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                        Abstract
Exploiting data parallelism in programs that construct and manipulate pointer based data structures of arbitrary shape

and varying size require support for expressing multiple data parallel operations on scattered data. This paper extends

the ’C’ language with a new data type called Troupe and associated for_each statement to express data parallelism in

pointer based dynamic data structures and describes the implementation strategy for efficiently executing such programs

on message passing parallel computers. A variety of memory allocators are also introduced that automatically distribute

the data in a load balanced manner. 

1. Introduction

A variety of scientific and engineering applications require complex data structures whose size and shape vary over time

as the computation proceeds. In [1] Fox has classified these application problems as loosely synchronous. Examples of

loosely synchronous applications are molecular dynamics [2], particle–in–cell methods [4], adaptive finite element

methods [3], many–body simulation [8], multi target missile  tracking [5] etc.  Apart from irregularly connected data

structures, characteristics of these applications are that the data elements may not be identical and while the computation

is not synchronized at the microscopic level, it is synchronized at the macroscopic level.

A common technique for implementing loosely connected  dynamic data structures of arbitrary shape is by the use of

pointers and dynamic memory allocation as discussed in [6]. We assume that it is more appropriate to implement loosely

synchronous applications using advanced programming languages like ’C’ or C++  which provide support for  construct-

ing  complex pointer based dynamic data structures.

In this paper, our main concern is writing parallel programs for loosely synchronous class of applications or in general

those that manipulate pointer based data structures like trees, list, graphs etc., such that the programmer does not have

to worry about synchronization and communication issues and that the programs can be efficiently compiled and ex-

ecuted on message passing MIMD computers.

Due to ease of program development and opportunity for exploiting maximum parallelism, use of data parallel approach

of Hillis and Steele [9] is emphasized for implementing loosely synchronous applications. We have been further moti-

vated to adopt data parallel approach, as it has been shown in [15] and [16] that data parallel programs can be efficiently

compiled and executed on message passing MIMD computers. However, success has been largely limited to programs

with regular data storage and access pattern.
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Existing data parallel languages like Fortran90D [10], C* [17], Dataparallel C [13], PC++ [14] are not appropriate for

implementing programs that manipulate pointer based dynamic data structures as they support data parallelism only on

objects with fixed size and shape such as arrays. With regards to exploiting parallelism in pointer based dynamic data

structures there are several issues. The first is how to express multiple data parallel operations on data elements which,

unlike arrays, are scattered in memory. The second is how to traverse the data structure in parallel. Third, is how to  per-

form several traversal in parallel. It is important to note that as each traversal proceeds it may create/destroy/move data

objects. Capability to create data structures in parallel is greatly desired for many applications such as adaptive multigrid

finite element methods where generating the mesh itself is time consuming. 

In this paper we propose language extensions to ’C’ for managing and exploiting data parallelism in pointer based dy-

namic data structures without having the programmer worry about issues such as data distribution, synchronization and

communication.

There have been other efforts to provide programming language support for loosely synchronous applications most of

which are based on the object oriented approach. PC++ [14] based on the Distributed Collection model defines a new

class called collection for supporting fine grained data parallelism.  Because elements in a collection are treated as linear

array it lacks support for performing data parallel operations on objects interconnected in an arbitrary fashion. Another,

approach as suggested by Chen [4] in their implementation of N–Body problem is to hide the implementation details

by defining library classes for commonly used  data structures such as tree, lists etc. The approach presented in this paper

differs significantly from the others as it is based on the data parallel approach of CM–Fortran or Fortran90D.

2. Nature of Dynamic Data Parallelism

With regards to exploiting parallelism in pointer based dynamic data structures there are three the main issues. The first

issue is how to express data parallel operations on data elements which,  unlike arrays, are scattered in memory. The sec-

ond is how to traverse the data structure in parallel. Third is  how to allow many  objects to traverse the data structure

simultaneously without worrying about synchronization. Pointer based dynamic data structures typically requires sup-

port for the following types of data parallel operations. 

– for_each( node of the data structure)

– for_each( child of a node)

– for_each(parent of a node) 

– for_each( leaf of a data structure)

and many others depending upon how the data is organized and the nature of the application.

To get  greater insight into the nature of data parallelism in programs that manipulate dynamic data structures, we consid-

er two toy programs which are representative of the computational structure of the hierarchical N–Body [7] methods

described in [25].  Because the principal data structure for N–Body methods is a tree hence we consider programs that

construct a binary tree and then perform certain computation on each node of the tree.

2.1 Example 1.

The purpose of this example is to show how dynamic data structures can be constructed using the data parallel approach.

The following data parallel program recursively builds a binary tree for a set of elements.

Main

1. root = Empty
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2. for_each (element in list)

3. Insert_In_Tree (element, root)

endfor

endmain

Function Insert_In_Tree (element, node)

1. if  (node is Empty)

2. Insert element in this node

3. return;

}

4. if (node is leaf)  && ( node–>value <= element–>value)

5. Create the left child.

6. Insert element in left child

7. return

endif

8. if (node is leaf)  && ( node–>value > element–>value)

9. Create the right child.

10. Insert element in right child

11. return

endif

12. if (node is not a leaf )

13. for_each (child of this node)

14.        Insert_In_Tree (element, node–>child)

  endfor

endif

endfunc

The above program is data parallel is we assume that for_each statement creates a logical thread of execution (process)

for every data object on which to the operation is to be performed.  Due to for_each statement in main program, insertion

of each element in the tree is an independent process, each of which proceeds in parallel. Due to for_each statement at

line 13 in procedure Insert_In_Tree allows each traversal  itself to proceed in parallel. The program is free of synchroni-

zation issues if we assume that only one thread at a time is allowed to operate on a node of the tree. At any instant it does

not matter which thread operates on a node as operations on nodes are independent of each other.

2.2. Example 2.

This example is representative of the algorithm to compute multipole expansion of each node for the N–body simulations

based on Barnes–Hut tree. To compute the multipole expansion for a node, first compute the multipoles for each of its

children.  Once the multipoles for each of its children have been computed the multipole for the node is either a function

of  the multipole value of the child or is a function of the number of the number of leaves contained in the subtree rooted

at the child. The multipoles for a leaf is a function of the element value stored in that leaf. The mathematical details for

computing these interactions are given in [25].
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A non–recursive data parallel algorithm for computing the multipoles  proceeds by traversing the tree bottom up by first

computing the multipole forces at the leaf nodes and then at the parent, grandparent and so on. Assuming that the height

of the tree is N with root being at height 0 the computation proceeds as shown below.

 Compute_multipoles (root)

1.    for (h=N;  h >= 0;  h = h – 1)  

2. for_each ( node in tree) at height (h)

3.     if  (node is leaf) then node–>multipole = func(node–>value)

4.      if  (node is not leaf) then

5.    for_each (child of this node) 

6.  if (node–>child–>multipole < Ncutoff) then

7.      for_each (leaf of this child)    /* in subtree rooted at node */

8.              node–>multipole  = node–>multipole + func(leaf–>value)

9.        endfor

10.          else  ParAxis (node, child)

 11.              endfor

12.        endif

13.  endfor

14. endfor

In the above procedure, ParAxis is a function which implements the mathematical equations involved in computing the

multipole expansion. Procedures for computing the forces on the particles and reorganizing the tree can be similarly de-

scribed using the for_each notation.  Two aspects of the above program are worth mentioning which brings out the need

for dynamically controlling the data parallelism from within the program. Firstly, at line 2, it is required by the for_each

statement to know what nodes are there at a particular level in the tree. Secondly, at line 7, it is required by the for_each

statement to know what are leaves in the sub tree rooted at a particular node.

3. Language Support for Dynamic Data Parallelism

To provide support for the above mentioned data parallel operations it is required  that address of each object such as

each node, each child, each parent, each leaf  be computable or known at run time by the for_each statement. Because

in the case of dynamic data structures individual data elements are created as and when needed they are usually scattered

in memory as a result their address is not computable based on some known storage scheme. To overcome this problem,

our approach is to explicitly pass addresses of data objects as arguments to the for_each statement.  This is achieved by

introducing a data type called troupe members of which are pointers to data objects on which the operations are to be

performed. As shown in example programs of previous section, each member may traverse the data structure and may

perform several data parallel operations during its course of traversal.

3.1 Troupe: A Data Type For Dynamic Data Parallelism

A troupe  is a data type for dynamically maintaining data parallelism associated with different parts of the data structure.

It is  a collection of pointers to objects of a particular type.When passed as an argument to for_each statement (explained

in the next section) operations are performed in parallel by each member of the troupe. Members can be added or removed

from the troupe during program execution by the use of operators add or delete, and  two or more troupes can be merged



5

using the operator merge. 

Troupe variables are declared by preceding an identifier with !  symbol. For example, the declaration

          struct  treenode  * ! nodes; 

will result in the creation of a  troupe variable  nodes capable of storing pointers of type treenode. When used as part

of records in Pascal or struct in ’C’, troupe can be used to dynamically control data parallelism associated with each data

object. For example in the following definition of treenode,

struct treenode {

.......

struct treenode * ! children;

};

each object of type treenode consists of a troupe called children  capable of storing pointers of type tree node. Hence,

troupe children can be used to perform operations in parallel on each of the children of a particular node. Recursively,

a node may perform operations in parallel on the children of its children.

3.2 for_each Statement

A convenient mechanism for expressing data parallelism is the use of forall statement as introduced in CM–Fortran.

However, unlike the forall construct in Fortran which operates on arrays, we define for_each  operating on each member

of troupe. The for_each statement  takes as arguments a variable and a  troupe of the same type and  creates a logical

thread corresponding to each member of the troupe. Each member of the troupe is owned and known to one and only

one thread. In each thread,  the  identifier is initialized to the member of the troupe responsible for creating the thread.

for_each (variable::troupe)

(condition)

{

statements;

}

The threads are created only for those members where the condition specified in the for_each statement is true. Variables

declared within the for_each statement are local to each thread. However, variables declared outside of the for_each

statement and visible to it are also visible and accessible by each thread. Although, a thread may modify the variables

declared outside of for_each statement, the modifications are visible only locally. As a general rule, any variable not

declared within the for_each statement is inherited from the parent.

3.4 Synchronization

The problem of synchronization is overcome by not allowing multiple threads to execute simultaneously on the same

data element (notion of distinctness as discussed by Steele in [...]). This is achieved in part by not allowing troupes to

contain duplicate members. This ensures that each operation invoked by the for_each statement will be on a distinct data

element. However, due to nested  for_each  statements it is possible that a child thread may be created on a same data

object for which a parent thread may already exist. This would lead either to deadlock or inconsistent result. Hence, a

child thread on a data object is not permitted if there exists a parent thread on the same data object.
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Secondly, by the use of pointers it is possible for more than one thread to operate on the same data element. For example,

for_each (p::troupe)

p–>next–>field = ......

In the above program segment it is possible for more than one thread to have the same value in the next field. Hence,

all of them operate on the same data p–>next–>field. A solution to this problem is to first lock the data item in a read

or write mode and then apply the operation.

3.3 Parallel Object Creation and Distribution

In our case data distribution is implicitly performed by the dynamic memory allocators. Thus every time a new object

is created the corresponding memory allocator decides on which processor to create the object. By having the notion of

long pointers which unlike 32 bit numbers are 48 bit long allows us to treat pointers as being unique across all of the

processors. These implementation issues will be discussed in detail in the final paper. 

3.3.1 p_malloc: Parallel Memory Allocator

P_malloc is used for creating a set of objects in parallel. It takes as argument a set of  pointers p1, p2, ..., pn as indicators

for locality of reference and an integer size indicating the size of the object to be created. 

p_malloc (p1, p2, ... pn, size)

char  *p1, *p2, ....,  *pn;

int      size;

Any or all of p’s can be NULL. If all of the pointers are NULL then the system will create the object without any regards

for locality of reference. As an example consider the following code.

for_each (q::troupe)

q–>child = p_malloc (q, size);

In the above program segment, in each thread p_malloc will return a pointer to new object of size bytes, if possible the

new object is created on the same processor and page as that of address q.

3.3.2  s_malloc: Single Memory Allocator.

Unlike p_malloc which creates a new object in each of the thread, s_malloc creates a single object whose address is re-

turned to each thread. S_malloc accepts the same arguments as p_malloc. For example, in the following code

for_each (q::troupe)

q–>child = s_malloc (q, size); 

only one instance of object is created whose address is assigned to q–>child in each thread. In the case of s_malloc the

object is created such that it provides good locality of reference to each of the object pointed by q.

Several other types of memory allocators can be defined for different types of applications.

4. Data Parallel Program Using Troupe.

As an example to see how  troupe and for_each can be used,  we consider problems discussed  earlier in section 2.  Struc-

ture of  each node of the tree as defined in ’C’ is as follows.
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struct BHnode {

float value;                 /* some force value etc. */

float  multipole;              /* multipole expansion for this node */

int       alldone;             /*  used for keeping count of how many children are done */

BHnode    *parentn;       /* pointer to parent */

BHnode    *!child;          /* troupe for containing child pointers */

BHnode    *!leafs;          /* troupe for storing pointers to leafs in this subtree */

BODY      *body;           /* pointer to the body */

};

In the definition of the BHnode, we have defined two troupes. The troupe called child  is used for maintaining pointers

to children. Using a troupe instead of an array of pointers would allow a new thread to be created for traversing the tree

along each child. The troupe  leafs  is used for maintaining pointers to the leaf nodes in  the sub tree rooted at the particular

node. Access to leaf nodes in the sub tree rooted at a particular node is required for computing the multipoles expansions.

As will be shown later in the program, as the traversal of the tree proceeds pointers to leafs are passed to the nodes requir-

ing them.

4.1 Data Parallel Program for Example 1.

 In the  main program described below it is assumed that the set of elements to be inserted in the tree are already contained

in the troupe bodies.  Since, the procedure for putting the bodies in the troupe involves file handling and is rather uninter-

esting, it has not been described here. Statements 1 and 2 construct the initial tree in parallel. Parallelism is achieved by

viewing insertion of each body in the tree as an independent process. 

The procedure Insert_In_Tree is responsible for inserting the body pointed by argument  newbody into the tree pointed

by argument root. The procedure is also responsible for mainting the troupe allleafs which at any point in the computa-

tion contains pointers to all the leaf nodes of the tree. Since, the troupe allleafs is passed as an argument (i.e. declared

outside the procedure) hence, it is shared by all threads (corresponding to each invocation of Insert_In_Tree). Since,

operations on troupes are associative in nature hence, different threads can add or delete items from the troupe without

requiring any synchronization. 

BHnode *!allleafs;

BHnode  *root;

1. for_each (bdy::bodies)  {

2. Insert_In_Tree (bdy, allleafs, root);
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/* Non–Recursive procedure to create Barnes–Hut tree.*/

Insert_In_Tree (newbdy, allleafs, root)

BODY    *body;

    BHnode  *!allleafs;       /* troupes */

BHnode  *root;

{

         BHnode  *q, *p, *nodes;

        int      i_am_leaf,  done;     

1.       add (nodes, root);

2.       done = FALSE;

3.        while (NOT done )    {

4.   for_each (p::nodes) {

5. if  (p == NULL) {

6. Insert element in this node;

7. return;

8. }

9. if  (i_am_a_leaf(p) == TRUE) && (p–>value <= newbdy–>value) {

10.       q = p_malloc (p, sizeof(BHnode)); 

11.        add (p–>child, q);    /* insert q in troupe  contained in the parent node pointed by p

*/

12.       Insert element in node pointed by q;

13.        done = TRUE;

}

14. if  (i_am_a_leaf(p) == TRUE) && (p–>value > newbdy–>value) {

15.       q = p_malloc (p, sizeof(BHnode)); 

16.       add (p–>child, q);    /* insert q in troupe  contained in the parent node pointed by p */

17.       Insert element in node pointed by q;

18.        done = TRUE;

}

19. if  (i_am_a_leaf(p) == FALSE)  {

20.. /* continue search in 4 sub trees */

21. merge (nodes, p–>child);

                            }

}

      }
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The procedure starts by adding root to an empty troupe nodes, and then  keeps creating threads (statement 4) until the

body pointed by newbody has been inserted in the tree. An important aspect of this procedure is the use of the troupes

as a field in the struct BHnode to store pointers to the child nodes. By using troupe instead of an array of pointers (one

for each child) one can create a new thread for traversing the subtree rooted at each of the child. This is done at statement

21, where merge takes the contents of troupe p–>child and concatenates to the troupe nodes, hence resulting in new

threads being created at the statement 4.

4.2 Data Parallel Program for Example 2.

In this procedure, we pass troupe allleafs containing pointers to all the leaf nodes in the tree. This was created by the

previous procedure while constructing the tree.

Generate_multipoles (allleafs)

BHnode  *!allleafs;

{

 BHnode  *!newnodes, *p, *q, *r;     

1. merge (newnodes, allleafs);

2. done = FALSE;

3. while (NOT done) {

4.    for_each (p:newnodes) {

5. if (p is a leaf)  {

6.  p–>multipole = func(p–>value);

7. add (p–>parent–>leafs, p);

8. }

9. if ((p is not a leaf) && (p–>alldone == 2)  { 

/* i.e. multipoles for each of the child has been computed */

10. for_each (q::p–>child)  {

11.     if ( q–>multipole < Ncutoff)

12.         for_each (r::q–>leafs) {

               p–>multipole =  p–>multipole + func(r–>value);

13.     else 

14.          ParAxis (p,q);

15.     /* pass the troupe containing leaf nodes to the parent */

16.     merge (p–>parent–>leafs, q–>leafs);

17.     add (newnodes, p–>parent);

18.       p–>alldone += 1;

}

}

}

  }
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5. Basic Program Execution Strategy.

Our execution methodology is similar to that adopted for Fortran 90D as discussed in [26]. That is, the same program

executes on each processor with a single logical thread of control. Parallelism is achieved by performing computations

on processor which owns the data element.  In our case, this implies that when creating threads for each element in a

troupe, the pointer in the troupe is first dereferenced to determine the processor on which the object to which it points

resides. Data elements required by the thread but not available on the local processor are fetched by means of communica-

tion. Detailed discussion about the program translation and execution will be discussed in the final version of the paper.

6. Current Status

An implementation of the proposed constructs and the corresponding  dynamic data distribution and load balancing

schemes is currently in progress for Ncube2 and CM5. A loosely synchronous application such as molecular dynamics

or N–Body simulations and multiple target missile tracking program shall also be implemented using the proposed con-

structs and their performance measured on CM–5 or Ncube2 distributed memory parallel computers. 
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