
Compiling Distribution Directives in a Fortran 90D Compiler�

Zeki Bozkus, Alok Choudhary, Geo�rey Fox, Tomasz Haupt, and Sanjay Ranka

Syracuse University

Northeast Parallel Architectures Center

4-116, Center for Science and Technology

Syracuse, NY, 13244-4100

fzbozkus, choudhar, gcf, haupt, rankag@npac.syr.edu

SCCS-388

Abstract

Data Partitioning and mapping is one of the most important steps of in writing a parallel

program; especially data parallel one. Recently, Fortran D, and subsequently, High Performance

Fortran (HPF) have been proposed to allow users to specify data distributions and alignments

for arrays in programs. This paper presents the design of a Fortran 90D compiler that takes

a Fortran 90D program as input and produces a node program + message passing calls for

distributed memory machines. Speci�cally, we present the design of the Data Partitioning

Module that processes the alignment and distribution directives and illustrate what are the

important design considerations. We show that our compiler produces portable, yet an e�cient

code. We also present the performance of the code produced by the compiler and compare

it with the performance of the hand written code. We believe, this design can be used by

implementors of the HPF compilers.

1 Introduction

Distributed memory multiprocessors are increasingly being used for providing high performance for

scienti�c applications. Distributed memory machines o�er signi�cant advantages over their shared

�This work was supported in part by NSF under CCR-9110812 and DARPA under contract # DABT63-91-C-

0028. The content of the information does not necessarily reect the position or the policy of the Government and

no o�cial endorsement should be inferred.
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memory counterparts in terms of cost and scalability, though it is a widely accepted that they

are di�cult to program given the current status of the software technology. One major reason for

this di�culty is the absence of a single global address space at the architecture level. Currently,

Distributed Memory Machines are programmed using a node language and a message passing

library. This process is tedious and error prone because the user must perform the task of data

distribution and communication for non-local data access.

This paper presents the design of a prototype compiler for Fortran 90D. The compiler takes

as input a program written in Fortran 90D which is a data parallel language with extensions for

specifying data alignments and distributions [1]. Its output is a node program plus calls to a

message passing library. Therefore, the user can still program using a data parallel language but

is relieved of the responsibility to perform data distribution and communications

The system diagram of the Fortran 90D compiler is shown in Figure 1. Given a syntactically

correct Fortran 90D program, the �rst step of compilation is to generate a parse tree. The parti-

tioning module divides the program into tasks and allocates the tasks to processor elements (PEs)

using the compiler directives | decomposition, alignment, and distribution. There are three ways

to generate the directives: 1) users can insert them, 2) programming tools can help users to insert

them, or 3) automatic compilers can generate them. In the �rst approach, users write programs

with explicit distribution and alignment directives. A programming tool can generate useful analy-

sis to help users decide partitioning styles, and measure performance to help users improve program

partitioning interactively [2, 3, 4]. The directives can also be generated automatically by compilers.

Promising work has been done along these lines [5, 6, 7, 8, 9].

The focus of this paper is to describe the design and implementation of the data partitioning

module. We discuss how to distribute data and manage computations given the data distribution

directives. Speci�cally, we show how the alignment and distribution directives can be systematically

processed to produce an e�cient code. Details of other modules can be found in[10, 11].

The rest of this paper is organized as follows. Section 2 briey reviews Fortran D directives.

Section 3 presents the overall design used in the data partitioning module (DPM). The design of

DPM consists of three stages: preprocesing directives, data mapping and grid mapping. These

stages are presented in Sections 4, 5 and 6 respectively. Section 7 summarize our early experince

using the initial version of the compiler including a comparison of the performance with hand written

parallel code. Section 8 presents a summary of related work. Finally, summary and conclusions are
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Figure 1: Overview of the Compiler Components.

presented in Section 9.

2 Fortran D Data Distribution Directives

Fortran D is the �rst language to provide users with explicit control over data partitioning with data

alignment and distribution speci�cations[1]. The distribution directives can be used with Fortran

77 or Fortran 90. In this paper we consider Fortran 90. Fortran D has three compiler directives.

� DECOMPOSITION

� DISTRIBUTE

� ALIGN

The DECOMPOSITION directive is used to declare the name, dimensionality, and the size of

each problem domain. A decomposition is simply an abstract problem or index domain. We call

it \template" ( the name \template" has been chosen to describe \DECOMPOSITION" in HPF

[12]). Arrays in a program are mapped to templates using the ALIGN directive. There may be

multiple templates representing di�erent problem mappings, but an array may be aligned only to

one template at any point in time. All scalars are replicated. An array not explicitly aligned to

any template serves as its own template. The DISTRIBUTE directive speci�es the mapping of
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the template onto a logical processor grid. Each dimension of the template is distributed in a

block, cyclic or irregular manner; the symbol \*" marks dimensions that are not distributed (i.e.

collapsed or replicated). The selected distribution can a�ect the ability of the compiler to minimize

communication and load imbalance in the resulting program.

The following example illustrates the Fortran D directives. Consider the data partitioning

schema for matrix-vector multiplication proposed by Fox et al.[13] and shown in Figure 2. The

matrix vector multiplication can be described as

y = Ax

where y and x are vectors of length M , and A is an M �M matrix. To create the distribution

shown in the Figure 2, one can use the following directives in a Fortran 90D program.

C$ DECOMPOSITION TEMPL(M,M)

C$ ALIGN A(I,J) WITH TEMPL(I,J)

C$ ALIGN X(J) WITH TEMPL(*,J)

C$ ALIGN Y(I) WITH TEMPL(I,*)

C$ DISTRIBUTE TEMPL(BLOCK,BLOCK)

If this program is mapped onto a 4x4 physical processor system, the Fortran 90D compiler

will generate the distributions shown in Figure 2. Matrix A is distributed in both dimensions.

Hence, a single processor owns a subset of matrix rows and columns. X is column-distributed and

row-replicated. But Y is row-distributed and column-replicated.

3 Design Methodology

Fortran 90D compiler maps arrays to physical processors by using a three stage mapping as shown

in Figure 3. This three stage mapping has also been proposed in HPF[12].

Stage 1 : ALIGN directives are processed to compute functions that map array index domain

to the template index domain and vice versa. Also, local shape of the arrays it determined.

Stage 2 : Each dimension of the template is mapped onto the logical processor grid based

on the distribution directives. Furthermore, mapping functions to generate relationship between

global and local indices are computed.
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Stage 3 : Logical processor grid is mapped onto physical system. This mapping can change

from one system to another but the data mapping onto logical processor grid does not need to

change. This enhances portability across a large number of architectures.

By performing the above three stage mapping, the compiler is decoupled from the speci�cs of

a given machine or con�guration.

4 Compiling the ALIGN Directive (Stage 1)

Alignment of data arrays to templates is speci�ed by the ALIGN directives. In this section, we

describe how the ALIGN directive is processed in our compiler.

Each array is associated with a template. If an array is not explicitly associated with a template

using an ALIGN directive, then it is assumed that it is associated with its own implicit template.

In that case, the compiler can choose any distribution it determines is the most appropriate.

Alignment determines which portions of two or more arrays will be in the same processor for

a particular data partitioning. Clearly, if arrays involved in the same computation are aligned in

such a manner that after distribution their respective sections lie on the same processors then the

number of non-local accesses would be reduced.

Alignment is a relation that speci�es a one-to-one correspondence between elements of a pair

of array objects. The template is de�ned by a DECOMPOSITION directive with its shape and

ranks. Let A be an m-dimensional array and TEMPL be an n-dimensional template. The general

form of alignment directive is

C$ ALIGN A(i1[*], ... ,im[*]) WITH TEMPL(f1(ia1)[*], ... ,fn(iam)[*]).

The exhibited elements of A are aligned to those of TEMPL. The template is eventually

distributed on a set of processors. The compiler guarantees that the array elements aligned to the

same element of the template will be mapped to the same processor.

Fortran 90D compiler requires that each of A's subscripts i1, ... ,im appears exactly once

on the right-hand side of the relation, so that a one-to-one correspondence with a section of

TEMPL is established. This restriction does not permit skew alignments such as aligning A(I)

with TEMPL(I; I) or A(I; J) with TEMPL(I+ J). The order of axis in the array may be di�er-

ent than the order of axis in the template (not necessarily i
k
= i

a
k
). This permits transpose style

alignments such as aligning A(I; J) with TEMPL(J; I).
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Algorithm 1 (Compiling Align directives)

Input: Fortran 90D syntax tree with some alignment functions

Output: Fortran 90D syntax tree with identical alignment functions

Method: For each aligned array, and for each dimension of that array,

carry out the following steps

Step 1. Extend aligned arrays to match template size.

Step 2. Determine local shape of arrays.

Step 3. Apply alignment functions to the aligned arrays.

Step 4. Transform into canonical form.

Step 5. Compute f�1(i).

The symbol \*" shows the replication or collapse of the corresponding dimension. It may appear

in both the array and the template subscripts. The array rank (the number of dimension) m may

be di�erent than the rank of template, n. For example, the directive

C$ ALIGN A(i,*) WITH TEMPL(i+ 1). requests the second dimension of the

array A be collapsed, while the directive

C$ ALIGN A(i) WITH TEMPL(*,i+ 1). forces replication of array A along the

�rst dimension of the template TEMPL.

The alignment function fk is required to be a linear function fk = sk � ia
k
+ ok or fk = ok. The

parameters ia
k
, sk, and ok correspond to the three components of the alignment function: axis,

stride, and o�set. Misalignment in the axis or stride components causes irregular communication,

and misalignment in the o�set component causes nearest-neighbor communication [5].

Algorithm 1 gives the steps in the algorithm used by our Fortran 90D compiler to process the

align directives.

The following example illustrates the steps and all the transformations performed to transform

array indices from the array index domain to template index domain and vice versa.

Consider the Fortran 90D code fragment shown in Figure 4. There are three arrays ODD(N/2),

EVEN(N/2) and NUM(N). Elements of the array ODD are aligned with odd elements of TEMP.

Similarly, elements of the array EVEN are aligned with the even elements of TEMPL. NUM is
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1. PARAMETER(NPROC1=10, N=100)

2. REAL NUM(N), ODD(N/2), EVEN(N/2)

3. C$ DECOMPOSITION TEMPL(N)

4. C$ DISTRIBUTE TEMPL(BLOCK)

5. C$ ALIGN NUM(I) WITH TEMPL(I)

6. C$ ALIGN ODD(I) WITH TEMPL(2*I-1)

7. C$ ALIGN EVEN(I) WITH TEMPL(2*I)

8. FORALL(I=1:N:2) NUM(I) = ODD((I+1)/2)

9. FORALL(I=2:N:2) NUM(I) = EVEN(I/2)

10. LOC=MAXLOC(ODD)

Figure 4: Example 1: A Fortran 90D program fragment involving directives, forall's

and intrinsic function.

aligned identically with TEMPL. Hence, ODD and EVEN are aligned with odd and even indices

of NUM respectively, because they are aligned to the same template.

Step 1. Extend aligned arrays to match template size. Note that we assume that the array

size is equal to or smaller than the template size in the distributed dimension(s). If an array size

is smaller than the template size in the distributed dimension, the compiler extends the array size

to match the template size. For example, ODD and EVEN arrays are extended to size N to match

the template TEMPL's size, which is N .

Step 2. Determine local shape of arrays. In this step, the compiler determines the local

shape and size of the distributed arrays based on the processor grid information associated with

the corresponding template. In the above example, the template TEMPL is distributed on P

processors. Hence, the compiler determines the size of the distributed dimension of arrays as

ODD(dN=Pe), EVEN(dN=Pe) and NUM(dN=Pe). Since our compiler produces Single Program

Multiply Data (SPMD) code, array declaration is the same in every processor.

Step 3. Apply alignment functions to the aligned arrays. In this step, all indices of each

occurrence of an array (all the statements) in the input program is transformed into the template

index domain using the alignment function f(I). Arrays ODD, EVEN and NUM are associated

with fo(I) = 2 � I � 1, fe(I) = 2 � I , fn(I) = I functions respectively. Figure 5 illustrate this

transformation on the array ODD. For example, the �rst forall assignment statement in Figure 4
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NUM(I)=ODD((I+1)/2)

is transformed into

NUM(I)=ODD(2*((I+1)/2)-1) (1)

by applying function fn(I) = I (identical function) and fo(I) = 2 � I � 1 to lhs and rhs

respectively.

Step 4. Transform into canonical form
1
. In this step, the compiler simpli�es all functions

applied in step 3 by performing symbolic manipulation and partial evaluation of constants. For

example, the statement (1) becomes

NUM(I)=ODD(I).

The above simpli�cation of indices helps compiler in choosing e�cient collective communication

routines. Our communication detection algorithm [14, 11] is based on symbolically comparing the

lhs and rhs reference patterns and determining if the pattern is associated with one of the collective

communication routines. In the above statement the compiler compares lhs and rhs indices and

determines that no communication is required because both the array reference patterns are given

1A canonical form is a syntactic form in which variables appear in a prede�ned order and constants are partially

evaluated.
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1. PARAMETER(NPROC1=10, N=100)

2. REAL NUM(10), ODD(10), EVEN(10) ! local shapes

3. call set_BOUND(lb,ub,st,1,100,2) ! compute local lb, ub, st

4. DO I=lb,ub,st

5. NUM(I) = ODD(I) ! local computations

6. END DO

7. call set_BOUND(lb,ub,st,2,100,2)

8. DO I=lb,ub,st

9. NUM(I) = EVEN(I) ! local computations

10. END DO

11. call set_DAD(ODD_DAD,....) ! put information for ODD into ODD_DAD

12. LOC=MAXLOC(ODD, ODD_DAD) ! MAXLOC is implemented on f77+MP

Figure 6: The compiler generated Fortran 77+MP code.

by I and aligned to the same template. However, if rhs was ODD(I+2), it will recognize it as a

shift communication.

Step 5. Compute f
�1(i). For each array, we compute the inverse alignment function f

�1(i)

corresponding to each f(i). f
�1(i) is stored in Distributed Array Descriptor (DAD) [15]. This

function is needed when any computation needs to be performed using the original index of an

array. For example, the last statement in Figure 4 calls the intrinsic function MAXLOC to �nd the

location of the maximum element in the array ODD. This function must be evaluated using the

original array indices. The inverse function for array ODD is f�1(i) = i+1
2
. MAXLOC will return

the location of maximum value in the original array index domain by applying f�1 function.

Figure 6 shows the compiler generated Fortran 77+MP code for the Fortran 90D code given in

Figure 4.

We emphasize that the above transformation from the array index domain to the template index

domain has two advantages.

1-) This allows us to easily detect regular collective communication patterns among arrays

aligned to the same template.

2-) We need to keep data distribution functions only for the template and not for all the arrays

aligned to the template.
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5 Data Distribution (Stage 2)

In this section, we describes how the Fortran 90D compiler distributes the template on the logical

processor grid (Figure 3). In this phase, the compiler uses information provided by the DIS-

TRIBUTE directives.

The DISTRIBUTE directives assigns an attribute to each dimension of the template. Each

attribute describes the mapping of the data in that dimension of the template on the logical

processor grid. Attributes in each dimension are independent, and may specify regular or irregular

distributions. For example the following directive

C$ DISTRIBUTE TEMPL(BLOCK,CYCLIC)

distributes the template TEMPL blockwise in the �rst dimension and cyclicly in the second

dimension.

The �rst version of the compiler supports the following types of distribution.

� BLOCK divides the template into contiguous chunks.

� CYCLIC speci�es a round-robin division of the template.

� IRREGULAR speci�es to the compiler that the needed data distribution functions are

provided by the user.

5.1 Distribution functions

A Fortran 90D program is written in the global name space. Therefore, the arrays and template

indices refer to indices in the global name space. Parallelizing the program onto a distributed

memory machine requires mapping a global index onto the pair: processor number and local index

because on a Distributed Memory Machine, each node has a separate name space. For the above

index transformations, we de�ne data-distribution functions (index-conversion functions) as given

in De�nition 1 below.

De�nition 1: A data-distribution function for each dimension of template � maps three inte-

gers, �(I; P;N) ! (p; i), where I is the global index, 0 � I < N , P is the number of processors,

and N is the size of global index. The pair (p; i) represents the processor p, (0 � p < P ) and i is

the local index of p (0 � i < �
#(p; P;N)). �#(p; P;N) gives the cardinality (the number of global
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indices in processor p). The inverse distribution function �
�1(p; i; P;N)! I transforms the local

index i in processor p back into global index I.

The term global index will be used to refer to the index of a data item within the global array

(global name space) while the term local index will denote the index of a data item within a logical

processor.

The choice of these distribution functions is one of the most important design choices. We use

the following criteria:

� calculation of these function at run-time must be e�cient, and

� distribution functions should yield a good static load balance.

TheBLOCK attribute indicates that blocks of global indices are mapped to the same processor.

The block size depends on the size of the template dimension, N, and the number of processors,

P, on which that dimension is distributed. Our Fortran 90D compiler provides two di�erent block

attributes, BLOCK1 and BLOCK2.

The BLOCK1 attribute assumes that N is divisible by P. This results in a very simple and

e�cient distribution function as shown in the �rst column of Table 1. Each processor has N/P

global indices which provides on optimum load balance. If N is not divisible by P, the compiler

extends N such that N becomes divisible by P. This may cause a load imbalance because the tail

processors may have less number of array items than do the beginning processors.

The BLOCK2 attribute is used to distribute block of N global indices on P processor as evenly

as possible. This distribution function is shown in the second column of Table 1. The �rstN mod P

processors receive dN
P
e elements; the rest get bN

P
c elements. Therefore, the di�erence between the

number of elements assigned to any two processors will be at most one in each dimension. Table 2

shows the distribution of global index for di�erent data sizes on three processors. This distribution

functions yields an optimal static load balance. This type of block distribution has been used in

the implementation of TOOLBOX [16].

The CYCLIC attribute indicates that global indices of the template in the speci�ed dimension

should be assigned to the logical processors in a round-robin fashion. The last column of Table 1

shows the CYCLIC distribution functions. This also yields an optimal static load balance since �rst

N mod P processors get dN
P
e elements; the rest get bN

P
c elements. In addition, these distribution

functions are e�cient and simple to compute. Although cyclic distribution functions provided a

12



Table 1: Data distribution function(refer to De�nition 1): N is the size of global index.

P is the number of processor. N and P is known at compile time and N � P . I is the

global index. i is the local index and p is the owner of that local index i.

Block1-distribution Block2-distribution Cyclic-distribution

global to proc

I ! p p = I�P
N

p = max(b I

b
N

P
c+1

c; b I�N mod P

b
N

P
c

c) p = I mod P

global to local

I ! i i = I �
p�N

P
i = I � p � bN

P
c �min(p;N mod P ) i = b

I
P
c

local to global

(p; i)! I I = i+ p�N

P
I = i+ p � bN

P
c +min(p;N mod P ) I = iP + p

cardinality N
P

b
N+P�1�p

P
c b

N+P�1�p

P
c

Table 2: BLOCK2 distribution of global index with di�erent data sizes on 3 processors

Data Size Proc. 0 Proc. 1 Proc. 2

3 1:1 2:2 3:3

8 1:3 4:6 7:8

100 1:34 35:67 68:100
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good static load balance, the locality is worse than that using block distributions because cyclic

distributions scatter data.

The IRREGULAR attribute indicates that the required data distribution function will be

provide by the user. The compiler generates in-line codes for the block and cyclic data distribu-

tion functions. But for irregular distributions, it calls the user-de�ned functions from inside the

generated code. In generally, these functions are represented as arrays (\MAP" arrays) and return

values from those arrays[1]. Note that the MAP arrays themselves can be distributed or replicated.

For example, in PARTI developed by Joel Saltz [17], MAP arrays are distributed. In our current

version, we had incorporated the schedule, gather and scatter primitives from PARTI, but we are

only supporting replication of MAP arrays.

Table 3 shows the performance of computing the data distribution functions of Table 1 on an

Intel i860 processor. As expected, the Cyclic distribution functions performs the best and the

Block2 the worst.

Table 3: Computation times for data distribution functions on an Intel i860 processor

(time in microseconds).

Block1-distribution Block2-distribution Cyclic-distribution

global to proc 1.8 7.6 1.9

global to local 1.9 3.6 1.6

local to global 1.8 3.6 0.4

5.2 Usage of the data distribution functions

The following examples illustrate how the data distribution function can be used for various con-

structs. For these examples, the array A has the following alignment.

C$ DECOMPOSITION TEMPL(N,M)

C$ ALIGN A(I,J) WITH TEMPL(I,J)

C$ DISTRIBUTE TEMPL(CYCLIC,BLOCK1)

and TEMPL is distributed on a two-dimensional PxQ processor grid.

Example 1 (Masking) Consider the statement

A(5,8)=99.0

14



The owner processor of the array element A(5; 8) executes the statement. Since the compiler

generates SPMD style code, it masks the rest of the processors:

if( 5 mod P .eq. my_id(1) .and. 8*Q/M .eq. my_id(2))

A(5/P, 8-my_id(2)*M/Q) = 99.0

Where my id(1) and my id(2) describes the processor's position in the two-dimensional logical

grid. In this case, the compiler uses the global to processor and global to local functions for cyclic

and block1 distributions. The processors are masked according to the coordinate id numbers since

the logical processors are arranged in a grid topology.

Example 2 (Grouping) Consider the statement

A(:,8)=99.0

The group of processors owning the 8th column of array A only need to execute the statement.

The rest of the grid must be masked.

do i=my_id(1),N,P

if(8*Q/M .eq. my_id(2)) A(i/P, 8-my_id(2)*M/Q) = 99.0

end do

Note that the iterations (indexed by i above) are distributed cyclicly following the owner com-

putes rule.

Example 3 (Forall) Consider the statement

forall(i=1:N,j=1:M) A(i,j)=j

In the above computations, all elements of each column of array A are assigned the corresponding

column number (in the global index domain).

do i=my_id(1),N,P

do j=1,M/Q

A(i/P,j)=j+my_id(2)*M/P

end do

end do

The compiler distributes the iterations i and j in cyclic and block fashion respectively since

array A is distributed in that fashion. Iteration index j is localized. The compiler transforms j

back to global index by using local to global index conversion in rhs expression.

Example 4 (Broadcast) Consider the statement

15



x=A(5,8)

where x is a scalar variable (scalars are replicated on all processors). The above statement

causes a broadcast communication. The source processor of the broadcast is found by using a

global to processor function similar to that in example 1.

Example 5 (Gather) Consider the statement

B=A(U,V)

where U and V are one-dimensional replicated arrays. B is a two-dimensional array and is

distributed in the same way as is array A. This vector-valued assignment causes an unstructured

communication (also called gather[17] or random-read[18] in this case). The owner processors of

array B needs some values of array A depending on the contents of arrays U and V at run-time.

The compiler makes each owner processor of the array B calculate which processor has the non-

local part of the array A by using global to processor function. The compiler also generates code

that computes the local index in the array A using the global to local index conversion function for

each source processor. After making each processor calculate the local list and the processor list,

the compiler generates the statement to call gather collective communication.

Example 6 (Scatter) Consider the statement

A(U,V)=B

The above statement causes scatter or random-write kind of communication. Again the compiler

generates code such that each owner processor of the array B uses data distribution functions to

�nd the destination of the local array B.

6 Grid Mapping Functions (Stage 3)

So far we have presented techniques used in our compiler that map data onto logical processors.

In this section we describe the mapping of logical processors onto physical processors.

There are several advantages of decoupling logical processors from physical system con�gura-

tions. These advantages include locality, portability and grouping.

Locality: Multiple accesses to consecutive memory locations is called spatial locality. Spatial

locality is very important for Distributed Memory Machines. Arrays representing spatial locations
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Figure 7: Logical processor topologies

are distributed across the parallel computer. For instance, it makes sense to have data distributed

in such a way that processors that need to communicate frequently are neighbors in the hardware

topology. It has been shown that this is extremely important in the common regular problems in

scienti�c applications such as relaxation [13]. Our template is a d-dimensional mesh. If this template

is BLOCK distributed on a d-dimension grid of processors, the neighboring array elements (spatial

locality) will be in the neighboring processors. The grid topology is a very good topology for spatial

locality. Fortran 90D makes logical processor topology grid according to the number of dimensions

of the template as shown in Figure 7.

Portability: The physical topology of the system may be a grid, tree, hypercube etc. The

mapping for the best (possible) grid topology changes from one physical topology to another. To

enhance portability of our compiler, we separate the physical and logical topologies. Therefore,

porting the compiler from one hardware platform to another involves changing the functions that

map the logical grid topology to the target hardware.

Grouping: Operations on a subset of dimensions in arrays are very common in scienti�c

programming, e.g., row and column operations on matrices. Fortran 90 provides intrinsic functions

such as SPREAD, SUM, MAXVAL and CSHIFT that let a user to specify operations along

di�erent dimensions by specifying theDIM parameter. These dimensional operations conceptually

group elements in the same dimension. The dimensional array operations result in \dimensional

array communications". We have designed a set of collective communication routines that operate

along one or more dimensions (groups of processors) of the grid. For example, we have developed

spread (broadcast along dimension), shift along dimensions and concatenate communications. The

usage of these primitives is discussed in [11].
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int gridinit(dim, num(*))

int gridproc(coord(*))

int gridcoord(proc, coord(*))

Figure 8: The prototype of grid-mapping functions

The performance of the resulting code may be adversely a�ected if the logical grid to physical

system mapping is not e�cient. Therefore, one of the goals of these mapping functions is to map

nearby processors in the logical grid to physically close processors in the machine architecture.

De�nition 2: A logical processor grid consists of d dimensions, (P0; P2; :::; Pi; :::; Pd�1), where

P
i
, 0 � i < d is the size of the i

th
dimension. A processor grid mapping function, ', maps a

processor index in the d-dimensional space, '(v0; v1; :::; vd�1)! p where 0 � vi < Pi (i.e., vi is the

index of the logical processor in the i
th

dimension), and p is the physical processor number, (0 �

p <
Q
d�1
i=0 Pi). The inverse mapping function '

�1(p) ! (v0; v1; :::; vd�1) transform the processor

number p back into logical grid number.

The grid mapping function ' and '
�1 for hypercube using Gray Code can be found in [13].

The grid mapping onto a fat tree can be found in [19].

Figure 8 gives some of grid mapping function implemented in our compiler. The �rst routine,

gridinit, takes the dimensionality of the grid, dim, and the number of physical processors in each

dimension as an array, num and performs the necessary initializations in order to use the other

two grid mapping functions ' and '
�1. The routine gridcoord implements the function ' to

generate the physical processor number corresponding to the logical processor grid speci�ed in

the parameter array \coord(*)". Similarly, the routine gridproc implements the function '
�1.

Its input parameter \proc" speci�es the physical processor id and its output is the corresponding

index in the logical grid which is stored in the array \coord(*)". The details of these functions can

be found in[13].

The usage of these function is to enhance portability. The compiler generates all the commu-

nication calls based on the logical coordinates of the processors. The communication routines in

turn use the above functions to compute the physical processor ids of involved processors. Another

important point to note is that by using the logical grid at compiler level, masking and grouping
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are performed by using logical grid coordinates.

7 Discussion

Although this paper is focused on the partitioning module of the compiler, a prototype compiler is

complete (it was demonstrated at Supercomputing'92). In this section, we describe our experience

on using our compiler.

7.1 Portability of the Fortran 90D Compiler

One of the principal requirements of the users of distributed memory MIMD systems is some

\guarantee" of the portability for their code. This was realized early on by the Caltech Concurrent

Computation Group led by Geo�rey Fox. Parasoft's Express parallel programming environment

represents a commercialization of these ideas. One feature of Express is the portability on various

platforms including, Intel iPSC/860, nCUBE/2, networks of workstations etc. We should emphasize

that we have implemented a collective communication library which is currently built on the top of

Express message passing primitives. Hence, in order to change to any other message passing system

such as PVM [20] (which also runs on several platforms), we only need to replace the calls to the

communication primitives in our communication library (not the compiler). However, it should be

noted that a penalty must be paid to achieve portability because portable routines are normally

built on top of the system routines.

As a test application we use is Gaussian Elimination, which is a part of the FortranD/HPF

benchmark test suite [21]. Figure 9 shows the execution times obtained to run the same compiler

generated code on a 16-node Intel/860 and nCUBE/2 for various problem sizes.

7.2 Performance Evaluation

Table 4 shows a comparison between the performance of the hand-written Fortran 77+MP code

with that of the compiler generated code. We can observe that the performance of the compiler

generated is within 10% of the hand-written code. This is due to the fact that the compiler

generated code produces an extra communication call that can be eliminated using optimizations.

However as Figure 10 shows, the gap between the performance of the two codes increases as the

number of processors increases. This is because the extra communication step is a broadcast which
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Figure 9: Execution time of Fortran 90D compiler generated code for Gaussian Elimi-

nation on a 16-node Intel iPSC/860 and nCUBE/2 (time in seconds).

is almost O(log(P )) for a P processor hypercube system. We are currently incorporating several

optimizations in the compiler.

7.3 An Experiment with Distributions

A data distribution that minimizes the communication requirements for one application does not

necessarily do the same for another applications since di�erent applications may have di�erent

reference patterns.

An advantage of being able to specify di�erent distribution directives is the ability to experiment

with various distributions without extensive recoding. Hence, with a few experiments a user can

choose one of the best distributions for his/her application. We illustrate the above using an

example of 1-D FFT.

FFT is a di�cult algorithm to compile e�ciently because of the buttery communication re-

quirements for an e�cient implementation. Automatic recognition of such patterns is di�cult. Our

compiler uses unstructured communication to implement such communication patterns.

We use FFT to illustrate the di�erence in performance when data distribution is changed.
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Table 4: Comparison of the execution times of the hand-written code and Fortran 90D

compiler generated code for Gaussian Elimination. Matrix size is 1023x1024 and it is

column distributed.(Intel iPSC/860, time in seconds).

Processors Hand Written Fortran 90D Compiler

1 623.16 618.79

2 446.60 451.93

4 235.37 261.87

8 134.89 147.25

16 79.48 87.44
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Figure 10: Speed-up comparison (corresponds to Table 4 of the hand-written code and

Fortran 90D compiler generated code for Gaussian Elimination.
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Figure 11: Comparison of Fortran 90D compiler generated BLOCK and CYCLIC dis-

tribution of 1-Dimensional FFT codes on a 16 node Intel iPSC/860(time in seconds).

Figure 11 shows the performance of the FFT for block (block1) and cyclic distributions. Cyclic

distribution performs better due to two main reasons. One, it cyclicly distributes data, and hence,

far o� elements are stored in closer processors. This reduces the communication requirements

compared to that when block distribution is used[22]. Second, for unstructured communication,

the destination processors and locations must be calculated using the distribution functions (see

Section 5). The overhead of computing these functions is the least for cyclic distribution ( see Table

3) resulting in less overhead in the generated FFT code.

8 Summary of Related Work

The compilation technique of Fortran 77 for distributed memory systems has been addressed by

Callahan and Kennedy [23]. Currently, a Fortran 77D compiler is being developed at Rice [24].

Superb[25] compiles a Fortran 77 program into a semantically equivalent parallel SUPRENUM mul-

tiprocessor. Kali[26] implementation puts a great deal of e�ort on run-time analysis for optimizing

message passing. Quinn et al.[18] uses a data parallel approach for compiling C* to hypercube

machines. The ADAPT system[27] compiles Fortran 90 for execution on MIMD distributed mem-
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ory architectures. The ADAPTOR[28] is a tool that transform data parallel programs written in

Fortran with array extension and layout directives to explicit message passing. Chen[29] describes

a general compiler optimization techniques that reduces communication overhead for Fortran-90

implementation on massivelly parallel machines.

Due to space limitations, we do not elaborate on various related projects.

9 Conclusions

In this paper we presented a design of a prototype Fortran 90D compiler. Speci�cally, we presented

in detail how the data distribution directives can be processed and what are the design choices for

the data partitioning modules. The compiler prototype is working although new features are being

added continuously. We also presented the performance of the code generated by the compiler for

two applications. We believe that the performance will improve as optimizations are incorporated

in the compiler. We showed that our design produces portable, yet an e�cient code.

This design can be used by compiler developers for High-Performance Fortran (HPF). The only

change required to process the data distribution directives is to change the syntax of the directives

to that of HPF syntax. We are currently implementing that change. We believe that our design of

the data partitioning module (DPM) can be used by implementors of HPF compiler to implement

the DPM in their compiler.

We are currently investigating various optimization techniques for computation partitioning

and communication detection. Furthermore, we are investigating automatic data partitioning and

alignment techniques. Note that it is important to implement these techniques for temporary arrays

even if the distributions are speci�ed for the source arrays. Finally, we are currently involved in

implementing dynamic alignment and redistribution of arrays in our compiler.
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