithms are loosely synchronous [30], meaning that they are usually controlled

by a time or iteration parameter and there is synchronization after every iteration, even though the

communications during the iteration process may not be synchronous.

If parallelism is obtained from standard domain decomposition, then the parallel program for

each node can look very similar to the sequential program, except that it computes only on local

data, and has a call to a message passing routine to obtain non-local data. Schematically, a program

might look something like the following:

CALL COMMUNICATE (required non-local data)

DO i running over local data

CALL CALCULATE (with i's data)

END DO

Note that it is more e�cient to pass all the non-local data required in the loop as a single block

before processing the local data, rather than pass each element of non-local data as it is needed

within the loop. The advantages of this style of programming are:

� It is portable to both distributed and shared memory machines.

� It should scale to future machines, although to achieve good e�ciencies schemes to overlap

communication with itself and with calculation may be required.

� Languages are available now and are portable to many di�erent MIMD machines. Current

message passing language extensions include Express, PICL, PVM, and Linda.

� There will soon be an industry standard Message Passing Interface [48].

� All problems can be expressed using this method.

The disadvantages are:

� The user has complete control over transfer of data, which helps in creating e�cient programs,

but explicitly inserting all the communication calls is di�cult, tedious, and error prone.

� Optimizations are not portable.

� It is only applicable to MIMD machines.
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2.2.2 Data Parallel Fortran

The goal of the Fortran 90 standard is to \modernize Fortran, so that it may continue its long

history as a scienti�c and engineering programming language". Although Fortran 90 is a sequential

language, some of its major new features are the array operations to facilitate vector and data

parallel programming.

Data parallel languages have distributed data just as for the message passing languages, however

the data is explicitly written as a globally addressed array. As in the Fortran 90 array syntax, the

expression

DIMENSION A(100,100), B(100,100), C(100,100)

A = B + C

is equivalent to

DO i = 1, 100

DO j = 1, 100

A(i, j) = B(i, j) + C(i, j)

END DO

END DO

The �rst expression clearly allows easier exploitation of parallelism, especially as a DO loop of For-

tran 77 can often be \accidentally" obscured, so a compiler can no longer see the equivalence to

Fortran 90 array notation. Migration of data is also much simpler in a data parallel language. If

the data required to do a calculation is on another processor, it will be automatically passed be-

tween nodes, without requiring explicit message passing calls set up by the user. For example, a

program fragment might look something like the following, using either an array syntax with shifting

operations to move data (as in Fortran 90)

A = B + SHIFT (C, in i direction)

or explicit parallel loops in a FORALL statement using standard array indices to indicate where the

data is to be found (FORALL is not in the Fortran 90 standard, but is present in many dialects of

data parallel Fortran)

FORALL i, j

A(i, j) = B(i, j) + C(i-1, j)

The advantages of this style of programming are:

� Relatively easy to use, since message passing is implicit rather than explicit, and parallelism

can be based on simple Fortran 90 array extensions.

� Scalable and portable to both MIMD and SIMD machines.

� Should be able to handle all synchronous and loosely synchronous problems, including ones

that only run well on MIMD.

� Data parallel languages such as CM Fortran and MasPar Fortran are available now that are

based on Fortran 90 array syntax.

� An industry standard, High Performance Fortran (HPF), has been adopted, which is an ex-

tension of Fortran 90 that builds on existing data parallel languages [37, 42].

The disadvantages are:

� Need to wait for good HPF compilers.

� Not all problems can be expressed in this way.
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2.2.3 High Performance Fortran

A major hindrance to the development of parallel computing has been the lack of portable, industry

standard parallel languages. Currently, almost all parallel computer vendors provide their own

proprietary parallel languages which are not portable even to machines of the same architecture, let

alone between SIMD and MIMD, distributed or shared memory, parallel or vector architectures. This

problem is now being addressed by the High Performance Fortran Forum (HPFF), a group of over

40 organizations including universities, national laboratories, computer and software vendors, and

major industrial supercomputer users. HPFF was created to discuss and de�ne a set of extensions to

Fortran called High Performance Fortran. The goal was to address the problems of writing portable

code that would run e�ciently on any high performance computer, including parallel computers

of any architecture (SIMD or MIMD, shared or distributed memory), vector computers, and RISC

workstations. Here \e�ciently" means \comparable to a program hand-coded by an expert in the

native language of a particular machine".

The HPF standard was �nalized in May 1993. HPF is designed to support data parallel pro-

gramming. It is an extension of Fortran 90, which provides for array calculations and is therefore

a natural starting point for a data parallel language. HPF attempts to deviate minimally from the

Fortran 90 standard, while providing extensions that will enable compilers to provide good perfor-

mance on a variety of parallel and vector architectures. While HPF was motivated by data parallel

languages for SIMD machines, it was developed to enable such languages to be portable to any

computer architecture, including MIMD, vector and sequential machines [19, 6, 4].

HPF has a number of new language features, including:

� New directives that suggest implementation and data distribution strategies to the compiler.

They are structured so that a standard Fortran compiler will see them as comments and thus

ignore them.

� New language syntax extending Fortran 90 to better express parallelism.

� Standard interfaces to a library of e�cient parallel implementations of useful routines, such as

sorting and matrix calculations.

� Access to extrinsic procedures which can be de�ned outside the language, for example by using

Fortran with message passing, in order to handle certain operations that cannot be expressed

very well (or at all) in HPF.

The strategy behind HPF is that the user writes in an SPMD (Single Program Multiple Data)

data parallel style, with conceptually a single thread of control and globally accessible data. The

program is annotated with assertions (compiler directives) giving information about desired data

locality and distribution. The compiler then generates code implementing data and work distribu-

tion.

In the HPF model, the allocation of data to processors is done using a two-level mapping of data

objects to processor memories, referred to as abstract processors. This is shown in Figure 1. First

the data objects (typically array elements) are aligned relative to one another, using an abstract

indexing space called a template. A template is then distributed onto a rectilinear arrangement of

abstract processors. The �nal mapping of abstract processors to the same or a smaller number of

physical processors is not speci�ed by HPF, and is implementation dependent.

2.2.4 HPF Compilers and Fortran 90D

HPF is de�ned to be portable between computers of di�erent architectures. As its name suggests,

a major goal of High Performance Fortran is to have e�cient compilers for all these machines.

Vectorizing compilers work by analyzing data dependencies within loops, and identifying independent

data sets that can be processed simultaneously. However, obtaining parallelism solely through
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processors

ALIGN or

REALIGN

arrays processors
abstract physical
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dependent directive )

TEMPLATE

DISTRIBUTE or

REDISTRIBUTE (optional implementation

Figure 1: Mapping data onto processors in High Performance Fortran

dependency analysis has not proven to be e�ective in general, so for all commands in HPF the

dependencies are directly implied, enabling the compiler to generate more e�cient code.

Compilers will implement HPF di�erently on di�erent computer architectures, for example:

SIMD computers | parallel code with communication optimized by compiler placement of data.

MIMD computers|amulti-threadedmessage passing code with local data and optimized send/receive

communications.

vector computers | vectorized code optimized for the vector units.

RISC computers | pipelined superscalar code with compiler generated cache management.

A subset of HPF has been de�ned to enable early availability of compilers. The �rst imple-

mentation of HPF is the Fortran 90D compiler being produced by NPAC [4]. The alpha version of

the compiler was demonstrated at Supercomputing 92, and the beta release is now available. The

compiler currently runs on MIMD parallel computers: the nCUBE/2, Intel iPSC/860, and a network

of Sun workstations. The next target architecture is heterogeneous networks, and in the future the

compiler will be optimized for speci�c architectures and released as a commercial product by the

Portland Group. An example of the performance of the current Fortran 90D compiler compared to

a hand-coded message passing program is shown in Figure 2 for a Gaussian elimination problem.

The HPF code for the main routine is shown in Figure 3.

Fortran 90D will continue to be developed as a superset of HPF, in order to research new

functionality that may be added to the HPF standard in the future. For example, language facilities

for handling parallel I/O are being investigated [3], which is a major area of concern that was not

addressed by the initial HPF standard.

2.3 Systems Integration and Visualization

Recent advances in parallel programming languages such as High Performance Fortran are expected

to improve the usability of parallel processing for the simulation of complex problems, especially

in industry. However, complex \real world" computationally intensive applications in areas such as

uid dynamics, product design, or concurrent engineering require even more powerful and versatile

tools. Such applications typically contain several modules with varying degrees of inter-modular

interaction. Some modules such as digital signal processors, 3D renderers or partial di�erential

equation (PDE) solvers map naturally onto the HPF programming model, while some others are

inherently sequential. Also, a realistic application contains typically several data parallel modules,

some of them interacting in the data parallel mode as well, for example di�erent layers of a multigrid

PDE algorithm, or subsequent �lters in the machine vision systems. Finally, the process of integrat-

ing individual components into the full application is a complex task itself, and so is the process of
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Figure 2: Performance of the Fortran 90D compiler versus hand-written message passing code on

the Intel iPSC/860 for Gaussian elimination.

PROGRAM gaussian

PARAMETER (N = 100)

PARAMETER (NN = 100)

INTEGER index(N), iTmp(1)

INTEGER indexRow, i, j, k

REAL a(N,NN), row(NN), fac(N)

REAL maxNum

!HPF$ PROCESSORS p(4)

!HPF$ TEMPLATE templ(100)

!HPF$ DISTRIBUTE templ (BLOCK) ONTO p

!HPF$ ALIGN a(*,i) WITH templ(i)

!HPF$ ALIGN row(i) WITH templ(i)

index = -1

DO k = 1, N

iTmp = MAXLOC(a(:,k), MASK = index .EQ. -1)

indexRow = iTmp(1)

maxNum = a(indexRow,k)

index(indexRow) = k

fac = a(:,k) / maxNum

row = a(indexRow,:)

FORALL (i=1:N, j=k:NN, index(i) .EQ. -1)

& a(i,j) = a(i,j) - fac(i) * row(j)

END DO

END

Figure 3: Gaussian elimination programmed in High Performance Fortran
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module synchronization, interactive debugging and �ne-tuning the parameters of a prototype. New

generation High Performance Distributed Computing (HPDC) software integration tools, required

to handle this type of computational complexity, are currently being constructed. We summarize

here recent activities in this area at NPAC.

Currently a popular approach is based on dataow visualization systems such as AVS (Advanced

Visualization System). This model supports a network of computational modules, implemented as

individual UNIX processes, and interacting via the RPC (Remote Procedure Call) protocol under

control of the AVS kernel. Individual modules can be placed on di�erent machines and hence the

model provides support for heterogeneous distributed computing. Some of these modules can also be

installed on parallel platforms, thereby extending the paradigm to the HPDC level. Visual editing

tools for such a network are also o�ered by the system which facilitiate application prototyping,

integration, monitoring and �ne-tuning. Finally, several default visualization modules come with

the system and allow for sophisticated data visualization and rendering tasks.

AVS is only adequate for relatively static scienti�c visualization tasks. There is no support for

system wide synchronization nor for real-time interactive services required for advanced simulation

tasks such as virtual reality (VR). Also, while parallel (e.g. HPF) modules can be included in the

AVS network, there is no support for parallel I/O or parallel dataow between individual HPF tasks.

All communication must be mediated by the corresponding host programs, which causes substantial

bottlenecks.

We are currently developing a set of tools that will allow us to extend AVS functionality in

these areas and to provide support for virtual reality simulations as well as for televirtuality services

providing remote VR user interfaces. The underlying software model is provided by the MOVIE

(Multitasking Object-oriented Visual Interactive Environment) model [35, 36]. A MOVIE system

is a network of MOVIE servers | interpreters of a high-level object-oriented programming lan-

guage, MovieScript. MovieScript extends PostScript in areas such as graphical user interface (GUI)

prototyping, Fortran 90 style array syntax and operating support for real-time multi-threading.

A speci�c design of a MOVIE network can be adapted to a particular computational domain.

In particular, all dynamic features of the AVS model in the heterogenous distributed mode can be

reproduced in terms of MOVIE tasks or threads, but the model also o�ers support for multitasking

data parallel processing and interactive real-time programming. In the early development stage is the

next level tool, which will allow for concurrent execution of and parallel dataow between several

HPF modules. An AVS-like visual network editor will also be provided to facilitate application

editing tasks. Finally, we also plan to provide support for World Wide Web (WWW) services in

terms of CGI (Common Gateway Interface) scripts. Such scripts, passed from the Web browser to

the Web server to the MOVIE host server will allow for interactive control of simulations running on

remote high performance computers. This architecture will also enable the development of prototype

televirtuality (TVR) services. Current hypermedia browsers such as Mosaic are not adequate to

support two-way interactivity but there are ongoing VR-oriented activities in the WWW community,

and several new consumer level VR products will soon o�er remote support as well.

3 Complex Systems and a Theory of Parallel Computing

3.1 Mapping Problems onto Computers

For this article, we shall consider a complex system as a large collection of, in general, disparate

members. Those members have, in general, a dynamic connection between them. A dynamic

complex system evolves by a probabilistic or deterministic set of rules that relate the complex

system at a later \time" to its state at an earlier \time". Complex systems studied in chemistry

and physics, such as a protein or the universe, obey rules that we believe we understand more or

less accurately. The military play war games, which is the complex system formed by a military

engagement. This and more general complex systems found in society, obey less clear rules.
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One particular important class of complex systems is that of the complex computer. In the

case of a hypercube such as the nCUBE, or other multicomputers such as the Intel Paragon or

Thinking Machines CM-5, the basic entity in the complex system is a conventional computer and

the connection between members is a communication channel implemented either directly in VLSI,

on a PC board, or as a set of wires or optical �bers. In another well-known complex computer, the

brain, the basic entity is a neuron and an extremely rich interconnection is provided by axons and

dendrites.

In many situations, one is concerned with mapping one complex system into another. Solving a

problem consists of using one complex system, the complex processor, to \solve" another complex

system, the complex problem. In building a house, the complex processor is a team of masons,

electricians, and plumbers, and the complex problem is the house itself. In this article, we are mainly

interested in the special case where the complex processor is a complex computer and modeling or

simulating a particular complex problem involves mapping it onto the complex computer.

Simulation or modeling begins with a map

Nature (or system to be modelled)

map

�!

theory

Idealization or Model (1)

This map would often be followed by a computer simulation, which consists of mapping the model

onto the computer. This whole process can be broken up into several maps, as shown in Figure 4.

We illustrate the procedure using the example of a computational uid dynamics study of airow

around an airplane, where the complex systems used are:

S0 is nature | the actual ow of air around the airplane.

S1 is a (�nite) collection of molecules interacting with long-range Van der Waals and other forces.

This interaction de�nes a complete interconnect between all members of the complex system S1.

S2 is the in�nite degree of freedom continuum with the fundamental entities as in�nitesimal

volumes of air connected locally by the partial di�erential operator of the Navier Stokes equation.

S3 = Snum could depend on the particular numerical formulation used. Multigrid, conjugate

gradient, direct matrix inversion and alternating gradient would have very di�erent structures in

the direct numerical solution of the Navier Stokes equations. The more radical cellular automata

approach would be quite di�erent again.

S4 = SHLSoft would depend on the �nal computer being used and division between high and low

level in software. The label HLSoft denotes \High Level Software".

S5 = Scomp would be SHLSoft embroidered by the details of the hardware communication (circuit

or packet switching, wormhole or other routing). Further, we would often need to look at this

complex system in greater resolution and expose the details of the processor node architecture.

Nature, the model, the numerical formulation, the software, and the computer are all complex

systems, and they can be quite di�erent. We are interested in the structure of all these complex

systems and the maps between them. Note that each of the successive maps in Figure 4 results in a

loss of information. As reviewed in Section 6, we can discuss key problems in the design of software

systems in terms of minimizing information loss.

Typically, one is interested in constructing the maps in Figure 4 to satisfy certain goals, such as

minimizing the execution time of the computer simulation (the main focus of the high performance

computing community),minimizing the time required to write the computer program (the main focus

of the computer science and software engineering community), and obtaining the best agreement of

the model with the e�ects seen in nature (the main focus of the scienti�c community). We therefore

get a class of optimization problems associated with the di�erent complex systems and the mappings

between them. Parallel computing can therefore be looked at as \just" an optimization problem,

even if we can't agree on exactly what to optimize | there are obvious tradeo�s between �delity of

the model and the amount of computation required to solve it, the speed of the program and the

ease of implementation (for example using assembler versus a high level language), and so on.
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Figure 4: Computation and simulation as a series of maps

One approach to solving these optimization problems is the use of methods developed from

the study of complex physical systems, such as simulated annealing, genetic algorithms, or neural

networks. These are used to minimize a cost function that expresses the goals described above.

Typically, in studying performance, the cost function would be the execution time of the problem on

a computer. For software engineering, the cost function would also reect user productivity. These

physical optimization methods were originally developed as ways of minimizing the energy of a

physical system. In the rest of this section, and in sections 4 and 5, we will show that computational

problems can be looked at using a space-time analogy to a physical system, so that the cost function

for optimizing the map from complex problem to complex computer does in fact resemble the energy

function of a physical system. This motivates the use of these physical optimization techniques for

solving these problems, an approach we refer to as physical computation, which is discussed in

Section 7.

In this chapter we will concentrate on the mappings in Figure 4 that take us from the model

of the world (the complex problem) to the simulation of that model on a parallel computer (the

complex computer). Mapping a complex problem onto a complex computer involves decomposition.

We can consider the simulation of the complex problem as an algorithm applied to a data domain.

We divide the data domain into pieces that we call grains and place one grain in each node of the

concurrent computer.

If we consider a typical matrix algorithm such as multiplication

aij =
X
k

bik ckj (2)

we have a data domain formed by the matrix elements, which we generally call members. The algo-

rithm (2) de�nes a graph connecting these members and these connected members form a complex

system. The standard decomposition involves submatrices stored in each node. Edges of the graph

connect members in di�erent submatrices (i.e., members of the complex system stored in separate

nodes of the complex computer). To be precise, in the map
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Complex Problem �! Complex Computer
Members map into memory locations

Internal connections map into arithmetic operations

Internode or \cut" connections map into communication followed by

arithmetic operations

In Section 4, we will be considering topological properties of complex systems which correspond

to the map

Complex Problem �! Topological Structure
Members map into points in a space geometric

Connections map into (nearest neighbor) structure

In the optimal decomposition studies in Section 4 and Section 5, we will be considering dynamic

properties of complex systems for which it will be useful to consider the map

Complex Problem �! Discrete Physical System
Members map into particles or strings

Connections map into force between particles or strings

We see that di�erent classes of complex systems realize their members and interconnections

in di�erent ways. We �nd it very useful to map general systems into classes having a particular

choice for members and interconnects. To be precise, complex systems have interconnects that can

be geometrical, generated by forces, electrical connection (e.g., wire), structural connection (e.g.,

road), biological channels or symbolic relationships de�ned by the laws of arithmetic. We map all

these interconnects into electrical communication in the multicomputer implementation. On the

other hand, in the simulated annealing approach to load balancing, we map all these interconnects

to forces.

3.2 The Space-Time Picture of Computation

The above discussion was essentially static and although this is an important case, the full picture

requires consideration of dynamics. We now \de�ne" space and time for a general complex system.

We associate with any complex system a data domain or \space". If the system corresponds to

a real or simulated physical system, then this data domain is a typically three-dimensional space.

In such a simulation, the system consists of a set of discrete objects labelled by an index i and is

described as a function of the positions xi(t) of the objects at each time t.

For example, seismic exploration for oil �elds involves measuring echoes of sound waves that

are reected o� various underground strata. Using these measurements to reconstruct the strata

formation involves solving the wave equation, a standard second order di�erential equation that de-

scribes the propagation of the sound waves. The equation is discretized in space (a three-dimensional

grid representing some part of the earth's crust) and time (the time-step) to give a �nite di�erence

equation that can be solved on a computer. Only local data (nearest-neighbor points in the grid) is

required to solve the di�erence equations at each time-step.

Other complex systems have more abstract data domains:

1. In a computer chess program, the data domain or \space" is the pruned tree-like structure of

possible moves.

2. In matrix problems, the data domain is either a regular two-dimensional grid for full matrices

or an irregular subset of this for sparse matrices.
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3. In a complex computer (de�ned in Section 3.1), \space" is the set of nodes of the parallel

computer, or at a �ner resolution, the set of memory locations.

The data domain will have certain dependencies contingent on the model, for example a de-

pendence on nearest-neighbor grid points for problems with local interactions, or a dependence on

all other data points for N-body simulations where forces are long-ranged. The data domain can

thus be viewed as a set of interconnected nodes (the data elements) connected by edges (the data

dependencies), which form what we call the computational graph. This is de�ned by a time slice of

the full complex system.

Note that we can examine the data domain of the complex computer hardware in terms of a

computational graph, just as we can for the computer software or algorithms. The computational

graph of a multicomputer is formed by the individual computer nodes with the edges of the graph

determined by the interconnection topology (or architecture) of the multicomputer.

In a physical simulation, the complex system evolves with time and is speci�ed by the nature

of the computational graph at each time-step. If we are considering a statistical physics or Monte

Carlo approach, then we no longer have a natural time associated with the simulation. Rather, the

complex system is evolved iteratively or by Monte Carlo sweeps. We will �nd it useful to view this

evolution or iteration label similarly to time in a simple time-stepped simulation. We thus consider

a general complex system de�ned by a data domain, which is a structure given by its computational

graph. This structure is extended in \time" to give the \space-time" cylinders. For our previous

examples:

1. Chess: time labels depth in tree

2. Matrix Algebra: time labels iteration count in iterative algorithms or \eliminated row" in a

traditional full matrix algorithm such as Gaussian elimination.

3. Complex computer: the time dependence is just the evolution given by either the cycle time

of the nodes or the executed instructions. SIMD machines give an essentially static or syn-

chronous time dependence, whereas MIMD machines can be very dynamic.

We expand the discussion of temporal properties in Section 5. We will also discuss in Section 6

an interesting class of problems and a corresponding way of using MIMD machines, called loosely

synchronous. These are microscopically dynamic or temporally irregular but become synchronous

when averaged over macroscopic time intervals.

Domain decomposition for data parallel computing is just the mapping of the spatial domain

(data) of the complex problem onto the spatial domain (nodes) of the complex computer. This

di�ers from the computational model for a sequential computer, where all aspects of the problem

are mapped to the time domain of the computer. In contrast, another type of data processor, a

seismograph, maps the time dependence of an earthquake onto the spatial extent of a recording

chart. The general problem of computation is to map the space-time domain of the problem onto

the space-time domain of the computer in an e�ective way.

4 Spatial Properties of Complex Problems and Complex

Computers

4.1 System Size and Geometry

The size N of the complex system is an obviously important property. Note that we think of a

complex system as a set of members with their spatial structure evolving with time. Sometimes the

time domain has a de�nite \size", but often one can evolve the system inde�nitely in time. However,

most complex systems have a natural spatial size with the spatial domain consisting of N members.
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In the matrix example, Gaussian elimination has n2 spatial members (matrix elements) evolving

for a �xed number n of \time" steps. As usual, the value of the spatial size N will depend on the

granularity or detail with which one looks at the complex system. One could consider a parallel

computer at the level of transistors with very large value of N , but usually we look at the processor

node as the fundamental entity and de�ne the spatial size of a parallel computer viewed as a complex

system, by the number Nproc of processing nodes.

Consider mapping a �nite di�erence simulation with Nnum grid points, such as solving the wave

equation for a seismic exploration simulation as described in Section 3.2, onto a parallel machine

with Nproc processors. An important parameter is the grain size n of the resultant decomposition.

We can introduce the problem grain size nnum = Nnum=Nproc, and the computer grain size nmem as

the memory contained in each node of the parallel computer. Clearly we must have nnum < nmem

if we measure memory size in units of seismic grid points. More interestingly, we will later relate

the performance of the parallel implementation of the seismic simulation to nnum and other problem

and computer characteristics. We �nd that in many cases, the parallel performance only depends

on Nnum and Nproc in the combination Nnum=Nproc and so grain size is a critical parameter in

determining the e�ectiveness of parallel computers for a particular application.

Another set of parameters describe the topology or structure of the spatial domain associated

with the complex system. The simplest parameter of this type is the geometric dimension dgeom

of the space. Our early parallel computing used the binary hypercube of dimension d, which has

dcomp = d as its geometric dimension. This was an e�ective architecture because it was richer

than the topologies of most problems. For many physical grid-based simulations such as seismic

exploration, the geometric dimension of the problem dnum is just the dimension of the physical space

being simulated (3 for this example). The performance of the simulation also depends on whether

the software system preserves the spatial structure of the problem, in which case dHLSoft = dnum.

4.2 Performance Model for a Multicomputer

The performance of a multicomputer is usually de�ned in terms of parallel speedup S and e�ciency

". Speedup is just how much faster a multicomputer executes the parallel program on N nodes

compared to the sequential program on one node. E�ciency measures what fraction of the maximum

speedup N is actually achieved, so that

S = "N (3)

E�ciency will usually be less than 1 since there are overheads involved in parallel computing, such

as the cost of communicating data between processors. Let us try to quantify these costs by de�ning

the following parameters for a multicomputer:

� tcalc | the typical time required to perform a generic calculation. For scienti�c problems, this

can be taken as a oating point operation.

� tcomm | the typical time taken to communicate a single word between two nodes connected

in the hardware topology.

The de�nitions of tcomm and tcalc are imprecise above. In particular, tcalc depends on the nature

of node and can take on very di�erent values depending on the details of the implementation;

oating point operations are much faster from registers than from slower parts of the memory

hierarchy. On systems built from processors like the Intel i860 chip, these e�ects can be large |

tcalc could be :0125� sec from registers (80 Megaops) and a factor of ten larger when the variables

a; b are fetched from dynamic RAM. Communication speed tcomm depends on internode message

size (a software characteristic) and the latency (startup time) and bandwidth of the computer

communication subsystem. It will also generally be slower for communications between nodes that

are not directly connected in the multicomputer topology, so that messages have to be routed between

intermediary nodes. This e�ect will depend on the problem being solved | it can be negligible for
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grid-based problems with only local data dependencies (such as the seismic simulation), or a factor

of 2 or more for problems with a lot of non-local communication (such as a parallel Fast Fourier

Transform).

The overhead fC due to communication can be expressed as

fC =
total time for communication

total time for calculation
(4)

It is easy to see that if the parallel overhead is due solely to communication, then

S =
N

1 + fC
(5)

Let us examine the communication overhead for a simple grid-based problem, such as our seismic

simulation example. We use standard domain decomposition to map the problem domain (a dnum=3

grid of points) onto the computer (a hypercube, for example) so that every processor has a cubic

section of the grid. The grain size nnum will be Ldnum, where L is the length of a side of the grain

(the cube of grid points on each processor).

The total amount of computation on each node of the computer will be proportional to tcalc times

the grain size, which is the volume Ldnum of the grain. For this problem, the data dependencies are

all local (nearest-neighbor), so only data at the edge of the grain needs to be communicated. The

total amount of communication is thus proportional to tcomm times the surface area Ldnum�1 of the

grain. So from Equation 4 we have that

fC /
1

L

tcomm

tcalc

/
1

n
1=dnum
num

tcomm

tcalc
(6)

It can be shown [24] that in general the overhead due to internode communication can be written

in the form

fC /
N�
proc

n
�
num

tcomm

tcalc
(7)

The term tcomm=tcalc indicates that communication overhead depends on the relative performance

of the internode communication system and node (oating point) processing unit. A real study of

parallel computer performance would require a deeper discussion of the exact values of tcomm and

tcalc. More interesting here is the dependence on the number of processors Nproc and the problem

grain size nnum. As described above, grain size nnum = Nnum=Nproc depends on both the problem

and the computer. The value of � is given by

� =
1

dinfo
(8)

where the information dimension dinfo is a generalization of the geometric dimension for problems

whose structure is not geometrically based. This will be described in the next subsection. It is

independent of the parameters of the computer. � is given by

if dnum < dcomp ; � = 0

if dnum > dcomp ; � =

�
1

dcomp

�
1

dnum

�
(9)

which quanti�es the penalty, in terms of a value of fC that increases with Nproc, for a computer

architecture that is less rich than the problem architecture. An attractive feature of the hypercube

architecture is that dcomp is large and one is essentially always in the regime governed by � = 0 in
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Equation 9. Recently, there has been a trend away from rich topologies like the hypercube towards

the view that the node interconnect should be considered as a routing network or switch to be

implemented in the very best technology. The original MIMD machines from Intel, nCUBE and

Ametek all used hypercube topologies as did the SIMD Connection Machine CM-1 and CM-2. The

nCUBE-2 introduced in 1990 still uses a hypercube topology, but both it and the second generation

Intel iPSC/2 used more sophisticated routing. The latest Intel Touchstone Delta and Paragon use

a two-dimensional mesh with wormhole routing. It is not clear how to incorporate these new node

interconnects into the above picture, and further research is needed here. Presumably, we would

need to add new complex system properties and perhaps generalize the de�nition of dimension dcomp,

as we will now do for dnum in order for Equation 7 to be valid for problems whose structure is not

geometrically based.

4.3 Information Dimension

Returning to equations 5, 7, 8, and 9 we note that we have not properly de�ned the correct dimension

dnum or dcomp to use. We have implicitly equated this to the natural geometric dimension but this

is not always correct. This is illustrated by the complex system Snum consisting of a set of particles

in three dimensions interacting with a long-range force such as gravity or electrostatic charge. The

geometric structure is local with dgeomnum = 3 but the complex system structure is quite di�erent; all

particles are connected to all others.

We de�ne the information dimension dinfo for a general complex system to reect the system

connectivity [30, 32]. This is analogous to the fractal dimension introduced in [44], in that it may not

be equal to the geometric dimension, and need not be an integer. Consider Figure 5 which shows a

general domainD in a complex system. We de�ne the volume VD of this domain by the information

in it. Mathematically, VD is the computational complexity needed to simulate D in isolation. In a

geometric system

VD / Ld
geom

(10)

where L is a geometric length scale. The domain D is not in general isolated and is connected to

the rest of the complex system. Information ID ows into D, and again in a geometric system ID is

a surface e�ect with

ID / Ld
geom

�1 (11)

If we view the complex system as a graph (i.e., the computational graph), VD is related to the

number of edges of the graph with at least one of the nodes in D, and ID is related to the number

of edges cut by the surface of D. Equation 10 and Equation 11 are altered in cases like the long-

range force problem where the complex system connectivity is no longer geometric. We de�ne the

information dimension to preserve the surface versus volume interpretation of Equation 11 compared

to Equation 10. Thus, generally we de�ne

ID / V
1�1=dinfo

D (12)

With this de�nition of information dimension dinfo, we �nd that Equations 5, 7, 8, and 9 essen-

tially hold in general. For simple problems, the information dimension will be approximately equal

to the geometric dimension. However the information dimension will in general be larger for systems

with complex structure, which have non-geometric (or \hidden") dimensions of complexity.

An interesting example of nontrivial information dimension comes from the simulation of elec-

tronic circuits. Rent's Rule [43, 9] is a phenomenological rule that is used in the packaging of circuits.

It relates the number of output lines (pinouts) to a power (� 0:5! 0:7) of the number of internal

components. This implies a non-integer information dimension dinfo � 3, which is greater than the

geometric dimension dgeom = 2 for an electronic circuit. Rent's Rule is approximately independent

of the size of the circuit, which is analogous to the self-similarity and scaling properties of systems

with non-trivial fractal dimension.
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Figure 5: The information density and ow in a general complex system of length L

For the long-range force problem, it can be shown that dinfo=1 independent of dgeom [24, 32]. One

might naively expect that the information dimension of such a problem would be in�nite, rather than

1, since all objects interact with all other objects. However in�nite information dimension applies

to systems such as the telephone network, for which everyone is connected to everyone else, but

di�erent information is communicated to every di�erent person. In contrast, the Voice of America

radio broadcast has an information dimension of 1, since the same information is communicated

to everyone. In the long-range force problem, the same information is broadcast by an object to

every other object (e.g., the mass and position of the object for an N-body gravitational interaction

problem), so the information dimension is 1.

4.4 A Physical Analogy for Domain Decomposition

In the previous three subsections, we described static spatial properties of complex systems that are

relevant for computation. These included size, topology (geometric dimension) and the information

dimension. We will �nd new ideas when we consider problems that are spatially irregular and

perhaps vary slowly with time. A simple example would be a large scale astrophysical simulation

where the use of a parallel computer requires that the universe be divided into domains that, due

to the gravitational interactions, will change as the simulation evolves.

The performance of a computation executing on a parallel machine is crucially dependent on

load balance. This refers to the amount of CPU idling occurring in the processors of the concurrent

computer: a computation for which all processors are continually busy (and doing useful, non-

overlapping work) is considered perfectly load balanced. This balance is often not easy to achieve,

however.

As described in the previous section, a key to parallel computing is to split the underlying

spatial domain into grains, each of which correspond to a process as far as the operating system is

concerned. We will take a naive software model where there is one process associated with each of

the fundamental members of the simulated system, i.e., with each \particle" in the astrophysical

simulation. This is not practical with current software systems as it gives high context switching

and other overheads. However, it captures the essential issues.

The processes will need to communicate with one another in order for the computation to pro-

ceed. Assume that the processes and their communication requirements are changing with time
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Figure 6: A mapping of an irregular data domain onto processors in a hypercube

| processes can be created or destroyed, communication patterns will move. This is the natural

choice when one is considering timesharing the parallel computer, but can also occur within a single

computation. It is the task of the operating system to manage this set of processes, moving them

around if necessary, so that the parallel computer is used in an e�cient manner.

The operating system performs two primary tasks. First, it must monitor the ongoing com-

putation so as to detect bottlenecks, idling processors and so on. Secondly, it must modify the

distribution of processes and also the routing of their associated communication links so as to im-

prove the situation. In general, it is very di�cult to �nd the optimum way of doing this | in fact,

this is an NP-complete problem. Approximate solutions, however, will serve just as well. We will be

happy if we can realize a reasonable fraction (say 80%) of the potential computing power of the par-

allel machine for a wide variety of computations. An example of a non-trivial domain decomposition

of an irregular data domain onto processors con�gured in a hypercube is given in Figure 6.

One can usefully think of a parallel computation in terms of a physical analogy. Treat the

processes (or the data elements) as \particles" free to move about in the \space" of the parallel

machine. Minimizing the total execution time of the parallel computation formally requires that one

minimize:

max
nodes i

Ci (13)

where Ci is the total computation time for calculation and communication. We choose to replace

this mini-max problem by a least squares minimization [13] of

E =
X
i

C2
i (14)

Let m label the nodal points and (m;m0) the edges of the computational graph. Then

Ci =
X
m2 i

" X
(m;m0)

Comm (m; m0) +Calc (m)

#
(15)

where it takes time Calc (m) to simulate m and time Comm (m0; m) to communicate necessary

information fromm0 tom. If we consider the case where we can neglect the quadratic communication

terms, then

C2
i �

X
(m;m0)

m2 i

Comm (m; m0)
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+
X

m;m0
2 i

Calc (m) Calc (m0) (16)

In this physical analogy, the above equation describes a \Hamiltonian" (or \energy function")

for parallel computation, that the operating system must try to minimize, and if possible �nd the

\ground state" (the lowest energy state), which corresponds to the most e�cient decomposition of

data onto nodes of the parallel computer.

The last term in the Hamiltonian (Equation 16) is zero unless particles m and m0 are at the

same place, i.e., in the same node. In the physical analogy, this is like a short-range \potential",

where range is measured by distance between nodes in the space of the complex computer. This

provides a short-range, repulsive \force", causing the particles, and thereby the computation, to

spread throughout the parallel computer in an evenhanded, balanced manner, corresponding to the

requirement of load balancing.

A conicting requirement to that of load balancing is shown in the �rst term of the Hamiltonian

as interparticle communications | the various parts of the overall computation need to communi-

cate with one another at various times. If the particles are far apart (distance being de�ned as the

number of communication steps separating them) large delays will occur, slowing down the compu-

tation. This represents a long-range, attractive force between those pairs of particles which need to

communicate with one another. This force is proportional to the amount of communication tra�c

between the particles, so that heavily communicating parts of the computation will coalesce and

tend to stay near one another in the computer.

Exact minimization of the function in Equation 16 is not necessary | we have already \wasted"

some computational power using convenient high level languages, and we can surely a�ord to lose

another 10% to load imbalance. The problem of distributing a computation onto a parallel machine

in an e�cient manner can therefore be fruitfully attacked using simulated annealing [41] and other

\physical" optimization methods such as neural networks and genetic algorithms [11, 25, 27, 13,

55, 22, 45]. The physical analogy described above makes this plausible, since these methods are

highly appropriate minimization techniques for Equation 14. For example, simulated annealing is a

standard Monte Carlo technique that was originally devised to �nd the ground states of spin models

of magnetism that have competing interactions, such as spin glasses. In this case, the competing

interactions are the attractive \communication" force and the repulsive \load balance" force. We

have used these methods routinely for load balancing a variety of simulations including �nite element

and particle dynamics simulations. Physical optimization methods are described in more detail in

Section 7.

4.5 System Temperature and Dynamic Load Balancing

Equation 16 holds for the case of static load balancing, that is, where the data structures are static,

so that the domain decomposition is done only once, at the beginning of the computation. However

in general, problems and the data structures and computational graphs that describe them will be

changing. In this case the data will have to be redistributed throughout the computation in order

to keep the load balanced. For dynamic load balancing there will be an extra attractive \force" in

Equation 16, corresponding to the penalty for moving data or processes to di�erent nodes.

High Performance Fortran provides a mechanism for the redistribution of data at runtime, which

is particularly important for dynamic and irregular problems. The user can either specify the distri-

bution, or specify the computational graph, in which case the compiler will �nd a good distribution

using various optimization techniques such as those described above [5, 51].

Using the physical analogy we introduced in Section 4.4, we can think of the operating system

as a \heat bath" that keeps the computation \cool" and therefore near its \ground state" (optimal

solution). Most scienti�c simulations change slowly with time and redistribution of processes by

the operating system can be gradual. Thus, we can think of the computation as being in adiabatic
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equilibrium at a complex system temperature Tproblem which reects the ease of �nding a reasonable

minimum. Tproblem will be larger for problems that change more rapidly and where the operating

system does not have \time" to �nd as good an equilibrium [34, 33, 24]. Redistribution of the

data takes time, and for some problems this time may be signi�cant, perhaps even longer than

the simulation time between data redistribution. However there is a simple static data distribution

called scattered decomposition that can work quite well for very irregular and dynamic problems.

Standard static domain decomposition works by splitting the data space into large connected

partitions and mapping the partitions onto nodes in the computer space in a way that preserves

data locality and balances the computational load. However this static decomposition will produce

substantial load imbalance for problems with dynamic data structures that produce \hot spots", or

data intensive regions, that change position during the simulation, for example in N-body simulations

of galactic collisions, where particles clump together due to gravitational attraction.

Scattered decomposition works by going to the opposite extreme, that is, breaking up the data

into very small partitions and then \scattering" the partitions among the nodes of the computer, so

that each node receives some data from all regions of the problem space [49, 30, 24]. In this case

any data hot spots will also get distributed fairly evenly among the processors. As the partitions are

made smaller, the load balancing will improve. The price paid, of course, is increased communication

overhead. The scattered decomposition will require much more communication tra�c than the

standard domain decomposition. Often, however, communication between nodes is relatively cheap

compared to the computation required, and so the scattered decomposition becomes an attractive

possibility. This corresponds to ignoring the �rst term in Equation 16 (the communications cost) and

trying to minimize only the second term, which we have seen requires spreading data connected in

the computational graph to di�erent nodes, which is exactly what scattered decomposition attempts

to achieve.

One of the outstanding features of the scattered decomposition is its stability, meaning that

as the computation changes with time (e.g., particles move, clumping occurs, etc.), the scattered

decomposition is quite insensitive to these changes and will continue to load balance rather well. So

it is possible to get good load balance without having to use time-consuming optimization techniques

such as simulated annealing to obtain good data distribution. Scattered decomposition has proven

to be very e�ective for problems such as adaptive mesh �nite element simulations, where the grid

is much �ner in regions that are changing more rapidly [49, 11]; growing a cluster in spin models of

magnetism [2]; and certain matrix problems [30].

For a dynamic problem, the Hamiltonian of Equation 16 will vary with (computer) time, and

so will its minimum value (the optimal domain decomposition). The operating system will need to

redistribute the data periodically to try to keep the system close to the global minimum value. In

contrast, the static scattered decomposition presumably corresponds to a stable local minimum of

the Hamiltonian that does not change much with time. For highly dynamic problems, the operating

system may not be able to \keep up" perfectly with the computation. In this case the Hamilto-

nian that actually matters is not the instantaneous version in Equation 16, but a time-averaged

Hamiltonian,H:

H (t; tav) =

Z t+tav

t

H(u) du (17)

where the averaging time, tav is the time scale for the operating system to �nd a good domain

decomposition. In the earlier terminology, tav is related to the \temperature" Tproblem of the complex

system. Note that tav and the temperature are in fact characteristics of the problem, not the

computer. tav will be smaller for a faster computer, however what is important here is the relative

time scale of the operating system | the time taken to compute a new domain decomposition

relative to the time to do the computations between redistributing the data. Increasing the speed of

the computer will decrease the time for both these tasks in roughly equal proportion, so the relative

time scale will remain about the same.
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An interesting point is that, in terms of H, the better decomposition may actually be the scat-

tered one. Because of the rapid shifting of the optimal decomposition as a function of time, the

minimum of H corresponding to this will be raised upwards, while the scattered minimum will re-

main approximately the same. Two possible scenarios develop | the minima may or may not cross.

Depending upon the parameters of the problem and upon the hardware characteristics of the parallel

machine, a \phase transition" may occur whereby the scattered decomposition actually becomes the

better decomposition for H.

The relative importance of the two terms in Equation 16 is governed by the ratio tcomm=tcalc
introduced in Section 4.2. This plays the role of a \coupling constant" or \interaction strength" J ,

such as occurs in Hamiltonians for spin glasses and other spin models of magnetism. J increases

in size as the communication performance of the hardware decreases. The scattered decomposition

is favored as either the coupling J decreases, which means communications are relatively fast so

the non-locality of the data is not a problem, or as the averaging time tav increases. Large tav
corresponds to rapidly varying problems which the operating system �nds hard to equilibrate. In

the earlier terminology, large tav means high \temperature" complex systems.

Thus, as we increase J or decrease problem temperature, we transition from a high temperature

phase, where scattered decomposition is optimal, to a low temperature phase where standard domain

decomposition is optimal. This is of course analogous to a statistical mechanics system having a

phase transition separating a high temperature disordered state and a low temperature ordered state.

Which phase or data decomposition is relevant depends on the properties of both the computer

architecture (J � tcomm=tcalc) and the problem architecture (tav � Tproblem).

5 Temporal Properties of Complex Problems and Complex

Computers

5.1 The String Formalism for Dynamic Problems

In the previous section, we thought of a problem (the complex system Snum or SHLSoft) as a graph

(the computational graph) with vertices labelled by the system member m and edges corresponding

to the linkage between members established by the algorithm. This is a good picture for what we

called \adiabatic" problems that change slowly with time. In this case, it makes sense to think of

slicing the \space-time" cylinder formed by the complex system and just consider the computational

graph | the spatial structure at �xed time. However, this is not appropriate for asynchronous

problems or for loosely synchronous problems that are rapidly varying or dynamic | those with

high temperature Tproblem in the language of Section 4.4. For such problems, the operating system

cannot \keep up" with the variation of the computational graph | the graph changes signi�cantly

over the time period that the operating system takes to partition the computational graph.

In adiabatic problems, our physical analogy was that of members mapped to particles interacting

by forces given by the member interconnect. One might imagine that a reasonable analogy for

dynamic problems would be to add a \kinetic energy" term to give time dependence to the member

positions, however it is not clear how to do this. Rather, we change the analogy so that members

are mapped to \strings" representing their world lines, that is, their path through the space-time of

the complex computer. At computer time t, the complex system member m is located at position

xm(t). x is a position in the complex computer space. At its simplest x is just a node number, but

we can look at a �ner resolution and consider x as a position in the global computer memory. This

allows one, in principle at least, to set up a formalism to study the full memory hierarchy of the

system including caches and register use. Each member now corresponds not just to a position xm
but to a world line fxm(t)g. The execution time Tpar on a parallel machine is a functional of the

world lines

Tpar � Tpar (fx0(t)g : : : : : :fxm(t)g : : :) (18)
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The structure of the original dynamic complex system leads to an expression for Equation 18 that

is similar to the simpler Equation 16. There is a repulsive force between world lines corresponding to

load balancing. There is an attractive force corresponding to the dynamic interconnection between

the members m. The details of this depend on the relation between clock time t and the simulation

time tm of each member m.

The most straightforward approach to minimize Tpar would be simulating annealing with the

basic \move" being a change fxm(t)g ! fxm(t)g
0 which is typically local in both x and t. This gives

a formalismsimilar to quantum chemistry or lattice gauge theories. One can also use an optimization

method based on neural networks. These points are described in greater detail in Section 7.

We have applied these ideas to message routing in a network [26], and more generally to combining

networks which implement global reduction formulae such as forming a set of sums

yj =
X
i

Mji xi (19)

where yj , Mji, and xi are all distributed over the nodes of a parallel computer.

A very preliminary examination was given in [31] of the application of these ideas to register

allocation for compilers. We have explored more deeply the application of these methods to multi-

vehicle navigation [27, 16]. In that case fxm(t)g is the path of vehicle m in a two or three dimensional

space with m at position xm at time t.

5.2 Memory Hierarchy

Modern workstations have heirarchical memory, formed by the cache and main memory. Obtaining

good performance from these computers requires minimizing cache misses, so that data is referenced

from cache and not main memory, which can be an order of magnitude slower. This is often referred

to as the need for \data locality". This makes clear the analogy with distributed memory parallel

computers, where data locality is needed to minimize communication between processors.

There is one essential di�erence between cache and distributed memory. Both need data locality,

but in the parallel case the basic data is static and fetches additional information as necessary. This

gives the familiar surface-over-volume communications overheads of Equation 7. However, in the

case of a cache, all data must stream through it, not just the data needed to provide additional

information. We can use our space-time picture of computation to view the data streaming through

heirarchical memory as a distribution of data in the temporal direction.

Let us introduce a new time constant, tmem, which is the time it takes to load a word into cache.

This is illustrated in Figure 7. The cache overhead has exactly the same form as the communication

overhead in Equation 7, if we simply replace tcomm by tmem and nnum for ntime, where ntime is the

temporal blocking factor, or the number of iterations in the problem between cache ushes. The

overhead is a surface-over-volume e�ect just as for a distributed memory machine, but now the

surface is in the temporal direction, and the volume is that of a domain in both space and time.

It is remarkable that tmem, time, and memory hierarchy are completely analogous to tcomm, space,

and distributed memory. In particular, the well-known methods for improving the performance of

caches and registers correspond to blocking (clumping) the problem in its time direction. This is

analogous to blocking the problem in space to improve performance on a distributed memory parallel

machine.

High performance computer architectures exploit data locality with a memory hierarchy imple-

mented either as a multilevel cache and/or with distributed memory on a parallel machine. Good

use of cache requires blocking in time; good use of distributed memory requires blocking in space.

In general, full space-time blocking is required to give a universal implementation of data locality

that will lead to good performance on both distributed and heirarchical memory machines. This

strategy is used in the implementation of the BLAS-3 primitives in LAPACK [7].
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Figure 7: The fundamental time constants of a heirarchical memory parallel computer

The directives in High Performance Fortran essentially specify data locality, so we believe that

an HPF compiler can use the concepts of this section to optimize cache use on heirachical memory

machines. Thus, HPF should provide good performance on all high-performance computers, not

just parallel machines.

6 Problem Architectures and Parallel Software

In a series of papers [1, 19, 21], we have developed a qualitative theory of the architectures of

problems, analogous to the well-known classi�cation of parallel computer architectures into SIMD

and MIMD. This is summarized in Table 1, which introduces �ve general problem classes. Let us

return to the concept of Figure 4 | namely, computation is map between problem and computer,

and software is an expression of this map. We have explored in depth this concept of problem

architecture and its use for clarifying which problems run well on SIMD machines and which on

MIMD. One can also understand which problem classes parallelize naturally on massively parallel

machines. Here, we just describe the consequences for software, which are summarized in Table 1.

We believe that successful software models will be built around problem and not machine ar-

chitecture. We see that some of the current languages | both old and new | are awed because

they do not use this principle in their design. The language often reects artifacts of a particular

machine architecture and this naturally leads to nonportable codes that can only be run on the

machine whose architecture is expressed by the language. On the other hand, if the language ex-

presses properly the problem structure, then a good compiler should be able to map it into a range

of computer architectures.

We can illustrate this with Fortran 77, which we can view as embodying the architecture of

a sequential machine. Thus, software written in Fortran 77 maps the space-time structure of the

original complex system into a purely temporal or control structure. The spatial (data) parallelism

of the problem becomes purely temporal in the software, which implements this as a sequential

loop over the data (a DO loop in Fortran 77). Somewhat perversely, a parallelizing compiler tries to

convert the temporal structure of a DO loop back into spatial structure to allow concurrent execution

on a spatial array of processors. Often parallelizing compilers produce poor results as the original

map of the problem into sequential Fortran 77 has \thrown away" information necessary to reverse
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Synchronous: Data Parallel

Tightly coupled. Software needs to exploit features of problem structure to get good perfor-

mance. Comparatively easy, as di�erent data elements are essentially identical.

Candidate software paradigms: High Performance Fortran, Parallel Fortran 77D, Fortran 90D,

CMFortran, Crystal, APL, C++.

Loosely Synchronous: Data Parallel

As above but data elements are not identical. Still parallelizes due to macroscopic time syn-

chronization.

Candidate software paradigms: may be extensions of the above, however C or Fortran with

message passing is currently the only guaranteed method.

Asynchronous

Functional (or data) parallelism that is irregular in space and time. Often loosely coupled

and so need not worry about optimal decompositions to minimize communication. Hard to

parallelize, not usually scalable to large numbers of processors.

Candidate software paradigms: PCN, Linda, object-oriented approaches.

Embarrassingly Parallel

Independent execution of disconnected components.

Candidate software paradigms: Many approaches work { PVM, PCN, Linda, Network Express,

ISIS, etc.

Metaproblems

Asynchronous collection of loosely synchronous components where the component program

modules can be parallelized.

Candidate software paradigms: PCN, Linda, ADA, controlling modules written in synchronous

or loosely synchronous fashion.

Table 1: Architectures for Five Problem Classi�cations
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this map and recover unambiguously the spatial structure. The �rst (and some ongoing) e�orts in

parallelizing compilers tried to directly \parallelize the DO loops". This seems doomed to failure in

general as it does not recognize that in nearly all cases the parallelism comes from spatial and not

control (time) structure. Thus, as described in Section 2.2.4, we are working on the development of

a parallelizing compiler for Fortran D and High Performance Fortran, where the user adds additional

information to tell the compiler about the spatial structure [17, 19, 21, 29, 57, 4]. We are optimistic

that this project will be successful for the synchronous and loosely synchronous problem classes

de�ned in Table 1.

Most languages do not express and preserve space time structure. Array languages such as APL

and Fortran 90 are examples of data parallel languages that at least partially preserve the space

time structure of the problem in the language. Appropriate class libraries can also be used in

C++ to achieve this goal. We expect that development of languages which better express problem

structure will be essential to get good performance with an attractive user environment on large

scale parallel computers. The results in Section 5.2 show that data locality is critical in sequential

high performance (hierarchical memory) machines as well. Thus, we would expect that the use of

languages that properly preserve problem structure will lead to better performance on all computers.

7 Physical Computation and Optimization

Physical computation can be loosely classi�ed as the use of physical analogies or methods from the

physical sciences in computational studies of general complex systems [22]. One example is the use

of simulated annealing (an idea from physics) for optimization problems such as chip routing and

placement [41]. Another is the use of neural networks (an idea from biology) in learning and pattern

recognition for problems in computer vision and robotics.

Optimization is a particularly important application of physical computation. Simic has intro-

duced the term physical optimization to describe the many di�erent optimization methods of this

kind [53, 18]. It is not surprising that techniques based in the physical sciences are useful for solving

optimization problems, since most laws of physics can be formulated variationally as optimization

problems, many physical systems act so as to minimize energy or free energy, and evolution in nature

is also involved in optimization.

As mentioned in Section 4.4, physical optimization techniques such as simulated annealing, neu-

ral networks and genetic algorithms can be usefully applied to domain decomposition and load

balancing, an important optimization problem in parallel computation. However these methods can

be used to tackle general optimization problems, and indeed have successfully been applied to a

wide variety of problems. Physical optimization methods can be contrasted with other methods

for optimization: heuristics can be considered as an approach motivated by the problem; maximum

entropy or information theory as approaches from electrical engineering; combinatorial optimization

methods from mathematics; and linear programming and rule-based expert systems from computer

science.

There is no universally good approach to optimization. Each method has di�erent tradeo�s

in robustness, accuracy, speed, suitability for parallelization, and problem size dependence. For

instance, neural networks do simple things on large data sets and parallelize easily, whereas expert

systems do complex things on smaller data sets and are di�cult to parallelize. Parallel algorithms

for physical optimizationmethods are not usually trivial, and are not always similar to the sequential

algorithms.

The nature of the problem is very important in terms of which method is most suitable. For

instance, what is the shape of the cost function? Are the local minima deep or shallow, wide

or narrow, relatively few or numerous? Are the minima correlated or uncorrelated? Does the

problem require the exact global minimum, or is a good approximate minimum su�cient? Physical

optimization methods try to �nd good approximate solutions, not necessarily the best solution.
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They work well for many complex real-world problems, for which approximate solutions are all that

is required, and indeed all that is warranted by the usually imprecise data or models. Also, many

of these problems are NP-complete, so that only approximate solutions are feasible given a limited

computational resource.

Here we briey describe some physical optimization methods. More detailed reviews can be

found in [18, 32].

7.1 Simulated Annealing

Simulated annealing is a very general optimization method that stochastically simulates the slow

cooling of a physical system to its ground state [41, 50, 54]. The cost function for the problem

is viewed as an energy function, and a parameter T analogous to temperature is introduced. The

algorithm works by using an iterative Monte Carlo technique, that is, by proposing changes to the

state of the system, and either accepting or rejecting a change using the Metropolis criterion | if

the cost (energy) is decreased, the change is accepted; if the energy is increased by �E, it is accepted

with a probability exp(��E=T ). The process is started at a high temperature where almost all

proposed changes are accepted, and the temperature is gradually reduce to zero, where changes are

only accepted if they decrease the energy. The zero temperature algorithm is just the greedy or

hill-climbing algorithm, which works poorly in most cases since it can get trapped in local minima.

Simulated annealing at non-zero T allows the system to probabilistically increase the energy and

thus escape from local minima.

The rate of cooling is crucial to the performance of the algorithm. It can be shown that if

the temperature is decreased slowly enough (logarithmically), then the global optimum will be

found (with enough trials, since this is a probabilistic method). The basic idea is the same as real

annealing (for example, of steel) | if the temperature changes are small enough, the system can

maintain thermal equilibrium throughout the procedure, so it will �nish up in the zero temperature

equilibrium state, i.e. the ground state or global optimum. However a logarithmic cooling schedule

is much too slow for most problems, so usually a faster (exponential) cooling schedule is used. For

many problems this will still keep the system close enough to equilibrium that it will be very near

the ground state energy at zero temperature, and thus �nd a near-optimal solution. One of the main

problems with simulated annealing is that �nding a good cooling schedule is generally a trial-and-

error procedure. Some advances have been made in �nding adaptive annealing schedules, where the

temperature is reduced depending on the measured values of the energy for the particular problem.

Theoretically this promises a great improvement in performance, however in practice it is often

di�cult to �nd the optimal cooling schedule given the limited number of measurements available.

Another critical part of the algorithm is the choice of the method for updating the system state.

If large changes are made to the system variables, then the energy change �E will generally be large,

which will result in most of the proposed changes being rejected. If the changes at each iteration are

chosen to be small, so that most of them are accepted, it will take many iterations to reach a very

di�erent, uncorrelated state of the system. A tradeo� is required, since in both these cases, moving

through the search space will be very slow. The method can be greatly improved if a way can be

found to make substantial changes to the system without changing the energy too much.

Simulated annealing is popular because it is simple and it can be easily applied to any optimiza-

tion problem. However it may not be e�ective unless a good update method and cooling schedule

are used.

7.2 Deterministic Annealing

This approach is similar to simulated annealing, however instead of using a stochastic (Monte Carlo)

approach, a simple heuristic is used to minimize the free energy F =E�TS at each temperature T ,

where E is the cost function (or energy) and S is analogous to the entropy of a physical system.
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Notice that at zero temperature the energy and free energy are equivalent. The free energy is

formally de�ned as F =�T logZ, where

Z =
X

statesC

exp [�E(C)=T ] (20)

is known as the partition function in statistical mechanics. This approach is similar to methods used

in quantum chemistry to �nd the ground state of a complex molecule.

Deterministic annealing has been used very e�ectively in data clustering problems [52]. For the

simple case of grouping points in space into clusters based on distance, it is possible to construct

an energy function for which the minimum of the free energy can be computed deterministically

by iteratively solving an implicit equation. This particular example has an interesting temperature

dependence. At high temperature the points will all be in a single cluster. As the temperature is

decreased, the points will split into 2 clusters, then 3, and so on, at various critical temperatures.

The temperature is related to the size of the clusters, or the distance scale at which the system

is observed. For a given problem we will need to specify a particular minimum distance scale or

temperature.

7.3 Neural Networks

The use of neural networks for optimization was introduced for the traveling salesman problem in

[40], and although the method is not very e�ective for this application, the method and basic ideas

are important for a range of problems. The traveling salesman problem (TSP) is the classic NP-

complete discrete optimization problem, for which the salesman has to �nd a tour that minimizes

the distance traveled in visiting a given set of cities. We introduce neural variables �ip that are

1 if the ith step of the tour passes through city p, and zero otherwise. The cost function can be

written very simply in terms of these neural variables, however an extra penalty term needs to be

added to implement the constraint that only one of the �ip can be non-zero for a given i or p. The

cost function then looks like a statistical physics problem, with \spins" �ip governed by an \energy

function". This formulation of the TSP can in fact be solved using simulated annealing, however the

neural network approach uses a faster approximate method, similar to a mean-�eld approximation

in statistical physics. Unfortunately this approximate method does not work well for even a modest

number of cities [56].

This general approach has however been very e�ective for a number of other problems, including

load balancing a parallel computer [25]. In this case, we can introduce neural variables just as for

the TSP, except that �ip is now 1 if data element i is assigned to processor p. However this will

give the same problems as found for the TSP. Instead, we de�ne the neural variables by the binary

decomposition of the processor number

p =

d�1X
k=0

2k�ik (21)

where there are M data elements and N = 2d processors. The Md = M log2N neural variables

provide a non-redundant speci�cation of the data decomposition, compared to the MN redundant

variables in the TSP-like formulation. This approach was obviously motivated by parallel computers

with a hypercube topology, however it can be used for an arbitrary topology.

Using non-redundant variables allows us to construct an energy (cost) function for data decom-

position along the lines of Equation 16

E = Ecalc +Ecomm where

Ecalc =
1

N

X
m;m0

Calc (m) Calc (m0)

d�1Y
k=0

[1 + sk(m) sk(m
0)]
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Ecomm =
1

4

X
m;m0

Comm (m; m0)

d�1X
k=0

[1� sk(m) sk(m
0)] (22)

with \spins" sk(m) = 2�mk�1 taking the values �1. In this case, the energy function has no constraint

(penalty) terms, and the Hop�eld-Tank method works extremely well, being comparable in quality

to simulated annealing results but much faster, since a deterministic mean-�eld approximation is

used [55]. This indicates that the problems found in using neural networks for optimization lie not

with the method, but with the choice of variables and the necessity of introducing penalty terms.

We have also used neural network optimization successfully for optimizing compilers [31, 28],

and robotic vehicle navigation [27, 16].

7.4 Elastic Net

The elastic net was introduced as a physically based approach that outperformed the neural network

method for TSP [10]. The basic idea behind the elastic net is to \invent" a physical system whose

equilibrium state is the desired optimum. In the case of the TSP, we consider an elastic string with

beads for each city. The beads are attracted to each other with a simple elastic force that will try to

shrink the length of the path to zero, and thus drive the system towards the minimum path. There

is also an attractive force between the beads and the cities that drives the system towards enforcing

the constraint that the tour must pass through each city. The comparative strength of these two

competing forces is a parameter similar to temperature in annealing. We start with the elastic force

being dominant, and then slowly change the forces until �nally the bead-city force is dominant so

that we end up with a valid (hopefully near-optimal) tour.

Simic has shown an interesting relation between neural networks and elastic nets for the TSP

[53]. Both correspond to deterministic annealing using similar mean �eld approximations, but with

di�erent choices of degrees of freedom and thus di�erent constraints.

7.5 Genetic Algorithms

Genetic algorithms are based on evolutionary processes in biology. The basic idea is to encode the

system parameters as \genes" which make up a set of \chromosomes", each describing a di�erent

state of the system. For example, in load balancing a multicomputer, each gene would specify the

processor number for a speci�c node in the computational graph. We start with a base population of

chromosomes that undergo changes due to the application of genetic operators such as crossover and

mutation. Crossover is like mating, in that the genes of two individual chromosomes are randomly

combined to form a new individual. Mutation occurs by randomly changing a gene in the chromo-

some. Once a new population is formed by these operations, it is compared with the old population,

with each chromosome being assigned a \�tness" (the cost for the optimization problem). Only the

�ttest individuals are retained for the next generation (\survival of the �ttest").

Although genetic algorithms provide an interesting and often very e�ective optimizationmethod,

obtaining good performance usually requires very careful mapping of the problem variables onto the

genes, a good choice of genetic operators, and a lot of tuning of parameters in the algorithm. This

is analogous to the necessity for choosing good problem-speci�c update moves and cooling schedules

for simulated annealing. Another problem with genetic algorithms is that there is no natural way

to decide when a good solution has been reached and the process should be stopped, so it is usually

followed by some postprocessing using a hill-climbing technique or other fast heuristic.

7.6 Simulated Tempering

A variation of simulated annealing, known as simulated tempering, has recently been introduced and

used to study certain types of lattice spin models [46]. Tempering di�ers from annealing in two ways:
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it allows both heating and cooling of the system; and it keeps the system in equilibrium when the

temperature is changed. Both of these changes are bene�cial for optimization. The �rst allows for

\reheating" when the annealing gets stuck in local minima at low temperatures. This is currently

often used as an ad-hoc addition to standard simulated annealing. The second takes care of one of

the main di�culties in using simulated annealing, which is coming up with a cooling schedule that

is not too slow but keeps the system close to equilibrium as the temperature goes to zero. We are

currently working on applying this new method to general optimization problems.

8 Conclusion

We have found that using ideas and techniques from the realms of complex systems and the physical

sciences can provide useful and powerful insights into parallel computing and computer science, and

in particular the e�cient use of parallel computers for problems in computational science. However

many of the ideas presented here are well out of the mainstream of research in computer science,

and have attracted little attention. This is perhaps due to the general unfamiliarity of the computer

science community with many of these methods and concepts from the physical sciences.

There are interesting synergies between computer science, computational science, the physical

sciences, and the theory of complex systems. The development of models of computation and general

optimization techniques seem particularly suited to an interdisciplinary approach drawing from all

these areas.
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