
An Interactive Visualization Environment for

Financial Modeling on Heterogeneous Computing Systems�

Gang Chengyz Kim Millsz Geo�rey Foxyz

Abstract

Financial modeling represents a promising industry application of high performance

computing. In previous work, parallel stock option pricing models were developed for

the Connection Machine-2 and DECmpp-12000. These parallel model run approxi-

mately two orders of magnitude faster than sequential models on high-speed worksta-

tions. To further develop this application, a portable, workstation based, interactive

visualization environment was developed for a heterogeneous computing environment.

Application Visualization System (AVS) was used to integrate massively parallel pro-

cessing, workstation based visualization, an interactive system control, and distributed

I/O modules. A preliminary performance analysis of this distributed model is discussed.

1 Introduction

Advances in parallel computing systems and network technology provide new opportunities

for implementing computationally intensive applications. Applications that integrate

modeling and simulation with large scale information processing often require an interactive

graphical user interface (GUI) in a real-time computing environment. Most GUIs are

event-driven, and serial in nature, making them unsuitable for parallel systems. On the

other hand, visualization tools for parallel systems often require special hardware support,

or are developed for a speci�c hardware/software system and are not portable. Parallel

computing environments of the future will likely be based on networked computing resources

varying in size and architecture. Large applications will be decomposed into subproblems,

and distributed to appropriate nodes within the network. To use these systems, we need

portable, interactive, visualization tools in a parallel computing environment.

In this study, we purposefully use a diversity of network resources to demonstrate the

integration power of Application Visualization System (AVS) software. We couple multiple

computational modules with network based visualization, interactive system control, and

distributed I/O. Our heterogeneous computing system combines network connected single

instruction multiple data (SIMD) and multiple instruction multiple data (MIMD) parallel

architectures with high performance workstations. For a stock option pricing application,

we describe system integration issues and outline a performance model for combining visual

and scienti�c computing in a heterogeneous computing environment.

�This study was supported in part by the O�ce of the Vice President for Research and Computing at

Syracuse University, and Corporate Partnership funding from Digital Equipment Corporation.
ySchool of Computer and Information Science, Syracuse University, Syracuse, NY 13244
zNortheast Parallel Architectures Center, Syracuse University, Syracuse, NY 13244

1



2 Gang Cheng et al.

2 Stock Option Pricing Models

Stock option pricing models are used to calculate a price for an option contract based on

a set of market variables, (e.g. exercise price, risk-free rate, time to maturity) and a set

of model parameters. Model price estimates are highly sensitive to parameter values for

volatility of stock price, variance of the volatility, and correlation between volatility and

stock price. These model parameters are not directly observable, and must be estimated

from market data.

We use a set of four option pricing models in this study. Simple models treat stock

price volatility as a constant, and price only European (option exercised only at maturity

of contract) options. More sophisticated models incorporate stochastic volatility processes,

and price American contracts (option exercised at any time in life of contract)[1][2]. These

models are computationally intensive and have signi�cant communication requirements.

The four pricing models are: BS { the Black-Scholes constant volatility, European model;

AMC { the American binomial, constant volatility model; EUS { the European binomial,

stochastic volatility model; and AMS { the American binomial, stochastic volatility model.

In previous studies, we developed serial and data parallel versions of these models,

compared model prices with historical market prices, and evaluated model performance

and parallel software issues [3][4]. Stochastic volatility models tend to price options more

accurately than simpler models. Parallel models on the Connection Machine 2 (CM-2),

Connection Machine 5 (CM-5), and DECmpp-12000 ran 100 times faster than sequential

models on high speed workstations. Using optimization techniques for model parameter

estimation holds great promise for improving model accuracy.

Analytic models are useful tools in the �nancial market, but require expert interpre-

tation. To further evaluate and optimize pricing models to run in a parallel computing

environment, we combine high performance computing modules for real-time pricing with

real-time visualization of model results and market conditions, and a graphical user interface

allowing expert interaction with pricing models. We envision a market expert using such a

system to start and stop a set of models, adjust model parameters, and call optimization

routines according to dynamically changing market conditions.

3 System Con�guration

Our heterogeneous computing system for stock option pricing consists of four compute

nodes, a home machine, and two �le server machines. All workstations, including the front-

ends of the DECmpp-12000 and CM-5, are connected by a 10MBit/second Ethernet based

LAN.

The home machine is a IBM RS/6000 workstation with a 24-bit color GTO Graphics

Adapter. The AVS kernel and system modules run on this machine which displays the

graphical user interface, renders graphical output, and monitors user run time interaction.

The user logs into this machine, sets up and interacts with the system through keyboard,

mouse, and other I/O devices.

The four option pricing models run on remote compute nodes: BS model on a DEC5000,

AMC model on a SUN4, EUS model on a CM-5 and AMS on a DECmpp-12000(SX). Each

remote compute node has its own I/O capability. Our DECmpp-12000 is a massively

parallel SIMD system with 8192 processors. Each RISC-like processor has a control

processor, forty 32-bit registers, and 16 KBytes of RAM. All the processor elements are

arranged in a rectangular two-dimensional grid and are tightly coupled with a DEC5000

front-end workstation. The theoretical peak performance is 650 M
ops DP. Our CM-5 is





4 Gang Cheng et al.

a parallel MIMD machine with 32 processing nodes. Each processing node consists of a

SPARC processor for control, four proprietary vector units for numerical computation, and

32 MBytes of RAM. The control node of the CM-5 is a SUN4 workstation. The theoretical

peak performance is 4 G
ops. Sequential compute nodes include a DEC5000 and a SUN4.

The DEC5000 performs at 6.8 M
ops, and has 16 Mbytes memory. The SUN4 runs at 4.3

M
ops and has 32 Mbytes memory.

The user interface runs on a remote SUN4. This machine combines user runtime input

(model parameters, network con�guration) with historical market databases stored on disk,

and broadcasts this data to remote compute nodes. System synchronization occurs with

each broadcast.

A second IBM RS/6000 is used as a �le server for non-graphical output of model data.

In this application, model prices calculated at remote compute nodes and corresponding

market data are written to databases for later analysis.

In summary, the heterogeneous computing system illustrated in Figure 1 provides

distributed computing, memory, and input/output for the stock option pricing application.

4 System Integration

Our heterogeneous computing system integrates diverse functions{computation, visualiza-

tion, and system control over a diverse set of hardware. We use a mix of programming

languages on the remote compute nodes{Fortran77 on the DEC5000, C on the SUN4, CM-

Fortran on the CM-5, and MPL (data parallel C) on the DECmpp-12000. AVS integrates

visualization, networking functionality, and computation. At the operating system level,

all remote modules are compiled and linked as stand-alone programs. Input and output

ports are de�ned in modules by the programmer using speci�c library routines provided by

AVS. Each module represents a process. Inputs and outputs between remote modules are

implemented via socket connections.

There are two source of input data: historical market data read from disk �les, and

runtime input of model parameters by the user through a GUI. Output from all four models

is rendered in a graphics window, displayed numerically in a shell window, and written to a

database by the �le server. Figure 2a illustrates control 
ows on the home machine. There

are two types of events, GUI events (e.g. changing network con�gurations, window displays)

and modeling events (e.g. changing model parameters, controlling model execution). Figure

2b illustrates how market data and model parameters are combined before broadcast to

the compute nodes. System synchronization occurs at this step.

Figure 3 illustrates the GUI for managing user runtime input and output, and the system

con�guration. Runtime input includes user de�ned model parameters and system execution

styles. Outputs include 2-dimensional displays of model and market prices calculated by

the compute nodes. The system con�guration includes choice of pricing models, network

con�gurations and interface layouts.

Pricing models are extremely sensitive to model parameters for implied volatility(�),

variance of stock volatility(�) and correlation between stock price and its volatility(�).

These parameters may be read from data �les (historical estimates), calculated just prior

to running the pricing model (by optimization), or de�ned at run time (expert user). Dial

widgets are used to set initial values of � for each model. Slider widgets are used to set �,

and �. One-shot widgets are used to run the system in single-step execution mode and call

optimization functions on remote compute nodes.

Graphical output is rendered in AVS Graph Viewers. Using the network editor running



Fig. 3. The Graphical User Interface on the Home Machine

on the AVS kernel, we can con�gure a network at runtime by graphically connecting and

disconnecting the data 
ows between remote compute nodes and the Graph Viewer.



6 Gang Cheng et al.

5 Preliminary Analysis of Performance Requirements

A generalized performance model of our networked system is shown in Figure 4. In one

complete modeling cycle, starting with broadcast of new data from MI , and ending with

renderings on Mh, let tcalc be the summed calculation time on all machines and t
comm

be

the summed communication time in the system. Let Td; Ts be the total time to complete

such a cycle in the distributed system and in a single-machine system, respectively. Other

symbols are de�ned as follows: ck { communication time of required message passing from

MI to Mk; dk { communication time of required message passing from Mk to Mh; mk

{ calculation time of performing required computation on Mk; rk { calculation time of

performing required rendering by Pk on Mk; t
0
calc

{ the total calculation time on a single-

machine system; m0
k
{ calculation time of performing required computation on a single

machine system.

In a single-machine system, MI = Mh = M1 = M2 = � � � = Mn; tcomm = 0 and

Ts = t
0
calc

=
nX

k=1

(m0
k + rk). In the distributed system based on TCP/IP protocol, we

observe: sequential message passing from MI to Mk , although the sending order can be

scheduled; execution of computing process on Mk upon receiving new message from MI ;

and sequential rendering of process Pk on a single-processor machine Mh, where each Pk is

activated only after receiving a new message from Mk , and no other Pj(j 6= k) is running

on Mh.

Calculation and communication among di�erent machines in the system are pipelined.

We can overlap the following processes: (1) ck with mj ; dj, and rj ; (2) mk with dj

and rj ; and (3) dk with rj . Figure 5 illustrates this overlap of processes in system

of (n = 2) machines. For each machine Mk , the total time to complete a cycle is

Td = ck + mk + dk + rk + ik , where ik is the idle time of Mk in the cycle, excluding

the waiting time rk for the rendering on Mh. Thus, nTd = tcomm + tcalc + tidle, where

tcomm =
nX

k=1

(ck + dk), tcalc =
nX

k=1

(mk + rk), and tidle =
nX

k=1

ik.

The speed-up S of a distributed system over a single-machine system is:

S =
Ts

Td

=
n

t
calc

t0
calc

+ tcomm

t0
calc

+ t
idle

t0
calc

;

Speedup depends on four components: (1) n, the number of distributed computing

modules; (2) t
calc

=t
0
calc

, the ratio of total calculation time on the distributed system

to calculation time on a single-machine system; (3) tcomm=t
0
calc, the ratio of total

communication time in the distributed system to calculation time on a single-machine

system; and (4) tidle=t
0
calc

, the ratio of total idle time in the distributed system to calculation

time on a single-machine system. As Figure 5 illustrates, for a given application on a given

system (�xed ck, dk,mk,rk) tidle depends on the order of messages sent from MI to Mk ,

making this a scheduling problem. In the best case, tidle =
n�1X

k=1

ck(n � k) +
nX

k=1

akrk; where

fa1; a2; : : : ; ang is a permutation of the set f0; 1; : : : ; n� 1g.

Timings observed for the system con�guration illustrated in Figure 1 are listed in

Table 1. According to our analysis, expected Td = c1 + m1 + d1 + r1 + r2 + r3 + r4 =

0:017 + 0:015 + 0:1 + 4�0:9 = 3:642 seconds (assuming the scheduled order is c
1
; c

2
; c

3
,

and c4). This value will vary because the system runs under a resource-and-time-sharing

environment.





8 Gang Cheng et al.

To compare the performance of distributed and single-machine systems, we used a SUN4

single-machine system. Summarizing timings listed in Table 1, Ts = 0:015 + 0:085 + 4:05 +

4:25 + 4�0:9 = 12:0, and we calculate an expected speed-up of S = 12:0=3:642 = 3:3.

6 Discussion and Conclusion

The availability of high speed networks, combined with advances in computational power,

will support a new set of applications designed for high performance distributed computing.

In the �nance industry, computational power alone is not su�cient. We see a need

for interactive computing environments based on high performance computing, which

take advantage of the intuition and experience of market experts. We focus here on

the functionality required to develop �nance industry applications on heterogeneous,

distributed systems. These functions include real-time modeling, visualization, and user

control, all in the context of dynamically changing market conditions.

Further work is needed in the areas of software for system integration, models for per-

formance prediction, and network technology for connecting heterogeneous computing sys-

tems. A high-end graphics workstation with hardware supported rendering capability is an

essential system component. We used a 10 Mbit/second Ethernet network connection, but

only 1-2 Mbit/second of its capacity is available to support the application. Improvements

in the host/system interface are clearly needed. We outlined the elements of a performance

model, and in the future will take advantage of on-going research [5] in performance pre-

diction tools. These tools will help us to analyze application and system input parameters,

and predict performance for the application on a speci�ed hardware system.

In conclusion, we demonstrated the ability of commercially available AVS software

to integrate a diversity of network resources. Heterogeneous computing environment

supports an attractive software environment for �nancial modeling applications. This highly

portable software environment runs on massively parallel computers, was implemented with

relatively small programming e�ort, and allows rapid prototyping. Larger, more complex

application problems will require networks of machines that integrate functions such as

scienti�c computing, visualization, database services, real-time decision-making, and large

memory distributed over a network.

Acknowledgement: We would like to thank Marek Podgorny and Tomasz Haupt for

useful discussions about AVS, and Peter Crockett for systems support.

References

[1] F. Black, and M. Scholes. \The Pricing of Options and Corporate Liabilities," Journal of

Political Economy, 81, 1973, 637-59. 1973.

[2] T. Finucane, \Binomial Approximations of American Call Option Prices with Stochastic

Volatilities," to be published in Journal of Finance. 1992.

[3] K. Mills, M. Vinson, and G. Cheng, \A Large Scale Comparison of Option Pricing Models

with Historical Market Data," in The 4th Symposium on the Frontiers of Massively Parallel

Computation, Oct. 19-21, 1992, McLean, Virginia.

[4] K. Mills, G. Cheng, M. Vinson, S. Ranka, and G. Fox. \Software Issues and Performance of a

Parallel Model for Stock Option Pricing," in The Fifth Australian Supercomputing Conference,

Dec. 6-7, 1992, Melbourne, Australia.

[5] S. McDermott, W. Johnston, B. Ware, M. S. Lynn, and J. A. Graniero. \NYNET: A

High Performance Distributed Computing Corridor," NYNEX/New York Telephone/Syracuse

University/Cornell University/ Rome Labs. December, 1992. SCCS draft technical report.


