
Figure Captions.

Figure 1. �2 as a function of A for the homopolymer case (� = 0).

Figure 2. As in Fig. 2, but �2.

Figure 3. P (�2) for the homopolymer (� = 0) in the open phase (A = 1:6).

Figure 4. As in Fig. 3, but in the globular phase (A = 3:8).

Figure 5. P (�2) in the spin glass phase, � = 6:0 and A = 3:8.

Figure 6. �2 as a function of Monte Carlo time (in units of 104 sweeps of
the chain) in the spin glass phase, � = 6:0 and A = 3:8.

Figure 7. As in Fig. 6, but for �2.

Figure 8. Squared chain-distances �2 from some given chains (that are in-

dicated by a vertical line).

Figure 9. Con�gurational view of the chains indicated by vertical lines in
Fig. 8. In each �gure the three projections on the planes x � y, x � z

and y � z.
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protein is in the same state.

The main question is about the minima of the free energy. From Figs. 8

it is clear in �rst that there is, as expected, a very complex structure. There

are few stable states (we see at least two di�erent states in which the chain

comes back after many iterations). The most important point is perhaps that

there are few stable states: the fact that after many Monte Carlo iterations,

and after visiting a completely di�erent state (see next paragraph) we come

back exactly to the same state is very remarkable, and is a feature that is

quite di�erent from the pattern of stable state in disordered spin models (the
recent work of ref. [10] points in this direction).

Proteins fold in one or very few stable state: the behavior of the glassy

phase one encounters in a spin model (or in a the Random Energy Model)
would not be consistent with such a phenomenon. In order to explain protein
folding by the e�ect of disorder one has to �nd few stable structures: this is
what we have shown to happen for heteropolymers in random, strong enough
disorder.

In Figs. 9 we give the conformational pictures of protein selected at the
time-points where we take the distance from in Figs. 8. So in Fig. 9a we
have the protein from which we take the distances in Fig. 8a and so on (we
give the 3 projections on the x � y, x � z and y � z planes: the �gures
are after minimization of � over roto-translations, i.e. the projections are,

at least in principle, as similar as they can be). It is remarkable that the
two states (that we consider stable states, since the chain �nds them again
after billions of Monte Carlo steps) are conformationally completely di�er-

ent. It is very impressive how Fig. 9a is similar to Fig. 9d, and Fig. 9c to
Fig. 9f: the intermediate con�gurational states are completely di�erent, but

the chain comes back after many millions of Monte Carlo iterations, to the

some con�guration.
We have given evidence for the existence of a glassy phase in the dynamics

of heteropolymers: we have shown that such a phase has typical features that
are di�erent from the ones of a disordered spin model, that are due to the

chainy features of the model, and that such features are exactly what one

needs to apply such a model to the description of the dynamics of protein

folding. In a next paper we will give some more informations about the

structure of the free energy minima: we will discuss how the states do cluster,
and the possibility of applying an ultrametric description to the states.

Acknowledgments
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we can see very long-living structures. The macroscopic jump in the radius

survives for order of 20 million Monte Carlo sweeps.

In the series of Figs. 8 we give the square distance �2 of the protein chains

we have encountered in the course of the dynamics from the speci�c chain

we indicate by drawing a vertical line on the selected time. We compute the

chain-distance �2 from the considered chain to all the chains preceeding it in

the (Monte Carlo) time and to the chains following it. Obviously enough the

distance is zero in the point speci�ed form the arrow, i.e. the chain-distance

of a protein with itself is zero: small � means the two con�gurations are in a
similar state, large � they are in a di�erent state. We warn the reader that

these �gures have to be understood in detail, since they do constitute the

main point of this work. All the features we will remark in Fig. 8 would persist
when looking at the same �gures done for the � chain-distances (based, as
we have seen, on site energy di�erences).

Fig. 8a gives the square distance �
2 from the chain obtained after 15

millions of iterations. The chain is in this moment in a stable state: we see

from this �gure that the chain will return (twice) to the same state after
more than 50 millions of Monte Carlo iterations. We can see the start very
far from thermal equilibrium (at the beginning the protein is in a transient
state, at large distance from all the equilibrium con�gurations), and after
a while (as we said 15 millions of Monte Carlo sweeps) the chain we have

decided to take the distance � from.
Before 20 millions of iterations (Fig. 8b) the chain goes in a long living

state (it last O(20 106) iterations) where it will not return during all the run.

In Fig. 8c the chain is in its second stable state, where it has spent more than
45 millions of Monte Carlo iterations. It should be noticed that the chain

is visiting this state for the second time, and that it will come back to the

same state once more.
In Fig. 8d the chain is back to the �rst state. In Fig. 8e it is in a transient

state: from Fig. 6, where we have given the gyration radius �2 as a function
of the Monte Carlo time, we see that such a state is macroscopically di�erent

from the other ones, and it is characterized form a di�erent value of � In

Fig. 8f the chain is back (for the third time) to the second state.
A good way to proceed is to compare the chain-distance � and the link

length �: in a globule unshaped state the typical value of � is larger than
the distance of two chain sites. On the contrary in a well folded, well shaped

phase � is very small (on the scale �xed by �) for all the time in which the
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dynamics, two protein chains are at distance � (we pick up one con�guration

over 104 and we compute the distances of all possible couples). It turns out

to be the one one expects in a normal (replica symmetric) phase: we plot it

in the coil phase in Fig. 3 for A = 1:6 and in the globule phase, for A = 3:8,

in Fig. 4. We cannot distinguish any kind of structure, in the sense that the

P are in this case single peaked usual distributions. In the open phase the

probability distribution has a tail for large values which is likely connected

to uctuations in the radius �, which we expect to be much larger in the

coil phase than in the globular one. Such a tail is consistently absent in the
globular phase.

We have done simulations for a few di�erent realizations of the �i;j. The

results for small values of � are quantitatively very similar to the ones with
� = 0. Fluctuations from one instance of the potential to a di�erent one
are very small, and the statistical errors on the measured quantities can
be reliably measured (we use a jack-knife technique in order to control the
convergence of our error estimators).

Increasing the strength of the disorder (at �xed � and R) we �nd, close
to a given value of � = �c, a transition to a new phase, completely di�erent
in character from the ones we have discussed before. Such a phase has all
the typical features of a frozen phase in a spin glass, plus some bonuses we
will discuss in the following, that make it very suitable to describe the state

of a folded, biologically active protein.
The correlation time in the glassy phase is very very large (we are not

able to determine it), and the jump from the two phases (coil and unshaped

globule) with reasonable correlation times to the new phase is very abrupt.
The P (�2) in the new phase is non-trivial, and we can observe the system

to survive in a given state for very long times. We give a typical example

(after a very long run of ' 2 108 complete chain updating sweeps) of P (�2)
in Fig. 5. N = 30, � = 6:0 and A = 3:8 in these and next �gures. The

distribution P (�2) has a �rst peak at a very small value of �, typical of
two chain-con�gurations that are in the same state, and are very similar.

The other part of the distribution correspond to con�gurations which are

macroscopically di�erent: � is non-negligible compared to �.
Let us discuss in some detail the dynamics in the glassy phase. In Fig. 6

we give �
2 as a function of the Monte Carlo time, and in Fig. 7 the link

squared length �
2. Already at such a very rough level (we will see that using

our chain-distance criteria we can gather by far more detailed informations)

9



and the link length

� � h

N�1X
i=1

vuut
3X

�=1

�
x
�
i � x

�
i+1

�2
i : (10)

The coil-globule phase transition is characterized by a sudden jump in �

when varying A at �xed R (and low �).

The model we are discussing here turns out to be very reach of structure:

it is quite easy to implement it, and the two de�nitions of chain distance we

have given allow to extract many relevant additional informations. An other

possible approach consists in de�ning the protein on the lattice (in this case
the main advantage is in the large computational speed one can reach, and
the relative easiness of an operational de�nition of a chain-distance), but the
continuum approach turns out, after the results we discuss in this paper, to

be very e�ective.

4 Numerical Simulation

Let us start by summarizing our results. In absence of the noise (homopoly-
mer) we observe (when increasing the coe�cient of the attractive contribu-
tion A) a (well known) phase transition from an open coil state to a globule

unshaped phase. For low quenched noise the situation does not change. In
the strong noise regime we get an abrupt transition to a completely di�erent
phase.

We start our simulation without the random part of the potential (� = 0),
with N = 30. We have set � = 1 and R = 2, in such a way to get values of
�

N
and � of O(1) for A = 0. We compute the relevant quantities for di�erent

values of A. In Fig. 1 we give �2 as a function of A, and in Fig. 2 we give
�
2. The change of regime from a coil phase at small A to a globular phase

for large A is clear, around A = 2.
In the coil phase the square giration radius behaves as N , while in the

globule phase it behaves as N
1

3 . Such a criterium allows a good empirical

de�nition of the transition point. On the contrary we will see that the frozen
phase is characterizedby a non trivial structure in the probability distribution

of the distances

The probability of a given chain square distance, P (�2), is de�ned as

the normalized number of times that, during the course of the Monte Carlo
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the �rst distance could be completely misleading, in which one could �nd, by

overlapping the centers of the two instances, a completely spurious position.

Here de�nition (7) can help, in which it locally recognizes part of the two

chains which are in a similar energetic state. In our simulations we always

�nd the same answer when looking at the two distance indicator: we consider

this as being a very good consistency check, that show that indicators (6)

and (7) are really measuring the intrinsic similarity of two di�erent chains.

The parameters that characterize our model are the number of elementary

sequences (sites of the chain) N , the attractive coe�cient A, the repulsive
coe�cient R, the inverse temperature � ' T

�1 and the strength of the

quenched disorder, �.

The di�erent parameters we have described are deeply interconnected. In
our numerical simulations we have mostly �xed � = 1, and studied the phase
diagram in A for di�erent values of the noise �: the repulsive coe�cient R
has been �xed in such a way to match the scale �xed by the temperature.
We have tried some runs with � = 2, and they have con�rmed the idea that

roughly a rescaling in � corresponds to a rescaling in the other parameters.
The most part of our runs (a part from exploratory ones, in which we

have varied R) have been done with R = 2, and N = 30 sites on the chain.
We have done some runs with N = 60 and some with N = 10 and N = 20
in order to get informations about the scaling laws of the system.

A part from the overlap distances we have measured some local observable
quantities. We have measured the expectation value of the energy of the
system,

E � hHi ; (8)

where by h�i we mean the thermal average over con�gurations in a given

realization of the random potential (we indicate the average over di�erent

instances of the random potential by �� : the most part of the times we will
discuss results obtained in a given realization of the potential, because this
is the real problem we are eventually interested in). We have monitored the

gyration radius

� � h

NX
i=1

vuut
3X

�=1

�
x
�
i � hx�i

�2
i ; (9)
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In order to understand the structure of the equilibrium states of the model

(stable and metastable states), we want to use the concept of overlap. From

the physical interpretation of the replica approach we are lead to be inter-

ested in the di�erences between the di�erent con�gurations we encounter in

the course of the Monte Carlo dynamics we use to sample the equilibrium

probability. Let us call � and � two con�gurations that we have generated.

In de�ning their distance we have to remind that there is a rotational and

translational motion that is not relevant for de�ning a distance: we are in-

terested in a parameter that measures shape di�erences. We want to know
if we �nd a structure in the chain shape: we want to be able, for example,

to distinguish between an unshaped closes globule and a frozen well-shaped

structure. In order to do that we de�ne

�
2
(�;�) �

1

N

NX
i=1

3X
�=1

�
x
(�)�
i � x

(�)�
i

�2
; (6)

after taking the minimum over roto-translations. Practically we bring
back protein � over the protein � (overlapping the two barycenter), and

then we �nd the optimal rotation of � which minimizes �(�;�).
Such a de�nition of overlap is by no means unique. We also use a com-

pletely di�erent distance, that does not need the minimization procedure. In
this case we use the energy of the site couples in order to de�ne

�2
(�;�) �

1

N(N � 1)

NX
i=1

X
j>i

�
E

(�)
i;j � E

(�)
i;j

�2
; (7)

where E
(�)
i;j is the site energy (2) of the con�guration (�).

The de�nition (6) is very natural, in which it gives the physical similarities
of two con�gurations of the same chain (when we say the same chain we mean

that we are in the same realization of the random quenched potential: a given

protein is characterized by the sequence of the amino-acids, and sequences
of such elementary constituents do interact in a de�nite way). Once we have
eliminated the rotational and the translational degrees of freedom we are left

with an indicator which is zero if the two proteins are identical.

The problems with de�nition (6) comes if one part of the two chains is very
similar and another part is completely di�erent (that usually happen during

the folding procedure, when the folding is not yet completed). In this case
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ferent factors: the complex interactions between di�erent groups of di�erent

amino-acids, the e�ect of the solvent (typically water molecules), etc..

The Hamiltonian is de�ned as

H �

NX
i=1

X
j>i

Ei;j ; (5)

and the model is brought to thermal equilibrium under the Boltzmann

distribution e
��H , where � '

1
T
. In the following we will try to reach a good

understanding of the rôle of the disorder (given by the quenched random

potential) and of the Lennard-Jones interaction on the chain.

The deterministic part of the potential has a simple form. The harmonic
term, with a �rst neighbour interaction on the chain, keeps the chain to-
gether. The repulsive R term forbids the collapse of the chain, and the
attractive A contribution allows to fold the chain. The choice of a Lennard-

Jones form is a convenient, well understood one; other choices or the exponent

are obviously possible and we tend to believe that the qualitative behaviour
of the model should not change as far as the potentials go to zero at in-
�nity su�ciently fast. We could also have chosen an exponentially dumped
interaction, but we have not done this choice for practical numerical reasons.

In absence of the random quenched term we are dealing with an ho-

mopolymer, and we expect an usual coil-globule transition. The globule state
of an homopolymer has no de�nite shape. A quenched disorder could allow
(and we will show it does) to form a globular phase with a de�nite, frozen

shape: we would be dealing with a closed globule, in which the positions of

the elementary parts of the chain are de�nite and �xed. This kind of phase
(the one we will call folded in the following) would be suitable in order to

describe protein folding.

3 Dynamics and Overlaps

We use a local Monte Carlo dynamics: we propose a local updating move
for a given link of the chain, and we accept or reject the proposed with the
correct probability. We always keep the acceptance ratio (i.e. the percentage

of accepted updates) to 50%. According to the popular belief such a choice

nearly optimizes the e�ciency of the simulation.
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stable states. We are developing a more detailed analysis which will be pre-

sented in a forthcoming paper [17].

2 The Model

Let us start by de�ning the Hamiltonian of our model. We consider N sites

of a chain (they will be identi�ed, in the protein analogy, with sequences of

amino-acids): their position in continuum 3 dimensional space is character-
ized by the 3 values of the coordinates x�i , where in the following latin indices

i, j,... label the n-th site of the chain, and greek indices �, �,... label the

3 spatial directions (only the ones from � on in the alphabet, since we will
use �, �,... to label the copies of the chain we encounter in the course of the
Monte Carlo dynamics).

We de�ne the distance between two sites of the chain by

ri;j �

vuut
3X

�=1

�
x
�
i � x

�
j

�2
; (1)

and the energy between two sites of the chain is

Ei;j � �i;j+1 r
2
i;j +

R

r
12
i;j

�

A

r
6
i;j

+
�i;j

r
6
i;j

: (2)

The harmonic term couples �rst neighbours on the chain. The deter-
ministic part of the potential has the usual Lennard-Jones form. The main

di�erence from an usual homopolymer is given by the quenched 1
r6
contribu-

tion. The quenched part of the potential has a zero expectation value (we
have explicitly written an attractive deterministic contribution, that we will

call the A term, in the de�nition of the couple energy, (2))

h�i;ji = 0 ; (3)

it is symmetric (�i;j = �j;i) and has a correlation of the form

h�i;j �k;li = � �(i;j);(k;l) ; (4)

that is non zero only if i = j and k = l or if i = l and j = k. This

e�ective random interaction represents, in the biological picture, many dif-
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details of the interaction. Protein folding is an exquisite candidate to such an

approach. It is clear to us that real proteins are the products of natural evo-

lution and they are not random sequence of random interacting amino-acids.

It is however extremely interesting to understand which properties proteins

share with generic random heteropolymers and on the contrary which of their

properties are selected by natural evolution: such a study has to be started

by investigating in details the behaviour of random heteropolymers.

The times are ripe for starting such an enterprise. Many crucial progresses

have recently been done in the studies of complex systems [9]. Starting from
the speci�c example of amorphous materials, very soon generalized to very

di�erent situations, a whole new formalism, the mechanismof replica symme-

try breaking, has lead to many new results. In the last months many results
have been obtained for the behavior of membranes in random potentials [10].

Such an approach seems crucial in order to try to apply ideas concerning
disordered systems to the description of protein folding: indeed if random
spin systems have their own typical features, that characterize for example

phases that cannot be found in usual, non-random spin models, random
membranes share some of such new features, but are in some sense di�erent,
and this di�erence can be quite crucial. For example it would be di�cult to
match the structure of states of a S-K in�nite range spin model (and also
of a Random Energy Model) with what one knows about protein folding.

The many, completely disconnected minima structure would not match with
protein that always appear to be in one of few allowed states.

In this paper we will see that important features that have been noticed

in the approach of ref. [10] can be explicitly found during the numerical
simulations of a N = 30 heteropolymeric chain. We �nd, along with the

usual coil-globule phase transition, a new folded phase, which seems suitable

to describe protein folding as a generic phenomenon. We will see that its
features match very well many of the intriguing features of the protein folding

dynamics: we have breaking of ergodicity and very long time scales, and few
stable states in which the chain folds. We will relate the existence of such a

phase to the presence in the system of a strong, quenched disorder.

We refer to the work of [11, 12] for connections between disordered sys-

tems and protein folding. In refs. [13, 14, 15, 16] a mean �eld treatment for

heteropolymeric chains has been elaborated.
We will present in this paper our �rst results, describing the phase di-

agram of the model and giving the �rst conclusions about the structure of
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1 Introduction

Proteins are a fascinating subject (we refer for example to references [1, 2,

3, 4, 5, 6, 7] for an approach to many of the sides of the problem). Proteins
are very elegant and multifunctional entities, large and complex on the scale

of their fundamental constituents, but very simple if regarded on the scale of

the structures they eventually constitute (for example animal bodies).
Protein folding is one of the essential and most interesting features. Bio-

logically active proteins are in a folded state: a globular state with a precise
shape, characteristic of the given protein. The information about folding

(i.e. the 3d stable structure of a working protein) are contained in the lin-

ear sequence of the messenger RNA: there is no space for explicit coding
of the 3d structure, that must be determined from the interaction laws of
the constituent amino-acids. The given sequence of amino-acids, that does
eventually constitute the working protein, is coded in the RNA: the di�erent

amino-acids have di�erent interactions, and interact in a di�erent way with
the solvent.

Folding is surely a complex and quite a mysterious procedure. We just
remind that the time scales involved in the problem are very di�erent: folding
time variate a lot, and the time scale involved is much longer of the one needed

of a steepest descent to a simple minimum and too short (obviously) for an
exhaustive search of con�gurational space. One or a very few allowed folded

state characterizes a given, biologically active, protein.
The fact that one can hope to understand some features of such a problem

on the basis of �rst principles and of an universal behavior is calling for the
attention of physicists. We want to understand which is the mechanism that

allows such a crucial mechanism to work. We want eventually to be able to

build the native con�guration using the physical relevant approach (for an
essay in this direction see ref. [8]): in other words we want try to understand
which are the relevant mechanisms (that have to be very stable and simple)

used by nature in the process of folding.

Physicists are used to approaches based on the idea of universality: rel-
evant mechanisms are many times independent from the details of the in-
teraction laws, and just depend on very general features of the problem (for

example the symmetries of the problem). Critical phenomena, transitions

between di�erent regimes, only depend on such general features: only very

speci�c features (like the value of the critical temperature) depend on the
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