
Solving the Region Growing Problem on the
Connection Machine

Nawal Copty, Sanjay Ranka, Geo�rey Fox, and Ravi Shankar

School of Computer and Information Science
Syracuse University, Syracuse, NY 13244

Email: nkcopty, ranka, rshankar@top.cis.syr.edu, gcf@npac.syr.edu

Published in:

Proc. 22nd International Conference on Parallel Processing, 1993, Vol. III, pp. 102-105

Abstract { This paper presents a parallel algo-

rithm for solving the region growing problem based on

the split and merge approach. The algorithm was imple-
mented on the CM-2 and the CM-5 in the data parallel

and message passing models. The performance of these

implementations is examined and compared.

Keywords: Region growing, Split and merge,
Data parallel, Message passing, Connection machine.

The Region Growing Problem

Region growing is a general technique for image seg-
mentation. Image characteristics are used to group ad-
jacent pixels together to form regions. Regions are then
merged with other regions to grow larger regions. A re-
gion might correspond to a world object or a meaningful
part of one [2].

The merging of pixels or regions to form larger re-
gions is usually governed by a homogeneity criterion

that must be satis�ed. A variety of homogeneity crite-
ria have been investigated for region growing. The pixel
range homogeneity criterion requires that the di�erence
between the minimum and maximum intensities within
a region not exceed a threshold value T .

There are many approaches for solving the region
growing problem [1, 2, 10]. This paper presents a paral-
lel algorithm for solving the problem based on the split
and merge approach [5]. The algorithm aims to reduce
the number of merge steps required to identify the re-
gions in the image by using a preprocessing split stage.

While previous parallel implementations of the
split and merge approach have used dynamic or tree
structures to represent the regions in the image [8, 9],
our implementations use only one and two-dimensional
arrays to solve the problem. Moreover, we introduce an
element of randomness to the merging of regions. For a
detailed presentation, refer to [3].

The Split and Merge Approach

The split and merge approach solves the region growing
problem in two stages: the split stage and the merge

stage.

The Split Stage

In the split stage, an N � N image is partitioned into
square regions which satisfy the homogeneity criterion.
At �rst, each pixel is considered a homogeneous square
region of size 1 � 1. Then every group of four adjacent
pixels are tested for homogeneity. If the homogeneity
criterion is satis�ed, the pixels are combined into one
larger square region of size 2 � 2, and so on. The split
stage terminates when the whole image is one square
region of size N�N , or when no more square regions can
be merged. Figure 1 shows the square regions produced
by the split stage for a 4�4 image, where the threshold
value T = 3.

6 7 1 3

8 6 5 4

8 8 65

6687

(a)

6 7 1 3

8 6 5 4

8 8 65

6687

(b)

Square regions: (a) at start of the split stage; (b) after �rst

and �nal split iteration

Figure 1: The Split Stage

The Merge Stage

In the merge stage, the square regions are iteratively
merged into larger and larger regions which satisfy the
homogeneity criterion. The merge continues until no
more merges are possible.

The merge is achieved by reformulating the region
growing problem as a weighted, un-directed graph prob-
lem, where the vertices of the graph represent the re-
gions in the image, and the edges represent the neigh-
boring relationships among these regions. That is, an
edge e exists between two vertices v and w of the graph,
if and only if the regions represented by v and w share
a common boundary. The weight of the edge e is the
di�erence between the maximum and minimum pixel
values in the union of the two regions represented by v
and w.

Obviously, only vertices connected by edges sat-
isfying the homogeneity criterion can be merged. In
one merge iteration, each region selects for merging its
neighbor that best satis�es the homogeneity criterion.

1

A tie may be broken by selecting the neighbor with the
smallest (largest) ID, or by selecting a neighbor at ran-
dom. Two regions actually merge if they select each
other for merging. Once two regions merge, the ver-
tices and edges of the graph are updated to reect the
new regions in the image.

Figure 2 shows the di�erent regions obtained and
their corresponding graphs in each iteration of the
merge stage, for the 4 � 4 image of Figure 1. Ties are
broken by selecting the neighbor with the smallest ID.
The small numbers appearing in the upper left-hand
corners of the regions denote the region IDs.

0

2(d)

(c)

(a)

0 3

2 5

3

5

(3)

(0)

(6)

(5)(2)

(1)

3

6 7 1 3

4568

8 8
(4)

6

6687

4568

8 8 5 6

67

(6)

6 7 1

(b)

(0)

0 3

2

7 1 3

8 6 4

8 8 5 6

6687

5

6 7 3

4568

8 8

6687

(0)

1 4

(2) (5)

(3)

5 6

68

6

3

2

0

2

2

2

(2)
1

1

7

7

3

3 2

3

4

3

7

5
7

2

5

3

(0) (5)(2)

5

5

6

1

1

1

6

(3)

Regions: (a) at start of the merge stage; (b) after �rst merge

iteration; (c) after second merge iteration; (d) after third and

�nal merge iteration

Figure 2: The Merge Stage

Parallel Implementations

The region growing problem is a representative of a type
of loosely synchronous problems, known as adaptive ir-
regular problems, whose data objects evolve during the
computation in a time synchronized manner [4]. The
problem exhibits a dynamic behavior that starts with a
high degree of parallelism that very rapidly diminishes
to a much lower degree of parallelism.

The split and merge algorithm for solving the re-
gion growing problem was implemented in both the data
parallel and message passing models. In the data paral-
lel model, the CM Fortran programming language was
used, and the same program was executed on both the
CM-2 and the CM-5. In the message passing model,
on the other hand, sequential Fortran 77 supplemented

with message passing library routines (CMMD) was
used, and the programwas executed on the CM-5. Only
one and two-dimensional arrays were used to represent
the various data items required. Two-dimensional ar-
rays were used to store the intensities and other infor-
mation pertaining to the pixels, while one-dimensional
arrays were used to store information about the vertices
and edges of the graph modeling the problem.

Data Parallel Implementation

The data parallel implementation of the split and merge
algorithm consists of the following steps:

1. The two-dimensional pixel image is repeatedly split
into homogeneous square regions. The split stage
stops when the whole image is one homogeneous
square region, or when no more merges are possible.

2. For each square region in the pixel image, a corre-
sponding graph vertex is created, and for each pair of
neighboring square regions, an edge is created. Edges
that do not satisfy the homogeneity criterion are de-
activated.

3. A region determines its neighboring region that best
satis�es the homogeneity criterion. In the case of a
tie, one of the neighboring regions is chosen at ran-
dom. Two regions merge if their merge choices are
mutual. In one merge iteration, several region pairs
can merge at the same time without conicting with
each other.

4. When two regions merge, the region with the smaller
ID becomes the representative of the two. The ver-
tices and edges of the graph are updated to reect the
new regions in the image. Edges that do not satisfy
the homogeneity criterion are de-activated.

5. If there still exist active edges, then steps 3 and 4 are
repeated. Otherwise, the program terminates.

Message Passing Implementation

The message passing implementation of the split and
merge algorithm is a hand-coded translation of the data
parallel one and consists of the following steps:

0. The image is mapped to the node processor grid such
that each processor receives an N

P1
�

N
P2

sub-image
of the original image. This partitioning maintains
adjacency between neighboring blocks of the image.

1. Each node processor splits independently its N
P1
�

N
P2

sub-image and determines the homogeneous square
regions within it.

2. Each node processor sets up the vertices and edges of
the graph associated with its sub-image. Boundary
information is exchanged so that edges connected to
vertices in other processors are created.

3. The node processors cooperate to merge the homoge-
neous square regions.

4. The node processors cooperate to update the vertices
and edges of their graphs.

2

5. If there still exist any active edges in any of the node
processors, then steps 3 and 4 are repeated. Other-
wise, the node programs terminate.

At several points in the message passing implemen-
tation, irregular communication is required, where each
of the node processors sends zero or more messages to
other processors in an irregular fashion.

Two di�erent communication schemes were inves-
tigated. The �rst, called Linear Permutation (LP)
[7], uses synchronous (blocked) message passing. In this
scheme, each node obtains a copy of the communication
matrix, using a global concatenation operation. Then
in step i, 0 < i < Q, processor pk sends a message to
processor p(k+i) MOD Q, and receives a message from
processor p(k�i) MOD Q, where Q is the total number
of node processors. The second communication scheme
uses asynchronous message passing.

Resolving Ties at Random

In order to achieve a higher degree of parallelism, we
introduced an element of randomness in our parallel
implementations. In case of a tie during the merge
stage, the tie is broken by selecting a neighbor at ran-
dom instead of selecting the neighbor with the smallest
(largest) ID, since the latter approach imposes a seri-
alization on the order of the merges. The random ap-
proach in breaking ties was shown to be signi�cantly
faster than the approach of selecting the neighbor with
the smallest (largest) ID, since it generally results in a
larger number of merges per merge iteration.

Complexity

Given an N � N pixel image, the complexity of the
parallel split and merge algorithm depends on the num-
ber of processors (P) used and the number of iterations
required to �nd the regions in the image.

The Split Stage: In the best case, when every
pixel is a region by itself, only one split iteration is
required. In the worst case, when the whole image is
one homogeneous square region, log(N) split iterations
are required.

The time complexity of the split stage in the data

parallel implementation on the CM-2 is O(N
2

P
+ logP),

while that of the data parallel and message passing im-

plementations on the CM-5 is O(N
2

P
+(��logP)), where

� is the communication set up time for one split itera-
tion.

The Merge Stage: In the best case, a region
consisting of R sub-regions will require logR iterations
to merge. In the worst case, when only one pair of
regions is merged in each iteration, it will require R� 1
merge iterations.

Let Ri denote the number of homogeneous square
regions found in the image at the end of the split stage,
and let Rt denote the number of regions found at the
end of the merge stage. If we assume that the number
of regions is reduced by a factor of k at every step in

the merge stage, then the time complexity of the merge
stage in the data parallel implementation on the CM-

2 is O(Ri�logRi

P
+ logk

Ri

Rt

� logP). For details of the

analysis and assumptions made, refer to [3].

The time complexity of the the data parallel and
message passing implementations on the CM-5, on the
other hand, is di�cult to analyze, as the number of mes-
sages sent by the processors in each step of the merge
stage depends on the image.

Performance

The data parallel implementation (using CM Fortran)
of the split and merge algorithmwas executed on both a
16K CM-2 and a 32-node CM-5, while the message pass-
ing implementation (using F77 + CMMD) was executed
on a 32-node CM-5. A variety of images were used. The
performance of the implementations for images of sizes
128� 128 and 256� 256 is presented below. LP refers
to the Linear Permutation communication scheme and
Async refers to the asynchronous one.

Image 1: 128�128 image composed of two nested rectangular regions

No. of square regions found at end of split stage = 436
No. of regions found at end of merge stage = 2

Split Split Merge Merge
(secs) Iters (secs) Iters

CM Fortran on :

CM-2 (8K procs) 0.200 4 9.511 19
CM-2 (16K procs) 0.112 4 7.027 20
CM-5 (32 nodes) 0.361 4 33.013 19
F77 + CMMD on :

CM-5 (32 nodes, LP) 0.022 4 6.914 24
CM-5 (32 nodes, Async) 0.021 4 4.025 20

Image 2: 128� 128 image composed of a collection of rectangles

No. of square regions found at end of split stage = 193
No. of regions found at end of merge stage = 7

Split Split Merge Merge
(secs) Iters (secs) Iters

CM Fortran on :

CM-2 (8K procs) 0.200 4 8.184 18
CM-2 (16K procs) 0.112 4 5.345 17
CM-5 (32 nodes) 0.360 4 31.615 20
F77 + CMMD on :

CM-5 (32 nodes, LP) 0.022 4 9.236 35
CM-5 (32 nodes, Async) 0.021 4 6.441 35

Image 3: 128� 128 image composed of a collection of circles

No. of square regions found at end of split stage = 1732
No. of regions found at end of merge stage = 11

Split Split Merge Merge
(secs) Iters (secs) Iters

CM Fortran on :

CM-2 (8K procs) 0.200 4 13.711 24
CM-2 (16K procs) 0.112 4 9.538 25
CM-5 (32 nodes) 0.361 4 42.570 27
F77 + CMMD on :

CM-5 (32 nodes, LP) 0.022 4 9.454 33
CM-5 (32 nodes, Async) 0.021 4 5.516 28

Image 4: 256�256 image composed of two nested rectangular regions

No. of square regions found at end of split stage = 823
No. of regions found at end of merge stage = 2

Split Split Merge Merge
(secs) Iters (secs) Iters

CM Fortran on :

CM-2 (8K procs) 1.008 5 13.882 26
CM-2 (16K procs) 0.529 5 10.381 28
CM-5 (32 nodes) 2.052 5 37.588 25
F77 + CMMD on :

CM-5 (32 nodes, LP) 0.097 5 16.512 37
CM-5 (32 nodes, Async) 0.097 5 10.942 29

3

Image 5: 256� 256 image composed of a collection of rectangles

No. of square regions found at end of split stage = 298
No. of regions found at end of merge stage = 7

Split Split Merge Merge
(secs) Iters (secs) Iters

CM Fortran on :

CM-2 (8K procs) 1.008 5 9.287 19
CM-2 (16K procs) 0.529 5 6.633 20
CM-5 (32 nodes) 2.046 5 24.471 16
F77 + CMMD on :

CM-5 (32 nodes, LP) 0.099 5 14.388 35
CM-5 (32 nodes, Async) 0.098 5 6.640 35

Image 6: 256� 256 image of a \tool"

No. of square regions found at end of split stage = 2248
No. of regions found at end of merge stage = 4

Split Split Merge Merge
(secs) Iters (secs) Iters

CM Fortran on :

CM-2 (8K procs) 1.008 5 19.530 34
CM-2 (16K procs) 0.529 5 13.426 33
CM-5 (32 nodes) 2.066 5 75.582 45
F77 + CMMD on :

CM-5 (32 nodes, LP) 0.098 5 12.192 36
CM-5 (32 nodes, Async) 0.098 5 7.236 38

The bar chart of Figure 3 gives a visual comparison
of the times taken by the merge stage in the various
implementations.

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
im

e
(s

ec
)

T
ak

en
 b

y
M

er
ge

 S
ta

ge

CM Fortran on CM-2 (8K Procs)
CM Fortran on CM-2 (16K Procs)
CM Fortran on CM-5 (32 nodes)
F77 + CMMD on CM-5 (32 nodes, LP)
F77 + CMMD on CM-5 (32 nodes, Async)

Figure 3: Comparison of Times Taken by the Merge
Stage (Images 1-6)

Observations

In examining the performance of the di�erent parallel
implementations of the split and merge algorithm, we
make the following observations:

� The number of merge iterations required to �nd the
regions in an image are not identical in all cases. The
random numbers generated, as well as the order in
which messages are received a�ect the actual merges
that take place and hence the number of merge iter-
ations required to solve the problem.

� Asynchronous communication on the CM-5 is faster
than Linear Permutation, since in Linear Permuta-
tion the nodes must loop a larger number of times to
complete the required communications.

� The CM Fortran version on the CM-2 runs faster than
that on the CM-5. The SIMD hardware of the CM-2
directly supports the data parallel model, while com-
pilers, assemblers, and other system software of the
CM-5 have to deal with the many \housekeeping" de-
tails such as load balance and synchronization.

� The message passing implementation runs signi�-
cantly faster than the data parallel one on the CM-
5. The data parallel implementation relies on the
CM Fortran compiler as well as the run-time system
to lay out the data and to provide communication
among the nodes, while, in the message passing im-
plementation, the programmer exercises control over
synchronization, data partitioning, and load balanc-
ing.

� CM Fortran allows only limited ways of distributing
data on di�erent processors. With the availability of
new data distribution directives in High Performance
Fortran, the performance of the data parallel imple-
mentation is expected to be closer to the message
passing one.

Acknowledgements: We would like to thank Paul Cod-

dington, Pablo Tamayo, and Jhy-Chun Wang for interesting
and helpful discussions, and Gregor von Laszewski for help

in preparing the manuscript.

References

[1] H. Alnuweiri and V. Prasanna, \Parallel Architec-
tures and Algorithms for Image Component Label-
ing", IEEE Trans. Patt. Anal. Machine Intell., Vol.
14, 1992, pp. 1014-1034.

[2] D. Ballard and C. Brown, Computer Vision, Pren-
tice Hall, Englewood Cli�s, New Jersey, 1982.

[3] N. Copty, S. Ranka, G. Fox, and R. Shankar, \Solv-
ing the Region Growing Problem on the Connec-
tion Machine", Technical Report, January 1993,
Northeast Parallel Architectures Center, Syracuse
University.

[4] G. Fox et al, \Software support for irregular and
loosely synchronous problems", Technical Report,
May 1992, Northeast Parallel Architectures Cen-
ter, Syracuse University.

[5] S. L. Horowitz and T. Pavlidis, \Picture Segmen-
tation By a Directed Split-and-Merge Procedure",
Proc. 2nd International Joint Conference on Pat-
tern Recognition, pp. 424-433, August 1974.

[6] S. Ranka and S. Sahni, Hypercube Algorithms.
Springer-Verlag, New York, 1990.

[7] S. Ranka, J. Wang, and G. Fox, \Static and run-
time algorithms for all-to-many personalized com-
munication on permutation networks", Proc. In-
ternational Conference on Parallel and Distributed
Systems, December 1992.

[8] J. C. Tilton, \Image segmentation by iterative par-
allel region growing with applications to data com-
pression and image analysis", Proc. 2nd Sympo-

sium on the Frontiers of Massively Parallel Com-

putation, 1988.

4

[9] M. Willebeek-LeMair and A. Reeves, "Solving non-
uniform problems on SIMD computers: Case study
on region growing", Journal of Parallel and Dis-

tributed Computing, Vol. 8, 1990, pp. 135-149.

[10] Zucker, \Region growing: Childhood and adoles-
cence", Computer Graphics and Image Processing,
Vol. 5, 1976, pp. 382-399.

5

