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We present the results of a set of Monte Carlo simulations of Dynamically Triangulated Random Surfaces

embedded in three dimensions with an extrinsic curvature dependent action. We analyze several observables

in the crossover regime and discuss whether or not our observations are indicative of the presence of a phase

transition.

1. Introduction

In this work, we investigate a theory of uid,

uctuating random surfaces embedded in three

dimensions. Theories of uctuating surfaces

(string theories) have been conjectured to de-

scribe a wide variety of physical phenomena and

models, including the strong interaction at large

distances, the 3d Ising model, and uni�ed the-

ories incorporating gravity. Lipid bilayers and

microemulsions are also examples of uctuating

surfaces [?]. Such biological and chemical mem-

branes exhibit self-avoidance, which we do not

take into account in our simulations. Models of

uctuating random surfaces can in fact be solved

exactly when the surfaces are embedded in dimen-

sions D � 1; these solutions break down though

when continued to the more physical regime D >

1. This may be related to the observation that

simulations of uctuating surfaces in D > 1 using

a discretization of the standard Polyakov string

action are dominated by crumpled, spiky con�g-

urations.

Our lattice model is constructed by triangulat-

ing each surface. Each node of the triangulation is

embedded in R3 by the functions X
�

i
; i labels the

ith node and � runs from 1 to 3. The triangula-

tion is characterized by the adjacency matrix Cij,

whose elements equal 1 if i and j label neighbor-

ing nodes of the triangulation and vanish other-

wise. The triangles are assumed to be equilateral

(as measured by the intrinsic metric of each sur-

�
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face); the connectivity at each node determines

the intrinsic curvature. We also associate a nor-

mal vector (n�)
k̂
with each triangle (indices with

hats label the triangles). We shall study the the-

ory de�ned by the action [?, ?, ?, ?, ?, ?, ?]
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For � = 0 this is simply a discretization of the

Polyakov string action. The �nal term, which de-

pends on the discretized extrinsic curvature, in-

troduces a ferromagnetic interaction between sur-

face normals, which one might hope would cause

smoother surfaces to dominate the partition func-

tion. We would like to know if there is a smooth

phase and a phase transition (at some �nite �c)

between this phase and the crumpled phase ob-

served at � = 0. If this were so, an interest-

ing continuum limit of this lattice model could

perhaps be constructed at this phase transition

point, yielding a new continuum string theory.

2. The Simulation

We have considered triangulations with the

topology of the torus, to minimize �nite size ef-

fects. The above action was used, with the BRST

invariant measure utilized also by Baillie, John-

ston and Williams [?], so that

Z =
X

G2T (1)
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where D = 3, qi is the connectivity of the ith

vertex and T (1) refers to the set of triangulations

of genus 1. We used the standard Metropolis al-

gorithm to update our con�gurations. To sweep

through the space of triangulations we performed

ips on randomly chosen links. Flips were au-

tomatically rejected if they yielded a degenerate

triangulation. After a set of 3M ips was per-

formed, 3M randomly selected embedding coor-

dinates were updated via random shifts from a

at distribution. Most of the Monte Carlo simu-

lations were performed on HP-9000 (720 and 750

series) workstations; we also collected some data

by simulating lattices on each of the 32 nodes of

a CM-5.

We ran on lattices ranging in size from N = 36

to 576 (N signi�es the number of vertices) with

4 to 7 di�erent values of � for each N . Most of

the data was this data was taken in the region

� 2 (1:325; 1:475). For small N , the runs con-

sisted of 3�106 sweeps, while we performed longer

runs (of up to 27 � 106 sweeps for N = 576) for

larger lattices, because the auto-correlation times

for our simulations were very large. (The corre-

lation time for the radius of gyration was greater

than 106 sweeps for N = 576!) To determine our

observables as a function of � we used a histogram

reconstruction procedure. We patched di�erent

histograms by weighting them with the associ-

ated statistical indetermination (which was esti-

mated by a jack-knife binned procedure). Various

consistency checks indicate that this procedure is

very reliable.

3. Observables

We measured the edge action SE and the as-

sociated speci�c heat C(�) � �
2

N
(< S2

E
> � <

SE >2). In Fig. 1 we plot the speci�c heat curve

(constructed via the histogramprocedure) and we

tabulate its maximum and peak position for var-

ious lattice sizes in Table 1.

We see that the speci�c heat peak grows vig-

orously with N for small lattices, but that this

growth quickly levels o� for larger N . These ob-

servations agree fairly well with previous work

[?, ?, ?]. For the larger lattices it appears that the

peak position shifts very slowly towards higher

Figure 1. C(�). Dotted lines: N=144. Dashed

lines: N=288. Solid lines: N=576.

N C(�)max �c
36 3.484(8) 1.425(35)

72 4.571(15) 1.410(15)

144 5.37(14) 1.395(30)

288 5.55(7) 1.410(25)

576 5.81(17) 1.425(30)

Table 1

The maximum of the speci�c heat and its posi-

tion, with errors, for di�erent lattice sizes.

values of �, though this increase is not statisti-

cally signi�cant. The shape of the peak does not

change dramatically with N ; it narrows perhaps

a bit between N = 144 and N = 576.

We measured the magnitude of the extrinsic

Gaussian curvature,
R
j K j

p
j h j (h is the in-

duced metric and K is the determinant of the

extrinsic curvature matrix), given by

j K j=
1

N

X
i

j 2� �
X
ĵ

�
ĵ

i
j : (3)

Here �
ĵ

i
denotes the angle subtended by the ĵth

triangle at the ith vertex. This quantity, plotted

in Fig. 2, measures the magnitude of the de�cit

angle in the embedding space averaged over all

vertices. Note that the mean Gaussian curvature

decreases rapidly in the neighborhood of � = 1:4,

indicating that a sharp crossover is occuring in

this system. From this plot we can see that �nite
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Figure 2. j K j, plotted as in Figure 1.

size e�ects increase with �; they do not appear

to peak in the region about � = 1:4 as one might

expect for a typical phase transition. We also

measured various other observables which char-

acterize both the intrinsic and extrinsic geometry

of these surfaces (and the correlation between in-

trinsic and extrinsic geometry). These measure-

ments are discussed in a longer write-up of this

work [?]. They all exhibit sharp crossover be-

havior in the region near � = 1:4. We found

that the auto-correlation times of these observ-

ables grew rapidly as � increased, but we did not

note any maximum in these times in the region

about � = 1:4.

4. Interpretation

This model of crumpled surfaces appears to

exhibit sharp crossover behavior in the region

around � = 1:4. The sharp change in the mag-

nitude of the Gaussian curvature, the radius of

gyration and other observables indicates that the

normals acquire long-range correlations, up to the

size of the systems we examine. The zero string

tension measurement of [?] also shows that the

disordered regime di�ers from the regime in which

the surfaces are ordered (up to scale of the lat-

tices that are simulated) by only a small shift

in �. This evidence might indicate the pres-

ence of a phase transition at this point. Since

the peak growth rapidly diminishes for large N ,

such a phase transition would likely be higher

than second order. Still, the apparent absence of

diverging correlation times and increasing �nite

size e�ects in the peak region leads us to ques-

tion whether we are actually observing a typical

phase transition.

There are indeed other possible interpretations

of our data. Note that the surfaces which we sim-

ulate are quite small. For instance, if the surfaces

in our simulations had an intrinsic dimension of

2:87 (characteristic ofD = 0 gravity), they would

have roughly a linear size of fewer than 10 lattice

spacings.

Perhaps the simplest alternative explanation

for the presence of this peak is suggested by the

arguments of Kroll and Gompper [?]. They argue

that the peak occurs when the persistence length

of the system approaches the size of the lattice

(�p � N
1

d ); d denotes the intrinsic Hausdor� di-

mension. Fluctuations on a larger scale become

more important. When this scale is greater than

the lattice size these uctuations are suppressed.

Thus one might surmise that the speci�c heat will

drop for large �. The one-loop renormalization

group calculation [?] predicts that the persistence

length grows as �p � exp(C�); C is inversely pro-

portional to the leading coe�cient of the beta

function. We would expect that the peak posi-

tion should shift to the right with increasing N

in this scenario as

�peak(N
0)� �peak(N ) =

ln(N
0

N
)

dC
: (4)

This reasoning also indicates that the peak should

widen as the lattice size increases; we do not ob-

serve this at all.

An alternative scenario, which builds on the

ideas in the above paragraph, is suggested by the

tantalizing similarities between the results of our

uid surface simulations and what has been ob-

served for the d = 4 SU (2) Lattice Gauge Theory

[?] and for the d = 2 O(3) model.

The O(3) model, which is thought to be asymp-

totically free, exhibits a speci�c heat peak near

� = 1:4 (�rst measured via Monte Carlo sim-

ulations by Colot [?]). The origin of this peak

is understood [?]; it is due to the uctuations

of the sigma particle, a low-mass bound state

of the massless O(3) pions. The sigma induces

3



short-range order and contributes to the speci�c

heat as a degree of freedom only at high temper-

atures (when the correlation length in the sys-

tem becomes smaller than its inverse mass). The

peak thus occurs at the beginning of the crossover

regime, when the correlation length is several lat-

tice spacings.

According to the low temperature expansion,

the correlation length grows as � � exp(2��)=�.

Thus one would expect a fairly rapid crossover in

the O(3) model; the correlation length should in-

crease by roughly a factor of 9 when � is shifted

by about 0:35. Such a crossover is indeed ob-

served, though it is not so apparent that it is as

dramatic as the crossover behaviour observed for

uid surfaces.

Recent simulations of the O(3) model [?] in-

dicate that the speci�c heat peak grows signi�-

cantly when the lattice size L is increased from 5

to 15, and that virtually no growth in peak height

is evident as L is increased further up to 100. Fur-

thermore, the peak position shifts to the right as

L grows and then appears to stabilize for large

L. This is more or less what we observe in our

simulations of uid surfaces, on lattices of small

size. We point out these similarities largely to

emphasize that there does exist an asymptotically

free theory (with low mass excitations) which ex-

hibits crossover behavior qualitatively similar to

that observed in our simulations. The analogy

is perhaps deeper, though, since the uid surface

action (with extrinsic curvature) in certain guises

looks like a sigma model action. It would not

therefore be so surprising from this point of view

to �nd a sigma particle in these theories, perhaps

associated with (n̂2 � 1), in which n̂ denotes the

unit normal to our surfaces.
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