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Abstract

Region growing is a general technique for image segmentation, where image charac-

teristics are used to group adjacent pixels together to form regions. The region grow-

ing problem is a representative of one type of loosely synchronous problems, known

as adaptive irregular problems, whose data objects evolve during the computation in

a time synchronized manner.

This paper presents a parallel algorithm for solving the region growing problem

based on the split and merge approach. The algorithm was implemented on the

Connection Machine, models CM-2 and CM-5, in the data parallel and message passing

programming models. The performance of these implementations is examined and

compared.

Although the region growing problem belongs to a class of irregular problems, no

new, sophisticated data structures were required to solve the problem. Only one and

two-dimensional arrays of data were used. The algorithm is therefore highly portable

on a wide variety of SIMD and MIMD architectures.

Keywords: Region growing, Split and merge, Parallel processing, Data parallel,

Message passing, and Connection machine.

1 The Region Growing Problem

Region growing is a general technique for image segmentation. Image characteristics are

used to group adjacent pixels together to form regions. Regions are then merged with

other regions to grow larger regions. A region might correspond to a world object or a

meaningful part of one [2].

The merging of pixels or regions to form larger regions is usually governed by a ho-

mogeneity criterion that must be satis�ed. A variety of homogeneity criteria have been
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investigated for region growing. If f(x; y) is the image intensity (or gray level) at the pixel

with coordinate (x; y), then the pixel range homogeneity criterion H(R), for a region R,

is de�ned as follows:

true, if for all point pairs (x1; y1) and (x2; y2) in R,

kf(x1; y1)� f(x2; y2)k < T .

%
H(R) =

&
false, otherwise.

This particular homogeneity criterion requires that the range between the minimum and

maximum intensities within a region R, not exceed a threshold value T . T could be a

constant for the entire image, or could have di�erent values for di�erent parts of the image.

Unlike the binary image component labeling problem which has a unique solution that

is una�ected by the order of computation, the solution to the region growing problem

depends on the order of merges that take place and requires the evaluation of all possible

merges at each merge step.

There are many approaches for solving the region growing problem [1, 2, 6, 9, 14].

Ballard [2] classi�es the various techniques into three classes:

1. Local techniques. Pixels are placed in a region based on their properties or the

properties of their local neighbors.

2. Global techniques. Pixels are placed in a region based on properties of large numbers

of pixels distributed throughout the image.

3. Splitting and merging techniques. Graph structures are used to represent the regions

and boundaries, and both local and global merging and splitting criteria are used.

The e�ectiveness of a particular region growing algorithm depends on the application

area and the input image. If the image is su�ciently simple, local techniques can be

e�ective, while on very di�cult images even the most sophisticated techniques may not

produce a satisfactory segmentation.

This paper presents a parallel algorithm for solving the region growing problem based

on the split and merge approach proposed by Horowitz and Pavlidis [7]. The algorithm

aims to reduce the number of merge steps required to identify the regions in the image by

using a preprocessing split stage.

While previous parallel implementations of the split and merge approach have used dy-

namic or tree structures to represent the regions in the image [12, 13], our implementations

use only one and two-dimensional arrays. We also introduce an element of randomness

to the merging of regions when selecting a partner in case of a tie; this signi�cantly re-

duced the execution time of our algorithm. A component labeling algorithm described by

Hambrusch et al. [5] alternately uses extra selection rules that reduce the possibility of

a tie during merging. These extra selection rules increase the execution time, but could

produce bettwe solutions for certain input images.
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2 The Split and Merge Approach

The split and merge approach solves the region growing problem in two stages: the split

stage and the merge stage. The split stage is a preprocessing stage that aims to reduce

the number of merge steps required to solve the problem.

2.1 The Split Stage

In the split stage, an N �N image is partitioned into square regions which conform to

the homogeneity criterion. At �rst, each pixel is considered a homogeneous square region

of size 1� 1. Then every group of four adjacent pixels are tested for homogeneity. If the

homogeneity criterion is satis�ed, the pixels are combined into one larger square region of

size 2 � 2. Next, every group of four adjacent square regions of size 2 � 2 are tested for

homogeneity. If the homogeneity criterion is satis�ed, the four square regions are com-

bined into one larger square region of size 4 � 4, and so on... The split stage terminates

when the whole image is one square region of size N �N , or when no more square regions

can be merged. While splitting, the top left-hand corner pixel of each square region is

designated as the region representative and is assigned a unique ID. Figure 1 shows the

square regions produced by the split stage for a 4� 4 image, where the threshold value T

= 3. The numbers in the image represent pixel intensities.
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8 6 5 4

8 8 65

6687

(a)
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8 6 5 4

8 8 65

6687

(b)

Square regions: (a) at start of the split stage; (b) after �rst and �nal split iteration

Figure 1:

The Split Stage

2.2 The Merge Stage

In the merge stage of the split and merge approach, the square regions determined by

the split stage are iteratively merged into larger and larger regions which conform to the

homogeneity criterion. The merge continues until no more merges are possible.

The merge is achieved by reformulating the region growing problem as a weighted,

un-directed graph problem, where the vertices of the graph represent the regions in the

image, and the edges represent the neighboring relationships between these regions. That

is, an edge e exists between two vertices v and w of the graph, if and only if the regions

represented by v and w share a common boundary. The weight of the edge e is the
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di�erence between the maximum and minimum pixel values in the union of the two regions

represented by v and w.

Obviously, only vertices connected by edges satisfying the homogeneity criterion can

be merged. In one merge iteration, each region selects for merging its neighbor that best

satis�es the homogeneity criterion. This \best merge" approach yields better results by

minimizing the increase in range with each merge [13]. A tie may be broken by selecting

the neighbor with the smallest (largest) ID, or by selecting a neighbor at random, as will

be discussed in the next section. Two regions actually merge if their merge choices are

mutual. That is, two regions must select each other in order for them to merge. Once two

regions merge, the region with the smaller ID becomes the representative of the two, and

the vertices and edges of the graph are updated. The merge stage terminates when no

more edges satisfying the homogeneity criterion exist in the graph.

Figure 2 shows the di�erent regions obtained and their corresponding graphs in each

iteration of the merge stage, for the 4� 4 image of Figure 1. Ties are broken by selecting

the neighbor with the smallest ID. The small numbers in parenthesis in the corners of the

regions denote the region IDs.
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Regions: (a) at start of the merge stage; (b) after �rst merge iteration; (c) after second merge

iteration; (d) after third and �nal merge iteration

Figure 2:

Merges That Take Place When Ties are Broken by Choosing the Neighbor With the

Smallest ID

2.3 Resolving Ties at Random

The region growing problem is a representative of a type of loosely synchronous problems,

known as adaptive irregular problems, whose data objects evolve during the computation

in a time synchronized manner [4]. The problem exhibits a dynamic behavior that starts

with a high degree of parallelism that very rapidly diminishes to a much lower degree of
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parallelism.

In order to increase the degree of parallelism in the algorithm, we introduced an element

of randomness to our parallel implementations. In case of a tie during the merge stage,

the tie is broken by selecting a neighbor at random instead of selecting the neighbor with

the smallest (largest) ID.

Figures 2 and 3 illustrate the di�erence between the two approaches. In Figure 2(a),

both regions 3 and 5 tie for merging with region 6, since merging with either of the two

regions best satis�es the homogeneity criterion for region 6 (i.e. produces the least increase

in pixel range for region 6, as indicated by the weights of the edges). In Figure 2, region

6 chooses to merge with region 3, since ties are broken by choosing the neighbor with

the smallest ID. But no merge actually takes place, since region 3 chooses to merge with

region 4.

If, instead, ties were broken at random, then in the �rst merge iteration regions 5 and

6 could merge, at the same time as regions 3 and 4; and the merge stage could take 2

iterations instead of 3, as illustrated by Figure 3.
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Regions: (a) at start of the merge stage; (b) after �rst merge iteration ; (c) after second and �nal

merge iteration

Figure 3:

Merges That Could Take Place When Ties are Broken at Random

Experimentally, the random approach in breaking ties proved to be signi�cantly faster

than the approach of selecting the neighbor with the smallest (largest) ID, as shown in

Table I in Section 8.1. This is due to the fact that the random approach generally results

in a larger number of merges per merge iteration, while the approach of selecting the

neighbor with the smallest (largest) ID imposes a serialization on the order of merges.
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3 The Connection Machine

The region growing problem was implemented on two distinct models of the Connection

Machine: the CM-2 and CM-5. In what follows, the architecture of each of these models

will be brie
y described.

3.1 Model CM-2

The Connection Machine, model CM-2, is a massively parallel computer that belongs to

the range of SIMD (Single Instruction Multiple Data) machines. A 32K CM-2 consists of

2048 chips, each containing 16 bit-serial processors plus associated memory, for a total of

32,768 (215) processors. The chips form an 11-dimensional hypercube, each chip having

11 wires connecting it to other chips. Within each chip, the processors are connected in a

4� 4 grid.

The CM-2 operates under the programmed control of a front end computer that pro-

vides the program development and execution environment. All CM-2 programs execute

on the front end; during the course of the execution, the front end issues instructions to

the CM-2 processors. The CM-2 processors work in lock step. The algorithm designer

need not worry about synchronizing the processors or balancing the work load.

The CM-2 can be programmed using the CM Fortran language, which is essentially

standard Fortran 77 supplemented with the array processing extensions of Fortran 90. An

array that is used only as a set of scalars is stored and processed in the front end in the

normal serial manner, while an array that is referenced as an object is stored in the CM-2

processors and processed in parallel.

3.2 Model CM-5

The Connection Machine model CM-5 is an MIMD machine composed of a control proces-

sor (also known as partition manager), and tens or hundreds of processing nodes connected

together in the form of a fat tree [8]. Every processing node is a general-purpose computer

that can fetch and interpret its own instruction stream, execute arithmetic and logical

instructions, calculate memory addresses, and perform interprocessor communication.

The control processor has the same general capability as a processing node, but is

specialized for performing administrative functions rather than computational ones. It

manages a partition composed of a number of processing nodes and is responsible for

scheduling user tasks, allocating resources, and servicing I/O requests for that partition.

The CM-5 supports both the data parallel and message passing models of program-

ming. For the data parallel model, the CM-5 provides the CM Fortran language. The

partition manager executes all of the CM Fortran that is Fortran 77, while the nodes

execute all the array extensions drawn from Fortran 90.

For the message passing model, the CM-5 provides the CMMD library, which is a

collection of routines that permit cooperative message passing among the processing nodes.

CMMD supports a version of message passing known as host/node programming, where

a host program runs on the partition manager, and independent copies of a node program

run on each of the processing nodes.
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4 The Data Parallel Implementation

In the data parallel model of execution, the same CM Fortran program can be executed on

both the CM-2 and the CM-5 without modi�cation. In the CM-2 case, the SIMD hardware

directly supports the data parallel model, since the synchronization of the processors is

built into the architecture, while in the CM-5 case, compilers, assemblers, and other

system software have to deal with the many \housekeeping" details such as load balance

and synchronization of operations.

The data parallel implementation of the split and merge region growing algorithm

consists of the following steps:

1. The two-dimensional pixel image is repeatedly split into homogeneous square regions.

The split stage stops when the whole image is one homogeneous square region, or

when no more merges are possible.

2. For each square region in the pixel image, a corresponding graph vertex is created,

and for each pair of neighboring square regions, an edge is created. Edges that do

not satisfy the homogeneity criterion are de-activated.

3. A region determines its neighboring region that best satis�es the homogeneity cri-

terion. In the case of a tie, one of the neighboring regions is chosen at random.

Two regions merge if their merge choices are mutual. In one merge iteration, several

region pairs can merge at the same time without con
icting with each other.

4. The vertices and edges of the graph are updated to re
ect the new regions in the

image. Edges that do not satisfy the homogeneity criterion are de-activated.

5. If there still exist any active edges, then steps 3 and 4 are repeated. Otherwise, the

program terminates.

5 The Message Passing Implementation

In contrast to the data parallel model of execution, the message passing model requires the

programmer to explicitly specify the detailed behavior of individual processors operating

asynchronously. Many of the facilities provided by the system software in the data parallel

model are exchanged for the ability to program each node individually and to make explicit

decisions on data layout, synchronization, and load balancing.

The message passing implementation of the split and merge region growing algorithm

is a hand-coded translation of the data parallel one. The message passing implementation

consists of the following steps:

0. The image is mapped to the node processor grid such that each processor receives

an N
P1
� N

P2
sub-image of the original image. This partitioning maintains adjacency

between neighboring blocks of the image.

1. Each node processor independently splits its N
P1
� N

P2
sub-image and determines the

homogeneous square regions within it.
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2. Each node processor sets up the vertices and edges of the graph associated with its

sub-image. Boundary information is exchanged so that edges connected to vertices

in other processors are created.

3. The node processors cooperate to merge the regions determined so far in the image.

4. The node processors cooperate to update the vertices and edges of their graphs.

5. If there still exist any active edges in any of the node processors, then steps 3 and 4

are repeated. Otherwise, the host and node programs terminate.

5.1 Partitioning of the Pixel Image

In the message passing implementation, the pixel image is partitioned equally among the

node processors. Given a pixel image of size N �N , and P1�P2 node processors (where

each of P1 and P2 divides N), the pixel image is mapped to the processor grid such that

each processor receives an N
P1
� N

P2
sub-image of the original image. This partitioning

maintains adjacency between neighboring blocks of the image. The row and column

numbers of a node processor in the grid are given by (Self address DIV P2) + 1 and

(Self address MOD P2) + 1 respectively, where DIV is the integer division operation, and

MOD is the modulo operation. The following diagram shows an N �N image partitioned

among a 4� 8 processor grid (P1 = 4, P2 = 8). The processors are numbered p0, p1, ...,

p31.
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In the split stage, each node processor works independently on its N
P1
� N

P2
sub-image,

and determines the homogeneous square regions within it. If the sub-image within the
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processor is rectangular in shape, then it is divided into square sections, and the split

stage is applied independently to each of these sections in turn.

In the following diagram, P2 is assumed to be twice P1. The N
P1
� N

P2
sub-image in

one processor is divided into two square sections.

Section 1

Section 2

N/P1

N/P2

5.2 Irregular Communication

At several points in the message passing implementation, irregular communication is re-

quired, whereby each of the node processors sends zero or more messages to other pro-

cessors, in an irregular fashion. For example, we may have the following situation with 4

processors each having a list of destinations to send to:

p
0 p

1

ppp ,,

0 32

p
3

p p
32

p p,p p,p
1 3 1 20

,Send to:

In this case, an e�cient communication scheme is needed whereby messages are sent and

received without causing deadlock.

Two di�erent communication schemes were investigated. The �rst, called Linear Per-

mutation (LP) [11], uses synchronous (blocked) message passing. In this scheme, each

node obtains a copy of the communication matrix, using a global concatenation operation.

Then, in step i, 0 < i < Q, processor pk sends a message to processor p(k+i) MOD Q, and

receives a message from processor p(k�i) MOD Q, where Q is the total number of node

processors. The sender and receiver nodes are blocked until the message is transmitted.

The steps of the Linear Permutation algorithm are as follows:

For all processors pk, 0 � k � Q� 1, in parallel do

for i = 1 to Q� 1 do

Processor pk sends a message to processor p(k+i) MOD Q

Processor pk receives a message from processor p(k�i) MOD Q
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endfor

If processor pk does not have any message to send to processor p(k+i) MOD Q then it

does not participate in the send operation to that processor. Similarly, if processor pk does

not have any message to receive from processor p(k�i) MOD Q then it does not participate

in the receive operation from that processor.

The second communication scheme uses asynchronous message passing. In this

scheme, a node that wishes to send or receive a message does not block while waiting for

its partner node. A node announces its intention to send or receive a message, and then

pursues other computation until the message is ready to be sent and received. When both

sender and receiver nodes are ready, the system interrupts whatever else is happening on

the nodes and the message is transmitted. The steps of the asynchronous communication

algorithm are as follows:

� Using a global reduction operation, each node determines the number of messages

it must receive from the other nodes.

� Every node sends all the messages it wishes to send to other nodes, asynchronously.

� Every node receives the required number of messages.

In order to reduce the communication overhead in both schemes, whenever a proces-

sor needs to send more than one message to the same destination, all the messages are

concatenated together and sent as one large message.

6 Data Structures

In implementing the split and merge algorithm for solving the region growing prob-

lem, no sophisticated data structures were needed to solve the problem. Only one and

two-dimensional arrays were used to represent the various data items required. Two-

dimensional arrays were used to store the gray levels as well as other information per-

taining to the pixels, such as the pixel column and row numbers and whether a pixel is

a region representative or not. One-dimensional arrays were used to store information

about the vertices and edges of the graph modeling the problem.

To illustrate the way in which data is stored in the various arrays, consider the following

square regions obtained at the end of the split stage, where the threshold value T = 3.
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Information on vertices is stored in one-dimensional arrays, as follows:
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Information on edges is stored in one-dimensional arrays, as follows:
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7 Complexity

Given an N � N pixel image, the complexity of the parallel split and merge algorithm

depends on the number of processors used and the number of iterations required to �nd

the regions in the image. This number in turn depends on the shape and size of those

regions.

7.1 The Split Stage

In the best case, when every pixel is a region by itself, only one split iteration is required.

In the worst case, when the whole image is one homogeneous square region, log(N) split

iterations are required.

CM-2 Implementation:

Suppose that P processors are used by the data parallel implementation on the CM-2, and

P is smaller than N2. At the beginning of the split stage, each pixel is considered a square

region, and the �rst split iteration can be done in N2

P
steps. In the second split iteration,

there are O(N
2

4
) square regions, and this iteration can be done in O( N2

4�P
) steps, and so

on, until the number of square regions becomes � P . When this occurs, each iteration

can be done in one step, and there will be at most log(P ) of these iterations. Thus the

complexity of the split stage in the data parallel implementation on the CM-2 is given by

O(N
2

P
+ logP ).
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CM-5 Implementations:

In the data parallel and message passing implementations on the CM-5, the �rst logN
2

P

split iterations are done locally, while the last logP iterations require communication.

Assuming that communication in each of the last logP split iterations requires O(�) time

units, where � is the setup time, then the total time for the split stage is O(N
2

P
+(��logP )).

If the split stage is stopped after logN
2

P
iterations, then the time is O(N

2

P
).

7.2 The Merge Stage

The number of iterations needed to complete the merge stage of the algorithm is upper

bounded by the maximum number of sub-regions that must be merged to connect any

single region in the image. If a region consists of r sub-regions, then it will require at least

log(r) merge iterations. In the worst case, when only one pair of regions is merged in each

iteration, it will require r � 1 merge iterations.

The total time for the merge stage depends on the number of square regions in the

image at the beginning of the merge stage, and the number of regions in the image at the

end of the merge stage. Let Ri and Rf denote these two numbers, respectively. Suppose

that the number of regions is reduced by a factor of k at every step in the merge stage

(1 � k � 2). Then the number of iterations required is logk
Ri

Rf
.

The number of edges, E, and the number of regions, Ri, at the beginning of the merge

stage can be derived by Euler's formula [3]: V +Ri�E = 2, where V is the total number of

corners of the square regions. Since E = V +Ri�2 and V � 4�Ri, then Ri � E � 5�Ri.

Thus, the number of edges is linearly proportional to the number of regions.

CM-2 Implementation:

Suppose that P processors are used by the data parallel implementation on the CM-2.

Then the total time required for any step of the merge stage in which E edges are active

is E
P
� (Cost of a Random Access Write + Cost of a Random Access Read).

The time taken by a Random Access Read and a Random Access Write of B data

elements on a P -processor hypercube is:

=

(
O(logP ); if B � P

O(B�logB
P

); if B � P 1+2;2> 0

If we assume that the number of active edges decreases by a factor of k in each iteration

of the merge stage (same as for number of regions), then the total time required for the

merge stage, assuming B � P in every iteration, is:

O(logP � logk
Ri

Rf

)

The total time required in the general case is:

O((
Ri � logRi

P
+

Ri

2
� logRi

2

P
+ :::) + logP � logk

Ri

Rf

)
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= O(
Ri � logRi

P
+ logP � logk

Ri

Rf

)

Note that this is a very loose complexity analysis (B�logB
P

is only valid for B �
P 1+2;2> 0).

CM-5 Implementations:

In the data parallel and message passing implementations on the CM-5, each merge step

of the algorithm requires a many-to-many communication. The complexity of the many-

to-many communication is di�cult to analyze, since it depends on the number of the

messages sent by every processor, which in turn depends on the image.

8 Performance

The data parallel implementation (CM Fortran) of the split and merge algorithm was

executed on both a 16K CM-2 and a 32-node CM-5, while the message passing implemen-

tation (F77 + CMMD) was executed on a 32-node CM-5.

A variety of images were used to test the various implementations. Pictures of the

images (Image1 - Image 6) are shown at the end of this paper.

8.1 Comparison of the Smallest-ID and Random Approaches in Resolv-

ing Ties

Table I compares the smallest-ID and random approaches in resolving ties during the

merge stage. The table presents the execution time and the number of iterations required

by the merge stage of the data parallel implementation (CM Fortran) on the CM-5, using

each of the two approaches. Invariably, in all of the images, the random approach in re-

solving ties proved to be faster than the approach of selecting the region with the smallest

ID. Similar results were obtained for the message passing implementation on the CM-5,

as well as the data parallel implementation on the CM-2.

Data Parallel Implementation on the CM-5 (32 nodes):

Merge Stage Merge Stage

(Smallest-ID Approach) (Random Approach)

Time (sec) Iterations Time (sec) Iterations

Image 1: 334.948 290 33.013 19

Image 2: 151.670 153 31.615 20

Image 3: 1406.099 809 42.570 27

Image 4: 622.980 549 37.588 25

Image 5: 186.834 226 24.471 16

Image 6: 1754.254 1062 75.582 45

Table I:

Comparison of Smallest-ID and Random Approaches in Breaking Ties
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8.2 Comparison of the Data Parallel and Message Passing Implementa-

tions

A comparison of the performance of the various implementations (using the random ap-

proach in resolving ties) is presented below. LP refers to the Linear Permutation commu-

nication scheme and Async refers to the asynchronous one.

Image 1: 128� 128 image composed of two nested rectangular regions

No. of square regions found at end of split stage = 436

No. of regions found at end of merge stage = 2

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 ( 8K procs) 0.200 4 9.511 19

CM-2 (16K procs) 0.112 4 7.027 20

CM-5 (32 nodes) 0.361 4 33.013 19

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.022 4 6.914 24

CM-5 (32 nodes, Async) 0.021 4 4.025 20

Image 2: 128� 128 image composed of a collection of rectangles

No. of square regions found at end of split stage = 193

No. of regions found at end of merge stage = 7

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 ( 8K procs) 0.200 4 8.184 18

CM-2 (16K procs) 0.112 4 5.345 17

CM-5 (32 nodes) 0.360 4 31.615 20

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.022 4 9.236 35

CM-5 (32 nodes, Async) 0.021 4 6.441 35

Image 3: 128� 128 image composed of a collection of circles

No. of square regions found at end of split stage = 1732

No. of regions found at end of merge stage = 11

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 ( 8K procs) 0.200 4 13.711 24

CM-2 (16K procs) 0.112 4 9.538 25

CM-5 (32 nodes) 0.361 4 42.570 27

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.022 4 9.454 33

CM-5 (32 nodes, Async) 0.021 4 5.516 28
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Image 4: 256� 256 image composed of two nested rectangular regions

No. of square regions found at end of split stage = 823

No. of regions found at end of merge stage = 2

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 ( 8K procs) 1.008 5 13.882 26

CM-2 (16K procs) 0.529 5 10.381 28

CM-5 (32 nodes) 2.052 5 37.588 25

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.097 5 16.512 37

CM-5 (32 nodes, Async) 0.097 5 10.942 29

Image 5: 256� 256 image composed of a collection of rectangles

No. of square regions found at end of split stage = 298

No. of regions found at end of merge stage = 7

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 ( 8K procs) 1.008 5 9.287 19

CM-2 (16K procs) 0.529 5 6.633 20

CM-5 (32 nodes) 2.046 5 24.471 16

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.099 5 14.388 35

CM-5 (32 nodes, Async) 0.098 5 6.640 35

Image 6: 256� 256 image of a \tool"

No. of square regions found at end of split stage = 2248

No. of regions found at end of merge stage = 4

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 ( 8K procs) 1.008 5 19.530 34

CM-2 (16K procs) 0.529 5 13.426 33

CM-5 (32 nodes) 2.066 5 75.582 45

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.098 5 12.192 36

CM-5 (32 nodes, Async) 0.098 5 7.236 38

The bar chart of Figure 4 gives a visual comparison of the times taken by the merge stage

in the various implementations. Figure 5 presents the execution time and speedup of the

merge stage in the message passing implementation on the CM-5, using asynchronous

communication.
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8.3 Observations

In examining the performance of the di�erent versions of the split and merge algorithm,

we make the following observations:

� The number of merge iterations required to �nd the regions in an image are not

identical in all cases. This is due to the element of randomness that is introduced

in selecting a neighbor for merging. The random numbers generated, as well as the

order in which messages are delivered a�ect the actual merges that take place and

hence the number of merge iterations required to solve the problem.

� The data parallel (CM Fortran) version runs faster on the CM-2 than on the CM-5.

The SIMD hardware of the CM-2 directly supports the data parallel model, while

compilers, assemblers, and other system software of the CM-5 have to deal with

the many \housekeeping" details such as load balance and synchronization. It is

expected, however, that by using a larger number of nodes and/or vector units on

the CM-5, the execution time will be signi�cantly reduced.

� As the timing �gures and the bar chart of Figure 4 indicate, the message passing

implementation (F77 + CMMD) on the CM-5 runs signi�cantly faster than the

data parallel (CM Fortran) version on the same machine. The data parallel version

relies on the CM Fortran compiler as well as the run-time system to lay out the

data and to provide communication among the nodes, while, in the message passing

version, the programmer exercises control over synchronization, data partitioning,

and load balancing. With the availability of new data distribution directives in High

Performance Fortran, the performance of the data parallel implementation should

be closer to the hand-coded message passing one.

� The data parallel version is easier to program than the message passing one, precisely

because the programmer does not have to be concerned with synchronization, data

partitioning, or load balancing. So there is a tradeo� between ease of programming

and execution speed. This emphasizes the need for improved compilers, languages,

and run-time support, so data parallel languages can be executed more e�ciently

on distributed machines.

� Of the two communication schemes investigated on the CM-5 (asynchronous and

Linear Permutation), the asynchronous scheme is the faster one. In the asynchronous

scheme, a node can pursue other computation until messages are ready to be sent or

received, while in the Linear Permutation scheme, all the nodes must loop the same

number of times until the all required sends and receives are completed.

� The graph modeling the region growing problem constantly evolves during the course

of the computation. In the current message passing implementation, the vertices and

edges of the graph remain in the same processors throughout the merge stage. This,

in general, will lead to load imbalance. A more realistic approach would be to let

the active vertices and edges migrate between the processors, so the load is more

evenly distributed. Obviously, load balancing will require increased communication

and computation. It is expected that load balancing will produce positive results in

some test cases, but not in others.
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9 Conclusions

We have presented a parallel algorithm for solving the region growing problem based on

the split and merge approach. Ties during merging were resolved by selecting a partner at

random. The algorithm was implemented on the Connection Machine, models CM-2 and

CM-5, in both the data parallel and message passing programming paradigms. Only one

and two-dimensional arrays of data were used in the implementations. The performance

of the algorithm using the di�erent architectures and programming models was analyzed

and compared.
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Figure 4: Execution time of the Merge Stage in the Various Implementations
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Figure 5: Execution Time and Speedup of the Merge Stage on the CM-5 as a Function

of the Number of Processors
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Image 1 (128 x 128 image)

Image 3 (128 x 128 image)

Image 5 (256 x 256 image)

Image 4 (256 x 256 image)

Image 6 (256 x 256 image)

Image 2 (128 x 128 image)

Figure 6: Images 1-6
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