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Abstract

We examine a model of non-self-avoiding, uctuating surfaces as
a candidate continuum string theory of surfaces in three dimensions.
This model describes Dynamically Triangulated Random Surfaces em-
bedded in three dimensions with an extrinsic curvature dependent
action. We analyze, using Monte Carlo simulations, the dramatic
crossover behaviour of several observables which characterize the ge-
ometry of these surfaces. We then critically discuss whether our ob-
servations are indicative of a phase transition.



1 Introduction

In this work, we investigate a theory of uid, uctuating random surfaces em-

bedded in three dimensions. Various theories of uctuating surfaces (string

theories) arise in the description of many physical systems. Among these

are the 3-dimensional Ising model, the strong interaction (QCD) in the in-

frared limit and fundamental uni�ed theories of all interactions including

gravity. Natural biological membranes, such as lipid bilayers, and arti�cial

membranes, such as micelles and vesicles, also form a rich class of uctuating

surfaces together with interfaces, such as those in microemulsions, between

two distinct three-dimensional bulk phases [1]. These latter systems are uid

because their component `molecules' are loosely bound. Their constituents

are arranged so that their net surface tension nearly vanishes; thus these

membranes undergo large thermal uctuations. These biological and chemi-

cal membranes exhibit self-avoidance, which we do not take into account in

our simulations.

Just as �eld theories are described by sums over paths, string theories are

formally characterized by a functional integral Z which can be written as a

sum over surfaces weighted by exp(�S). Here S denotes the action associated

with a particular surface. Note that we work in Euclidean space. To write

down our action we introduce an explicit parametrization of a generic surface

M in R3 with coordinates (�1; �2) and the embedding X�(�i). � runs from

1 to 3 (since we only study the case of a 3d embedding space). The induced

metric (the pullback of the Euclidean R3 metric via the embedding) is given

by

hij = @�iX
�@�jX� : (1)

We will use Greek letters for the embedding space indices; Roman letters

label the coordinate basis on each surface. A particularly natural choice for

the action is the Nambu-Goto action, which is proportional to the area of

the surface in the embedding space, and is given by

S = �

Z q
det(h): (2)

This action is di�cult to quantize, though, since it is non-polynomial. A

further complication is that the measure in the path-integral constructed

with this action is quite subtle, especially when the theory is discretized. By



introducing additional degrees of freedom, in the form of an intrinsic metric

gij on each surface, one can write down the Polyakov action 1.

S =

Z q
jdet gj(gij@iX�@jX

�): (3)

This action has proven to be much more tractable analytically. Note that

it possesses a large degree of gauge freedom, associated with its invariance

under reparametrizations of the metric and the intrinsic surface coordinates.

Often, one gauge-�xes the metric to the form gij = exp(�)�ij; � is referred

to as the Liouville mode. The Polyakov action is in fact independent of � 2 ,

but this `Weyl' symmetry is anomalous in general. The anomaly is expressed

in terms of the central charge c. By carefully gauge-�xing the entire path-

integral one can derive the anomaly condition

cmatter+ c� � 26 = 0: (4)

The �rst term depends on the space in which the surfaces are embedded, or, in

other words, on the particular �eld theory that lives on the two-dimensional

surface. For instance, the central charge associated withD bosons isD (1 per

boson); this characterizes a string embedded in RD 3 The �26 arises from the

anomaly contribution from ghosts needed for gauge-�xing reparametrization

invariance. Note that when D = 26, c�, the Liouville central charge, vanishes

and the Liouville mode e�ectively decouples from the theory. For D < 26

one can integrate the matter (X�) �elds out and obtain an e�ective Liouville

theory. The Liouville theory is highly non-linear; furthermore, its analysis

is complicated by the fact that the two-dimensional metric on the surface in

which the Liouville �eld lives depends on the �eld itself! Nevertheless, with

a few general assumptions about the path integral measure, the spectrum

1An additional term, which is a topological invariant proportional to the Euler character
of the surface is added to both the Polyakov and Nambu-Goto actions. The coe�cient of
this term is referred to as the `string coupling'. It is the only dimensionless parameter in
the theory; therefore it serves as the perturbative expansion parameter for string theory.

2It follows that substituting the solution to the equations of motion back into the
Polyakov action yields the Nambu-Goto action. At the quantum level, though, it has only
been shown that these actions are equivalent for D = 26[2]. In lower dimensions this
equivalence has been questioned, for example, by Distler [3]. The work of Polchinski and
Strominger also suggests that there are alternate quantizations [4].

3A fermion has a central charge of 1=2, so that by studying an Ising model on random
uctuating surfaces, we are e�ectively studying strings imbedded in `fractional' dimensions.



of the theory at each order in perturbation theory can be computed when

cmatter � 1. Additional exponents, such as the Hausdor� dimension, which

characterize both the intrinsic and extrinsic geometry of these surfaces, have

also been computed from Liouville theory. These theories are often analyzed

on surfaces of �xed area; in this case, the string susceptibility h is determined

by the dependence of the generating functional for surfaces of genus h on the

area A

ln(Zh) = exp(�cA)A
h�3; (5)

where �c is a non-universal constant. An analysis of the Liouville model

yields

h = 2�
(1� h)

12
(25 � cmatter+

q
(1 � cmatter)(25� cmatter)): (6)

These computations break down in the regime 1 < cmatter < 25, where expo-

nents such as the string susceptibility given in (6) become imaginary.

Further progress in understanding string theory in a low number of di-

mensions has been made by mapping the sum over surfaces onto an integral

over matrices. This mapping is realized by replacing continuum surfaces by

their discrete cellular decompositions, such as their triangulations. In this

construction, each triangle is equilateral with area 1 in the intrinsic metric;

the coordination number at each vertex determines the intrinsic curvature

of the surface. The coordinates i label the vertices of the triangulation.

Then the discrete analogue of the intrinsic metric is the adjacency matrix

Cij whose elements equal 1 if i and j label neighbouring nodes of the trian-

gulation, and vanish otherwise. Two-dimensional di�eomorphism invariance

reduces, at this discrete level, to the permutation symmetry of the adjacency

matrix. One of the keys, in fact, to the power of this construction is the

preservation of this symmetry. The triangulation of a surface of genus h is

then dual to a phi-cubed diagram of genus h. The large N ('t Hooft) expan-

sion of an integral over N �N Hermitian matrices generates these Feynman

graphs. In this case the area of the surfaces is not �xed, since all graphs

of �xed genus are summed over. The action then acquires a contribution

(from Legendre transformation) proportional to the product of the cosmo-

logical constant with surface area A. Orthogonal polynomial techniques can

then be applied to analyze the matrix integral. Indeed the theory can be

exactly solved in the `double scaling limit' [5] in which the string coupling,



cosmological constant and matter couplings (which are determined by the

matrix `potential') are tuned together. These solutions are exact, and thus

include non-perturbative information about these string theories, albeit with

ambiguities in certain cases. Unfortunately, the matrix models that represent

theories with cmatter > 1 are too di�cult to solve exactly.

It has generally been suspected that these analytic techniques fail for

cmatter > 1 because the string theory becomes pathological. In this regime,

a negative mass-squared particle, which is sometimes referred to as the

`tachyon', comes on shell 4. It is thought that its presence might engender the

proliferation of long tubes with thickness of the scale of the ultraviolet cuto�

on surfaces that dominate the string functional integral. Cates, by analyzing

the Liouville action, has put forth another perhaps related explanation of this

pathology [7]. He points out that in the presence of vortex con�gurations

of the form � � � ln(r), reducing the world-sheet cuto� to zero no longer

causes the spacetime cuto� to vanish. He then shows that these vortices have

negative free-energy when cmatter > 1 and proliferate to the extent that the

Liouville partition function becomes ill-de�ned with a �nite spacetime cuto�

and zero cosmological constant. For positive cosmological constant, it then

appears plausible that these vortex con�gurations would still appear, though

perhaps the partition function will be �nite. The predominant surfaces in

the functional integral would thus be subject to large uctuations of their

internal geometry. Recent simulations of multiple Potts models with cmatter

less than, equal to, and greater than 1 coupled to gravity have been per-

formed [8]. These simulations, however, do not show any dramatic changes

in the behaviour of the internal geometry of the dominant surfaces as cmatter

is increased beyond 1. More analytic and numerical work clearly needs to be

done to determine what exactly happens as cmatter becomes greater than 1.

Monte Carlo simulations of strings embedded in at space for D > 1 do

indicate that these theories fail to describe the uctuations of two dimensional

smoothly embedded surfaces in the continuum limit. The normals to the

surfaces dominating the simulations are uncorrelated over the distance of

a few lattice spacings. These surfaces also appear to have a large (greater

than 8), or perhaps in�nite, extrinsic Hausdor� dimension; they resemble

4More precisely, one encounters these instabilities in Liouville theory when the quantity
c� 24� > 1, where c denotes the central charge of the matter theory which describes the
embedding of the surfaces and � is the conformal weight of the lowest weight state in this
theory [6]. Since here we are considering at space, c = D and � = 0.



branched polymers 5. Such con�gurations should not describe, for instance,

the domains of the 3d Ising model or QCD strings. We would thus like to

�nd a modi�ed string theory that is dominated by smoother surfaces.

The tachyon, and apparently these related instabilities, can be eliminated

in particular cases by introducing fermionic coordinates and supersymmetry

on the worldsheet, and implementing an appropriate projection of states.

The fermions, presumably, e�ectively smooth out the surfaces. This would

be consistent with what has been observed for one-dimensional geometries;

the random walk of a spin one-half particle has Hausdor� dimension one and

thus appears to be smooth [9]. Many authors have proposed an alternative

modi�cation of the string action [10, 11, 12, 13] via the addition of a term

that directly suppresses extrinsic curvature6. We shall examine this class of

theories in this talk.

To characterize the geometry of our surfaces further, we associate with

each point in our generic surfaceM tangent vectors (t�
i
2TM) and a normal

vector n�2TM?. The extrinsic curvature matrixKij (the second fundamen-

tal form) can be de�ned by

@in
� = �Kijt

�j : (7)

The eigenvalues of this matrix are the inverses of the radii of curvature ofM.

One usually describes the geometry of these surfaces in terms of the mean

curvature [15, 16]

H =
1

2
hijKij ; (8)

and the Gaussian curvature

K = �ik�jlKijKkl : (9)

One can show that the Gaussian curvature can be computed solely from

the metric hij, while the mean curvature depends explicitly on the embedding

X�.

5As above, singular con�gurations also dominate the Gaussian theory, which is essen-
tially a theory of free random walks, rather than surfaces.

6In fact, integrating the fermions out of the Green-Schwarz superstring yields an action
similar to the one we consider, but with the addition of a complex Wess-Zumino type term
[14].



Our lattice model is constructed by triangulating each surface, as we dis-

cussed above in the context of matrix models. Each node of the triangulation

is embedded in R3 by the functions X
�

i
; i labels the ith node and � runs from

1 to 3. We also associate a normal vector (n�)
k̂
with each triangle (indices

with hats label the triangles). We shall study the theory de�ned by the

action

S = SG + �SE =
X
i;j;�

Cij(X
�

i
�X

�

j
)2 + �

X
k̂;l̂;�

C k̂l̂(1� n
�

k̂
� n�

l̂
): (10)

This model has been examined in references [17, 18, 19, 20, 21, 22, 23]. For

� = 0 this is simply a discretization of the Polyakov string action. The

�nal term, which depends on the discretized extrinsic curvature, introduces

a ferromagnetic interaction between surface normals, which one might hope

would cause smoother surfaces to dominate the partition function. We would

like to know if there is a smooth phase and a phase transition (at some �nite

�c) between this phase and the crumpled phase observed at � = 0. If this

were so, an interesting continuum limit of this lattice model could perhaps be

constructed at this phase transition point, yielding a new continuum string

theory.

The action we simulate is in fact a particularly natural discretization of

S =

Z q
jdet gj(gij@iX�@jX

� +
�

2
gijhklKikKjl) : (11)

Note that the second term in the action is manifestly positive, Weyl and

reparametrization invariant, and that � is a dimensionless coupling. So, it

is not clear whether or not this term is relevant. Mean �eld (large D) and

perturbative RG calculations have been performed using similar actions, such

as

S =

Z
d2� (�0

p
deth+

1

�

p
deth(hijKij)

2) ; (12)

in the regime in which the string tension �0 is small (unlike the usual particle

physics limit of string theory, which is characterized by large �0). After

integrating out uctuations of the embedding X� between momentum scales

� and ~�, it is found that the renormalization of the extrinsic curvature

coupling is given to one-loop order by

�(�) � �
d�

d�
= �

3

4�
�2 ; (13)



so that � is driven to in�nity in the infra-red. This theory thus exhibits

asymptotic freedom. Surfaces are smooth (the normals are correlated) below

a persistence length [24]

�p � exp(
4�

3�bare
) (14)

and are disordered above this scale. Some intuition into this result can be

gained by observing that this theory is similar to the O(3) sigma model,

which is asymptotically free [9]. The normals to M are the analogues of

O(3) vectors, though in this case they are constrained to be normal to a

surface governed by the action (11).

The analytic results, therefore, do not indicate that we should anticipate a

�nite � phase transition. Note, though, that the RG calculations are based on

a Nambu-Goto type action although we simulate an extension of the Polyakov

action. Since the two actions are not clearly equivalent, particularly when

extrinsic curvature dependent terms are added, we cannot simply assume

that these analytic and our numerical results should agree.

2 The Simulation

We have considered triangulations with the topology of the torus, to minimize

�nite size e�ects. The above action was used, with the BRST invariant

measure utilized also by Baillie, Johnston and Williams [18], so that

Z =
X

G2T (1)

Z Y
�;i

dX
�

i

Y
i

q
D
2

i
exp(�SG � �SE) ; (15)

where D = 3, qi is the connectivity of the ith vertex and T (1) refers to the

set of triangulations of genus 1. We used the standard Metropolis algorithm

to update our con�gurations. To sweep through the space of triangulations

we performed ips on randomly chosen links. Flips were automatically re-

jected if they yielded a degenerate triangulation. After a set of 3M ips

was performed, 3M randomly selected embedding coordinates were updated

via random shifts from a at distribution. Most of the Monte Carlo simula-

tions were performed on HP-9000 (720 and 750 series) workstations; we also

collected some data by simulating lattices on each of the 32 nodes of a CM-5.



N C(�)max �c
36 3.484(8) 1.425(35)

72 4.571(15) 1.410(15)

144 5.37(14) 1.395(30)

288 5.55(7) 1.410(25)

576 5.81(17) 1.425(30)

Table 1: The maximum of the speci�c heat and its position, with errors, for

di�erent lattice sizes.

We ran on lattices ranging in size from N = 36 to 576 (N signi�es the

number of vertices) with 4 to 7 di�erent values of � for each N . Most of

the data was this data was taken in the region � 2 (1:325; 1:475). For small

N , the runs consisted of 3 � 106 sweeps, while we performed longer runs (of

up to 27 � 106 sweeps for N = 576) for larger lattices, because the auto-

correlation times for our simulations were very large. (The correlation time

for the radius of gyration was greater than 106 sweeps for N = 576!) To

determine our observables as a function of � we used a histogram reconstruc-

tion procedure. We patched di�erent histograms by weighting them with the

associated statistical indetermination (which was estimated by a jack-knife

binned procedure). Various consistency checks indicate that this procedure

is very reliable.

3 Observables

We measured the edge action SE and the associated speci�c heat C(�) �
�
2

N
(< S2

E
> � < SE >2). In Fig. 1 we plot the speci�c heat curve (con-

structed via the histogram procedure) and we tabulate its maximum and

peak position for various lattice sizes in Table 1.

We see that the speci�c heat peak grows vigorously with N for small

lattices, but that this growth quickly levels o� for larger N . These observa-

tions agree fairly well with previous work [20, 21, 22]. For the larger lattices

it appears that the peak position shifts very slowly towards higher values

of �, though this increase is not statistically signi�cant. The shape of the

peak does not change dramatically with N ; it narrows perhaps a bit between

N = 144 and N = 576.



To determine how the mean size of the dominant surfaces depend on �,

we measured the squared radius of gyration RG;

RG �
1

N

X
i;�

(X
�

i
�X�

com)
2 ; (16)

where the com subscript refers to the center of mass of the surface. By

measuring the N dependence of the gyration radius, one can extract a value

for the extrinsic Hausdor� dimension, which is given by

RG � N� � N
2

dextr : (17)

We plot RG in Fig. 2(a), clearly the size of the mean surface size increases

dramatically for � near 1:4. In Fig. 2(b), we plot the e�ective Hausdor�

dimension, given by

�(N) �
log

RG(N)

RG(
N
2
)

log(2)
: (18)

In the large � limit � ! 1 and dextr ! 2, as expected for at surfaces.

In the low � limit dextr becomes very large. In the pseudo-critical region � is

a linear function of �. Curiously enough, the latter curve yields a Hausdor�

dimension of 4, a value characteristic of branched polymers, near the location

of the speci�c heat peak. This value is not particularly reliable though be-

cause of �nite-size e�ects and also because it changes rapidly in this region.

In ref. [22] a value compatible with ours (DH(�c) > 3:4) is quoted for the

critical theory. We stress however (and also here we are in complete agree-

ment with [22]) that the Hausdor� dimension in the pseudo-critical region

depends heavily and quite unusually on N .

In both the high and low � regions �nite size e�ects are quite small

(compatible with zero to one standard deviation). In the pseudo-critical

region, on the contrary, �nite size e�ects are large. This e�ect cannot be

explained by the shift in � which one gets from the shift of the peak of the

speci�c heat, which is far too small.

We also measured the magnitude of the extrinsic Gaussian curvature,R
j K j

q
j h j, given by

j K j=
1

N

X
i

j 2� �
X
ĵ

�
ĵ

i
j : (19)



Here �
ĵ

i
denotes the angle subtended by the ĵth triangle at the ith vertex.

This quantity, plotted in Fig. 3, measures the magnitude of the de�cit angle

in the embedding space averaged over all vertices. Note that the mean Gaus-

sian curvature decreases rapidly in the neighborhood of � = 1:4, indicating

that a sharp crossover is occuring in this system. From this plot we can see

that �nite size e�ects increase with �. They do not appear to peak in the

region about � = 1:4 as one might expect for a typical phase transition.

The magnitude of the intrinsic Gaussian curvature, j R j, given by

j R j=
�

3N

X
i

j 6� qi j ; (20)

is shown in Fig. 4. When the intrinsic and extrinsic metrics are equal,

the intrinsic and extrinsic de�cit angles are identical and K = R=2. Both

extrinsic and extrinsic curvatures behave in a qualitatively similar manner;

j R j drops o� rapidly, just as j K j does. Through the peak region, though,

j K j decreases by about a factor of 5 while j R j diminishes to only about

:6 of its value on the left-hand side of the peak. Since the action explicitly

suppresses mean curvature, and the mean and extrinsic Gaussian curvature

are closely related (for instance, H2 > K

2
), we would expect that for large

� extrinsic uctuations would be suppressed much more than uctuations of

intrinsic geometry.

The question of the equivalence of the Nambu-Goto and Polyakov actions

motivated us to study the correlations between intrinsic geometry (which is

not introduced independently in the Nambu-Goto formulation) and extrinsic

geometry. We measured the quantity which we refer to as K �R

K � R �
R
KRqR
K2
R
R2

=

P
i
(2� �

P
ĵ
�ĵ
i
)(6� qi)rP

i(2� �
P

ĵ
�
ĵ

i
)2
P

i(6� qi)2
: (21)

This quantity is 1 when the metrics are equal, 0 if they are un- correlated,

and negative when these curvatures are anti-correlated. The plot of K�R in

Fig. 5 indicates that intrinsic and extrinsic geometry are strongly correlated

for small �, but as one passes through the peak region they become decor-

related. This is not particularly surprising, given that the action directly

suppresses only extrinsic uctuations. Note that RG calculations based on

the Nambu-Goto action plus an extrinsic curvature term perturb about a



background that is both intrinsically and extrinsically at. Given the ob-

served decorrelation between intrinsic and extrinsic geometry, we would not

anticipate that this background appears in the low- temperature limit of the

model which we simulate.

We also measured various other observables which characterize both the

intrinsic and extrinsic geometry of these surfaces. These measurements are

discussed in another write-up of this work [23]. They all exhibit sharp

crossover behaviour in the region near � = 1:4. We found that the auto-

correlation times of these observables grew rapidly as � increased, but we

did not note any maximum in these times in the region about � = 1:4.

The crossover behaviour became also quite apparent when we examined

typical snapshots of our simulated surfaces for various values of �. In Figs.

6 (a)-(d) we present pictures of typical surfaces for � = :8; 1:3; 1:5; and 2:0.

Note that the surfaces rapidly become smoother and the normal-normal cor-

relation length increases signi�cantly as one passes from the second to the

third of these pictures, which correspond to only slightly di�erent values of

�.

4 Interpretation

This model of crumpled surfaces appears to exhibit sharp crossover behaviour

in the region around � = 1:4. The sharp change in the magnitude of the

Gaussian curvature, the radius of gyration and other observables indicates

that the normals acquire long-range correlations, up to the size of the systems

we examine. The zero string tension measurement of [22] also shows that the

disordered regime di�ers from the regime in which the surfaces are ordered

(up to scale of the lattices that are simulated) by only a small shift in �. This

evidence might indicate the presence of a phase transition at this point. Since

the peak growth rapidly diminishes for large N , such a phase transition would

likely be higher than second order. Still, the apparent absence of diverging

correlation times and, in some cases, increasing �nite size e�ects in the peak

region leads us to question whether we are actually observing a typical phase

transition.

There are indeed other possible interpretations of our data. Note that

the surfaces which we simulate are quite small. For instance, if the surfaces

in our simulations had an intrinsic dimension of 2:87 (characteristic of D =



0 gravity), they would have roughly a linear size of fewer than 10 lattice

spacings 7.

Perhaps the simplest alternative explanation for the presence of this peak

is suggested by the arguments of Kroll and Gompper [25]. They argue that

the peak occurs when the persistence length of the system approaches the

size of the lattice (�p � N
1

d ); d denotes the intrinsic Hausdor� dimension.

Fluctuations on a larger scale become more important. When this scale is

greater than the lattice size these uctuations are suppressed. Thus one

might surmise that the speci�c heat will drop for large �. Typically, the

persistence length grows as �p � exp(C�); C is inversely proportional to

the leading coe�cient of the beta function. We would expect that the peak

position should shift to the right with increasing N in this scenario as

�peak(N
0)� �peak(N) =

ln(N
0

N
)

dC
: (22)

Quite a large value of C is needed to explain the rapid crossover; roughly

values of C � 10; dintr � 3 are more or less consistent with the magnitude

of the peak shift and crossover width. The RG calculations using di�erent

forms of the action yield C = 4�
3
(see equation 14), but this may not apply

to the action we simulate. This reasoning also indicates that the peak should

widen as the lattice size increases; we do not observe this at all. It seems

plausible though that these arguments, based only on the leading term of the

high � expansion, are too naive.

An alternative scenario, which builds on the ideas in the above paragraph,

is suggested by the tantalizing similarities between the results of our uid

surface simulations and what has been observed for the d = 4 SU(2) Lattice

Gauge Theory [26] and for the d = 2 O(3) model.

The O(3) model, which is thought to be asymptotically free, exhibits a

speci�c heat peak near � = 1:4 (�rst measured via Monte Carlo simulations

by Colot [27]). The origin of this peak is understood [28]; it is due to the uc-

tuations of the sigma particle, a low-mass bound state of the massless O(3)

pions. The sigma induces short-range order and contributes to the speci�c

heat as a degree of freedom only at high temperatures (when the correlation

length in the system becomes smaller than its inverse mass). The peak thus

7Of course, our lattices are too small, by one or two orders of magnitude, to really
exhibit a convincing fractal structure.



occurs at the beginning of the crossover regime, when the correlation length

is several lattice spacings.

According to the low temperature expansion, the correlation length grows

as � � exp(2��)=�. Thus one would expect a fairly rapid crossover in the

O(3) model; the correlation length should increase by roughly a factor of 9

when � is shifted by about 0:35. Such a crossover is indeed observed, though

it is not so apparent that it is as dramatic as the crossover behaviour observed

for uid surfaces. 8

Recent simulations of the O(3) model [29] indicate that the speci�c heat

peak grows signi�cantly when the lattice size L is increased from 5 to 15,

and that virtually no growth in peak height is evident as L is increased

further up to 100. Furthermore, the peak position shifts to the right as

L grows and then appears to stabilize for large L. This is more or less

what we observe in our simulations of uid surfaces, on lattices of small size.

We point out these similarities largely to emphasize that there does exist

an asymptotically free theory (with low mass excitations) which exhibits

crossover behaviour qualitatively similar to that observed in our simulations.

The analogy is perhaps deeper, though, since the uid surface action (with

extrinsic curvature) in certain guises looks like a sigma model action. It

would not therefore be so surprising from this point of view to �nd a sigma

particle in these theories, perhaps associated with (n̂2�1), in which n̂ denotes

the unit normal to our surfaces.

Another additional possibility is that uctuations of the intrinsic geome-

try (the Liouville mode) are responsible for short-range order and contribute

to the speci�c heat peak.

5 Conclusion

We have introduced a model of uid random surfaces with an extrinsic cur-

vature dependent action and explored its phase diagram. Unfortunately, we

have been unable to determine if our model undergoes a phase (crumpling)

transition at �nite coupling. We have observed dramatic crossover behavior

for particular observables in our Monte Carlo simulations, but on the other

8To compare quantitatively the width of the crossover regimes for these two models it
would be necessary to measure a correlation length (perhaps extracted from the normal-
normal correlation function) in these random surface simulations.



hand, the correlation times and certain �nite-size e�ects do not behave as

one would expect in the presence of a phase transition. The behavior of

other lattice models also indicates that it is possible that we are observing

the e�ects of �nite-mass excitations on small lattices, rather than a phase

transition. We hope that future work will clarify this murky state of a�airs,

to determine if there indeed exists a crumpling transition for uid surfaces.
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7 Figure Captions

Fig. 1 The speci�c heat C(�) as a function of �. As in all other pictures, �lled

circles and a dotted line correspond to N = 144, crosses and a dashed

line indicate N = 288, and empty squares and a solid line represent

N = 576.

Fig. 2a The gyration radius RG de�ned in (16), plotted as in Fig. 1.

Fig. 2b The e�ective inverse Hausdor� dimension � as a function of �, as de-

�ned in (17). The �lled dots and the dashed curve are from a �t to

the N = 288 and N = 144 data, while the empty dots and solid curve

represent the �t to N = 576 and N = 288.

Fig. 3 The extrinsic Gaussian curvature j K j de�ned in (19), plotted as in

Fig. 1.

Fig. 4 The intrinsic curvature j R j de�ned in (20), plotted as in Fig.1.

Fig. 5 The intrinsic extrinsic curvature correlation, as de�ned in (21), plotted

as in Fig.1.

Fig. 6a A snapshot of a 576 node surface of toroidal topology for � = 0:8.

Fig. 6b As in Fig. 6a for � = 1:3.

Fig. 6c As in Fig. 6a for � = 1:5.

Fig. 6d As in Fig. 6a for � = 2:0.


