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Abstract

Exploiting data parallelism in programs that construct and manipulate pointer based data structures of arbitrary shape
and varying size require support for expressing multiple data parallel operations on scattered data. This paper extends
the’C’ language with a new datatype called Troupe and associated for_each statement to express data parallelismin
pointer based dynamic datastructures and describestheimplementation strategy for efficiently executing such programs
on message passing parallel computers. A variety of memory allocatorsare also introduced that automatically distribute
the datain aload balanced manner.

1. Introduction

A variety of scientific and engineering applicationsrequire complex datastructureswhose size and shapevary over time
asthe computation proceeds. In[1] Fox has classified these application problems asloosely synchronous. Examples of
loosely synchronous applications are molecular dynamics [2], particle-in—cell methods [4], adaptive finite element
methods [3], many—body simulation [8], multi target missile tracking [5] etc. Apart from irregularly connected data
structures, characteristics of these applicationsare that the dataelementsmay not beidentical and whilethe computation
is not synchronized at the microscopic level, it is synchronized at the macroscopic level.

A common technique for implementing loosely connected dynamic data structures of arbitrary shape is by the use of
pointersand dynamic memory allocation asdiscussed in [6]. We assumethat it ismore appropriateto implement loosely
synchronousapplications using advanced programming languageslike’ C' or C++ which provide support for construct-
ing complex pointer based dynamic data structures.

In this paper, our main concern iswriting parallel programsfor loosely synchronous class of applications or in general
those that manipulate pointer based data structures like trees, list, graphs etc., such that the programmer does not have
to worry about synchronization and communication issues and that the programs can be efficiently compiled and ex-
ecuted on message passing MIMD computers.

Dueto ease of program devel opment and opportunity for exploiting maximum parallelism, use of dataparallel approach
of Hillisand Steele[9] is emphasized for implementing loosaly synchronous applications. We have been further moti-
vated to adopt dataparallel approach, asit hasbeen shownin [15] and [16] that data parallel programs can be efficiently
compiled and executed on message passing MIMD computers. However, success has been largely limited to programs
with regular data storage and access pattern.
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Existing data parallel languages like Fortran90D [10], C* [17], Dataparallel C[13], PC++ [14] are not appropriate for
implementing programs that manipulate pointer based dynamic data structures as they support data parallelism only on
objects with fixed size and shape such as arrays. With regards to exploiting parallelism in pointer based dynamic data
structuresthere are several issues. Thefirst ishow to express multiple data parallel operations on data elementswhich,
unlikearrays, are scattered in memory. The second ishow to traverse the datastructurein parallel. Third, ishow to per-
form several traversal in paralldl. It isimportant to note that as each traversal proceedsit may create/destroy/move data
objects. Capahility to createdatastructuresin parallel isgreatly desired for many applications such asadaptive multigrid
finite element methods where generating the mesh itself istime consuming.

In this paper we propose language extensionsto 'C' for managing and exploiting data parallelism in pointer based dy-
namic data structures without having the programmer worry about issues such as data distribution, synchronization and
communication.

There have been other efforts to provide programming language support for loosely synchronous applications most of
which are based on the object oriented approach. PC++ [14] based on the Distributed Collection model defines a new
classcalled collection for supporting fine grained data parallelism. Because elementsinacollection aretreated aslinear
array it lacks support for performing data parallel operations on objectsinterconnected in an arbitrary fashion. Another,
approach as suggested by Chen [4] in their implementation of N-Body problem is to hide the implementation details
by defining library classesfor commonly used datastructuressuch astree, listsetc. The approach presented in this paper
differs significantly from the others as it is based on the data parallel approach of CM—Fortran or Fortran90D.

2. Nature of Dynamic Data Parallelism
With regardsto exploiting parallelism in pointer based dynamic data structuresthere are three the main issues. Thefirst
issueishow to expressdataparallel operationson dataelementswhich, unlikearrays, are scattered in memory. The sec-
ond is how to traverse the data structure in parallel. Third is how to allow many objects to traverse the data structure
simultaneously without worrying about synchronization. Pointer based dynamic data structures typically requires sup-
port for the following types of data parallel operations.

—for_each( node of the data structure)

—for_each( child of anode)

—for_each(parent of anode)

—for_each( leaf of adata structure)
and many others depending upon how the datais organized and the nature of the application.

Toget greater insightinto the natureof dataparallelismin programsthat mani pul ate dynamic datastructures, we consid-
er two toy programs which are representative of the computational structure of the hierarchical N-Body [7] methods
described in [25]. Because the principal data structure for N-Body methods is atree hence we consider programs that
construct abinary tree and then perform certain computation on each node of the tree.

2.1 Example 1.

The purpose of thisexampleisto show how dynamic datastructures can be constructed using the dataparallel approach.
The following data parallel program recursively builds abinary tree for a set of elements.

Main

1. root = Empty



for_each (elementinlist)
Insert_In_Tree (element, root)
endfor
endmain

Function Insert_In_Tree (element, node)

1 if (nodeis Empty)
2. Insert element in this node
3. return;
}
4, if (nodeisleaf) && ( hode—>value <= element—>value)
5. Create the | eft child.
6. Insert element in left child
7. return
endif
8. if (nodeisleaf) && ( node—>value > element—>value)
9. Create theright child.
10. Insert element in right child
11. return
endif
12. if (nodeisnot aleaf )
13. for_each (child of this node)
14. Insert_In_Tree (element, node—>child)
endfor
endif
endfunc

Theabove programisdata parallel iswe assumethat for _each statement createsalogical thread of execution (process)
for every dataobject on whichtothe operationisto be performed. Duetofor _each statementinmain program, insertion
of each element in the treeis an independent process, each of which proceedsin parallel. Dueto for_each statement at
line13inprocedurelnsert_In_Treeallowseachtraversal itself toproceedinparallel. The programisfreeof synchroni-
zationissuesif we assumethat only onethread at atimeisallowed to operate on anode of thetree. At any instant it does
not matter which thread operates on a node as operations on nodes are independent of each other.

2.2. Example 2.

Thisexampl eisrepresentative of thea gorithm to compute multi pol e expansi on of each nodefor the N—body simulations
based on Barnes—Hut tree. To compute the multipole expansion for a node, first compute the multipoles for each of its
children. Oncethe multipolesfor each of its children have been computed the multipolefor the nodeiseither afunction
of the multipolevalue of the child or isafunction of the number of the number of leaves contained in the subtree rooted
at the child. The multipolesfor aleaf isafunction of the element value stored in that leaf. The mathematical detailsfor
computing these interactions are given in [25].



A non—recursive dataparallel algorithm for computing the multipoles proceeds by traversing thetree bottom up by first
computing the multipoleforces at theleaf nodes and then at the parent, grandparent and so on. Assuming that the height
of thetreeis N with root being at height O the computation proceeds as shown bel ow.

Compute multipoles (root)

1. for (h=N; h>=0; h=h-1)

2. for_each ( nodein tree) at height (h)

3 if (nodeisleaf) then node—>multipole = func(hode—>value)

4 if (nodeis not leaf) then

5 for_each (child of this node)

6. if (node—>child—>multipole < Ncutoff) then

7 for_each (leaf of thischild) /* in subtree rooted at node */

8 node—>multipole = node—>multipole + func(leaf—>value)
9

. endfor
10. else ParAxis (node, child)
11. endfor
12. endif
13. endfor
14. endfor

Inthe above procedure, Par Axisisafunction which implementsthe mathematical equationsinvolved in computing the
multipole expansion. Proceduresfor computing the forces on the particles and reorganizing thetree can be similarly de-
scribed using thefor_each notation. Two aspects of the above program are worth mentioning which brings out the need
for dynamically controlling the data parallelism from within the program. Firstly, at line 2, itisrequired by thefor _each
statement to know what nodes arethere at aparticular level inthetree. Secondly, at line 7, itisrequired by thefor _each
statement to know what are leavesin the sub tree rooted at a particular node.

3. Language Support for Dynamic Data Parallelism

To provide support for the above mentioned data parallel operationsit isrequired that address of each object such as
each node, each child, each parent, each leaf be computable or known at runtimeby thefor _each statement. Because
inthe case of dynamic datastructuresindividual dataelementsare created asand when needed they are usually scattered
in memory asaresult their addressis not computabl e based on some known storage scheme. To overcomethis problem,
our approachisto explicitly passaddresses of data objectsasargumentstothefor_each statement. Thisisachieved by
introducing a data type called troupe members of which are pointers to data objects on which the operations are to be
performed. As shown in example programs of previous section, each member may traverse the data structure and may
perform several data parallel operations during its course of traversal.

3.1 Troupe: A Data Type For Dynamic Data Parallelism

A troupe isadatatypefor dynamically maintaining dataparallelism associated with different parts of the datastructure.
Itis acollection of pointersto objectsof aparticular type.When passed asan argument tofor _each statement (explained
inthe next section) operationsareperformedin parallel by each member of thetroupe. Memberscan beadded or removed
fromthetroupeduring program execution by the use of operatorsadd or delete, and two or moretroupescan be merged



using the operator mer ge.

Troupe variables are declared by preceding an identifier with! symbol. For example, the declaration
struct treenode * ! nodes;
will result in the creation of a troupe variable nodes capable of storing pointers of type treenode. When used as part
of recordsin Pascal or structin’C’, troupe can be used to dynamically control dataparallelism associated with each data
object. For examplein the following definition of treenode,
struct treenode {

struct treenode * ! children;
3
each object of type treenode consists of atroupe called children capable of storing pointers of type tree node. Hence,
troupe children can be used to perform operationsin parallel on each of the children of aparticular node. Recursively,
anode may perform operationsin parallel on the children of its children.

3.2 for_each Statement

A convenient mechanism for expressing data parallelism is the use of forall statement as introduced in CM—Fortran.
However, unliketheforall construct in Fortran which operateson arrays, wedefinefor _each operating on each member
of troupe. Thefor_each statement takes as arguments avariable and a troupe of the same type and createsalogical
thread corresponding to each member of the troupe. Each member of the troupe is owned and known to one and only
onethread. In each thread, the identifier isinitialized to the member of the troupe responsible for creating the thread.

for_each (variable::troupe)

(condition)
{

statements;
}

Thethreadsare created only for those memberswherethe condition specified inthefor_each statement istrue. Variables
declared within the for _each statement are local to each thread. However, variables declared outside of the for_each
statement and visible to it are also visible and accessible by each thread. Although, athread may modify the variables
declared outside of for_each statement, the modifications are visible only locally. As a general rule, any variable not
declared within the for _each statement is inherited from the parent.

3.4 Synchronization

The problem of synchronization is overcome by not allowing multiple threads to execute simultaneously on the same
data element (notion of distinctness as discussed by Steelein [...]). Thisisachieved in part by not allowing troupesto
contain duplicatemembers. Thisensuresthat each operationinvoked by thefor _each statement will beon adistinct data
element. However, dueto nested for_each statementsit is possible that a child thread may be created on a same data
object for which a parent thread may already exist. Thiswould lead either to deadlock or inconsistent result. Hence, a
child thread on a data object is not permitted if there exists a parent thread on the same data object.



Secondly, by the use of pointersitispossiblefor morethan onethread to operate on the same datael ement. For example,
for_each (p::troupe)
p—hext—>field = ......
In the above program segment it is possible for more than one thread to have the same value in the next field. Hence,
all of them operate on the same data p—>next—>field. A solution to this problem isto first lock the dataitem in aread
or write mode and then apply the operation.

3.3 Parallel Object Creation and Distribution
In our case datadistribution isimplicitly performed by the dynamic memory allocators. Thus every time a new object
iscreated the corresponding memory allocator decides on which processor to create the object. By having the notion of
long pointers which unlike 32 bit numbers are 48 bit long allows us to treat pointers as being unique across all of the
processors. These implementation issues will be discussed in detail in the final paper.
3.3.1p_malloc: Parallel Memory Allocator
P_mallocisused for creating aset of objectsin parallel. It takesasargument aset of pointerspl, p2, ..., pn asindicators
for locality of reference and an integer size indicating the size of the object to be created.

p_malloc (p, p2, ... pn, size)

char *pl,*p2, ..., *pn;

int sze

Any or al of p’'scanbeNULL. If al of the pointersare NUL L then the system will create the object without any regards
for locality of reference. Asan example consider the following code.
for_each (q::troupe)
o—>child = p_malloc (q, size);

In the above program segment, in each thread p_malloc will return a pointer to new object of size bytes, if possible the
new object is created on the same processor and page as that of address g.

3.3.2 s malloc: Single Memory Allocator.
Unlike p_malloc which creates a new object in each of thethread, s malloc creates a single object whose addressisre-
turned to each thread. S_malloc accepts the same arguments as p_malloc. For example, in the following code
for_each (q::troupe)
o—>child=s malloc (q, size);

only oneinstance of object is created whose addressis assigned to g—> child in each thread. In the case of s malloc the
object is created such that it provides good locality of reference to each of the object pointed by q.

Severa other types of memory allocators can be defined for different types of applications.
4. Data Parallel Program Using Troupe.

Asanexampletoseehow troupeandfor_each canbeused, weconsider problemsdiscussed earlierinsection 2. Struc-
ture of each node of thetree asdefined in'C’ isasfollows.



struct BHnode {

float value; [* someforce vaueetc. */

float multipole; /* multipole expansion for this node */

int  aldone; /* used for keeping count of how many children are done */
BHnode *parentn;  /* pointer to parent */

BHnode *!child; [* troupe for containing child pointers*/

BHnode *!ledfs; /* troupe for storing pointersto leafsin this subtree */
BODY  *body; [* pointer to the body */

1

In the definition of the BHnode, we have defined two troupes. The troupe called child isused for maintaining pointers
to children. Using atroupeinstead of an array of pointerswould allow anew thread to be created for traversing the tree
along each child. Thetroupe leafs isused for maintaining pointerstotheleaf nodesin thesubtreerooted at the particul ar
node. Accesstoleaf nodesinthesub treerooted at aparticular nodeisrequired for computing the multipolesexpansions.
Aswill beshown later intheprogram, asthetraversal of thetree proceeds pointersto leafsare passed to the nodesrequir-
ing them.

4.1 Data Parallel Program for Example 1.

Inthe main program described below it isassumed that the set of elementsto beinserted inthetree areaready contained
inthetroupebodies. Since, the procedurefor putting the bodiesin thetroupeinvolvesfilehandling and israther uninter-
esting, it has not been described here. Statements 1 and 2 construct theinitial treein parallel. Paralelismisachieved by
viewing insertion of each body in the tree as an independent process.

Theprocedure Insert_In_Treeisresponsiblefor inserting the body pointed by argument newbody into the tree pointed
by argument root. The procedureisalso responsible for mainting the troupe allleafswhich at any point in the computa-
tion contains pointersto all the leaf nodes of the tree. Since, the troupe allleafsis passed as an argument (i.e. declared
outside the procedure) hence, it is shared by al threads (corresponding to each invocation of Insert_In_Tree). Since,
operations on troupes are associ ative in nature hence, different threads can add or deleteitems from the troupe without
requiring any synchronization.

BHnode *!dlleafs;
BHnode *root;

for_each (bdy::bodies) {
Insert_In_Tree (bdy, alleafs, root);
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/* Non—Recursive procedure to create Barnes-Hut tree.*/
Insert_In_Tree (newbdy, allleafs, root)

BODY *body;

BHnode *!allleafs; [* troupes*/

BHnode *root;

{
BHnode *q, *p, *nodes;
int i_am leaf, done;
add (nodes, root);
done = FAL SE;
while (NOT done) {
for_each (p::nodes) {
if (p==NULL){
Insert element in this node;
return;
}
if (i_am_a leaf(p) == TRUE) & & (p—>Vvaue <= newbdy—>value) {
g = p_malloc (p, sizeof(BHNnode));
add (p—>child, g); /* insert g introupe contained in the parent node pointed by p
Insert element in node pointed by q;
done = TRUE;
}
if (i_am_a leaf(p) == TRUE) && (p—>vaue > newbdy—>value) {
g = p_malloc (p, sizeof(BHnode));
add (p—>child, g); /* insert gintroupe contained in the parent node pointed by p */
Insert element in node pointed by q;
done = TRUE;
}
if (i_am_a leaf(p) == FALSE) {
* continue search in 4 sub trees */
mer ge (nodes, p—>child);
}
}
}



The procedure starts by adding root to an empty troupe nodes, and then keeps creating threads (statement 4) until the
body pointed by newbody has been inserted in the tree. An important aspect of this procedureis the use of the troupes
asafieldin the struct BHnode to store pointersto the child nodes. By using troupe instead of an array of pointers (one
for each child) one can createanew thread for traversing the subtreerooted at each of the child. Thisisdone at statement
21, where mer ge takes the contents of troupe p—>child and concatenates to the troupe nodes, hence resulting in new
threads being created at the statement 4.

4.2 Data Parallel Program for Example 2.
In this procedure, we pass troupe alleafs containing pointers to all the leaf nodes in the tree. This was created by the
previous procedure while constructing the tree.

Generate multipoles (alleafs)
BHnode *!allleafs;

{
BHnode *!newnodes, *p, *q, *r;
1 mer ge (newnodes, allleafs);
2. done = FALSE;
3. while (NOT done) {
4, for_each (p:newnodes) {
5. if (pisaleaf) {
6. p—>multipole = func(p—>value);
7. add (p—>parent—>ledfs, p);
8. }
9. if (pisnot aleaf) && (p—>alldone==2) {
* i.e. multipoles for each of the child has been computed */
10. for_each (qg::p—>child) {
11 if (g—>multipole < Ncutoff)
12. for_each (r::q—>leafs) {
p—multipole = p—>multipole + func(r—>value);
13. else
14. Par Axis (p,q);
15. [* pass the troupe containing leaf nodes to the parent */
16. mer ge (p—>parent—>leafs, g—>leafs);
17. add (newnodes, p—>parent);
18. p—>alldone += 1;
}
}
}
}



5. Basic Program Execution Strategy.

Our execution methodology is similar to that adopted for Fortran 90D as discussed in [26]. That is, the same program
executes on each processor with asinglelogical thread of control. Parallelism is achieved by performing computations
on processor which owns the data element. In our case, thisimplies that when creating threads for each element in a
troupe, the pointer in the troupe isfirst dereferenced to determine the processor on which the object to which it points
resides. Datael ementsrequired by thethread but not availableonthelocal processor arefetched by meansof communica-
tion. Detailed discussion about the program translation and execution will be discussed in thefinal version of the paper.

6. Current Status

An implementation of the proposed constructs and the corresponding dynamic data distribution and load balancing
schemesis currently in progress for Ncube2 and CM5. A loosely synchronous application such as molecular dynamics
or N-Body simulations and multipletarget missiletracking program shall also beimplemented using the proposed con-
structs and their performance measured on CM-5 or Ncube2 distributed memory parallel computers.
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