
1.  Introduction

In recent years, two important events have occurred in the area of high-performance computing: the development

of very high speed processors, and the development of massively parallel computers based on these processors. The

processing capacities of these parallel computers have made them the computational instrument of choice in the sci-

entific community and they can be found in one form or another in almost every major academic and research institu-

tion. Some of the commercially available parallel computers include Intel Paragon [INTE92], nCUBE [NCUB92],

CM-5 [THIN91], and Kendall Square [KSR92]. It is anticipated that within the next few years, parallel computers

will be capable of computational rates in the Teraflops range [HPCC91].
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1.1  The I/O Bottleneck

Compared with the attention accorded to processors, interconnection networks and memories of these parallel

systems, very little attention has been paid to the scalability and performance of the I/O system. However, as scien-

tists expand their models to describe physical phenomena of increasingly large extent, the memory capacity of paral-

lel machines, although immense, become insufficient to contain all the required computational data, and I/O becomes

crucial. Thus, a system with limited I/O capacity can severely constrain the performance of the entire program - this

is known as the I/O bottleneck problem. This problem has become critical enough that most parallel computers such

as the Intel iPSC/2 [FREN93], Intel iPSC/860 [PIER89], Intel Touchstone Delta [INTE92], and the nCUBE

[DEBE91] now provide some measure of support for parallel I/O.

The goal of parallel I/O is to provide a bottle-neck free communication pathway between the processors and I/O

devices. This is made possible in hardware by the scalability of the hardware architecture design. For example, as

shown in figure 1, the I/O connections between the processor array and the I/O devices, which are a scalable collec-

tion of multiple physical paths of fixed bandwidth, are viewed as a single channel of higher bandwidth. In software, a

parallel file system must exploit the scalability of the hardware and provide increased performance by declustering

data across the disk array (a technique called striping) thereby distributing the access workload over multiple servers.

In scientific programs, users commonly exploit parallelism by using data decomposition to specify a partitioning

of the data across the set of processors. This establishes a mapping between the logical file data and each processor in

the processor array. The data access pattern for parallel I/O, and its complexity, is defined by the level of correspon-

dence between the data distribution and data declustering over the disks. The extent to which the I/O bottleneck exists

for a given program is greatly determined by the complexity of this data access pattern.†

1.2  Contribution of the Paper

In this paper we limit ourselves to the Intel Touchstone Delta file system, called Concurrent File System (CFS),

†. Parallel file systems vary in their level of support for data distribution mappings; some provide no support whatsoever. In
these cases, a programmer must be aware of the file mapping to the disk array and must explicitly remap the data from the data dis-
tribution to the disk declustering mapping. That is, the programmer must manage the access pattern of each processor through an
indexing of the file pointer.

Figure 1: Scalability in computation and I/O
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and the nCUBE-2 parallel file system. We show that file system performance can vary greatly as a function of the

selected data distribution. Further, that parallel I/O for certain common data decomposition patterns can not be sup-

ported by CFS (i.e., access for these is sequentialized).

Based upon these observations, we have devised an alternative scheme for conducting parallel I/O - the two-phase

access strategy - which guarantees more consistent performance over a wider spectrum of data distributions. The

basic idea behind the two-phase access strategy is to first perform the I/O with a processor mapping which conforms

with the file mapping over the disks. In a subsequent phase, the data is redistributed to match the user selected data

distribution mapping. This strategy effectively decouples the user selected data distribution mapping from the file

mapping to the disks (i.e., the declustering mapping). The effects of this are that the actual data access phase always

gives good performance independent of the user selected mapping, and that the higher degree of connectivity avail-

able in the processor array is exploited more effectively for the distribution of data.

1.3  Outline

We first discuss a parallel programming model for a typical parallel computer, the parallel I/O mapping problem,

and the system performance associated with a parallel I/O system; this is presented in section 2. In section 3, we con-

sider several data decomposition strategies and evaluate the performance of the I/O system based upon direct access

(i.e., the access strategy used by a typical parallel program on the basis of programmer specified data distribution).

The performance is obtained for the Intel Touchstone Delta [INTE92] and the nCUBE-2 systems [NCUB92], and we

observe a great disparity in performance as a function of data decomposition. In section 4, we propose a parallel I/O

strategy that tremendously improves the overall performance for a large number of data distributions. Again, using

experiments on the Intel Touchstone Delta and nCUBE-2, we illustrate the obtained improvements in performance.

Finally, conclusions and future work are presented in section 5.

2.  Programming and System Performance Model

In this section, we briefly discuss our program, system, and performance models for parallel I/O. We describe the

problems that arise from the formulation of a data access strategy based upon the mappings for data distribution and

data declustering over the disk array - the mapping problem.

2.1 Programming Model

For this paper, we focus on parallel I/O for parallel programs using the Single Program Multiple Data (SPMD)

programming paradigm for MIMD machines. The SPMD programming model is the most widely used model for

large-scale scientific and engineering applications. In such applications, parallelism is exploited by decomposing the

input data. To perform load-balancing, express locality of access, reduce communications, and other optimizations,

several decompositions and data alignment strategies are often used (e.g., block, cyclic, along rows, columns, etc.).

In order to enable a user to specify such decompositions, Fortran D [FOX90], and subsequently High-Perfor-

mance Fortran (HPF) [HPFF92], have been proposed. The important feature of these extensions is the set of direc-

tives that allow a user to decompose, distribute and align arrays in the most appropriate fashion for the underlying

computation. It is important to note that the directives for specifying domain decomposition may be used with any

other language (e.g., C, C++, Ada, etc.). Figure 2 provides a simple illustration of some data distributions (for four

processors) that can be easily specified in Fortran D or HPF.



2.2 The Mapping Problem

Language extensions provide us with a means of representing data distribution information in a way that closely

matches the underlying computation thereby simplifying the programming. However, provisions for language sup-

port which will allow similar specifications to be made with I/O expressions - mapping a distributed file to the com-

putational array - have not been sufficiently addressed. As a result, it is difficult and sometimes impossible to perform

such a parallel I/O mapping in a manner that results in optimal performance.

In order to perform such a mapping from distributed file to processor array, we note that two mappings have to be

considered. Most parallel I/O subsystems today provide some sort of data declustering over sets of disks [INTE92,

NCUB92, THIN91]. The distribution organization of the file data over the set of disks represents the first mapping,

M1. For any system, this mapping is determined by the system configuration setup. The second mapping, M2,

involves the (more familiar) mapping of data over the set of processing elements. For parallel I/O to take place effi-

ciently, both these mappings must be resolved into a data transfer strategy. Current parallel file systems on the

nCUBE-2 [DELR92] and the Intel Touchstone Delta resolve these mappings into a single data transfer mapping

which is used to compute proper source and destination addresses during file data access - we call this direct access.

Problems arise from this approach in cases where the first and second mappings resolve into a data transfer mapping

(representing an access strategy) that performs poorly. In succeeding sections, we will show that such problematic

mapping pairs are quite common.

As a simple example, consider a weather modeling program which reads satellite information from a file that is

distributed on a set of disks. Assume that the satellite information is stored as position associated data on a rectangu-

lar grid region covering the geographical area of interest. Further, assume that the data is distributed across the disk

array according to grid column. Thus the M1 mapping is a column mapping from logical data grid positions to the

physical disks. Suppose that the weather modeling program requires that the data be read in according to rows of the

grid region. This represents the M2 mapping, which is a row mapping from the data to the computational array. On

existing I/O systems, these mappings will be resolved into an access strategy which requires that each computational

element read numerous small sections of data from the disks in order to construct its allocated row in local memory.

Figure 2: Fortran D/HPF data distribution examples
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The enormous costs associated with such a direct access strategy mapping is discussed in the next section and is illus-

trated in figure 4. Later, we show that this type of access strategy gives very poor performance.

To illustrate a mapping that can not be supported by existing systems, consider a program that has to read data

into a distributed array in a Block-Block decomposition (see Figure 2). Suppose that the data is stored over the dis-

tributed disks in column-major order. The current Intel CFS (Concurrent File System) could not support this require-

ment because it does not allow any processor to read data while others idle, this is illustrated in figure 3. The

exception to this is mode 0 (independent file pointers to a shared file); this mode would require the programmer to

manage file pointer adjustment throughout the application making it tedious to program.

2.3 Overall System Performance

The performance measure of a particular configuration for parallel I/O must be based upon an evaluation of its

potential for data movement. This data transfer rate is dependent upon the communication bandwidth of each pro-

cessing element and I/O device, and on the aggregate start-up latency for the complete transfer. Since the cost of data

access is dominated by per message start-up latency and seek time, the cost of data movement can be evaluated on the

basis of the total number of requests needed to complete a transaction (e.g., process of reading in a 4Kx4K matrix into

the computational array). Further, the number of requests per transaction can be computed given the data distribution,

the number of processors, and the stripe size (where the stripe is the unit of declustering of data across the disks, and

stripe size is just its size in bytes). Figure 4 illustrates the dependence of the number of requests on data distribution;

we see that a Row-Cyclic distribution generates much many more requests than a Row-Block distribution.

Table 1 shows Rdist and Sdist for an NxN array distributed over P processors, where Rdist is the number of requests

per transaction when considering only the data distribution and ignoring contributions from the stripe size; and Sdist is

the size of the largest contiguous block of data that can be transferred between a processor and an I/O device per

request (i.e., request size). In generating the table, it is assumed that the data is stored in a column-major one-dimen-

sional map over the disks. This can be easily generalized to n-dimensional arrays, but for purposes of this paper, we

will only consider up to two dimensions. If data is stored in a row-major one-dimensional map over the disks, then

the same results apply by switching column with row and vice-versa.

If we let Rtrans represent the number of requests per transaction when contributions from the stripe size, Sstripe, are

considered, then the difference between Rtrans and Rdist arises because the stripe size affects the request size. Whereas

in table 1 we assumed that the request size was equal to Sdist, now it is represented by the term on the right of Rdist in
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equation (1) below. What this term states is that the request size is determined by the minimum of the request size,

when only distribution is considered (i.e., Sdist), and the stripe size Sstripe.

Thus, the total number of requests for a given transaction, Rtrans, as a function of both data distribution and stripe

size, can be expressed as

Note that the assumption that Sstripe equals Sdist is equivalent to ignoring stripe size contributions (i.e., assumption

used in table 1) and that we do obtain the results in the table.

For the preceding discussion, caching is assumed to be absent within the computational array. Also, it is assumed

for simplicity that either Sstripe divides Sdist or vice-versa (i.e., GCD(Sstripe, Sdist) = MIN(Sstripe, Sdist)).

Consider as an example a 4 processor program reading a 1MB file from a set of disks. Assume that the selected

distribution is one-dimensional Column-Block and that the file is striped across the disks in column-major fashion.

We see from the first row of table 1 that, as a function of this decomposition, the number of requests will be Rdist = P

= 4, and the size of each request will be Sdist = 1MB / 4 = 256K. With a stripe size of Sstripe = 512K, equation (1)

Table 1: Number of I/O requests as a function of data distribution: Rdist

1-D distribution 2-D distribution

Distribution type Rdist Sdist Rdist Sdist Distribution type

Column-Block P N 2 / P Block-Block

Column-Cyclic N N Block-Cyclic

Row-Block N x P N / P N 2 1 Cyclic-Block

Row-Cyclic N 2 1 N 2 1 Cyclic-Cyclic

Figure 4: Effects of distribution upon number of requests
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shows that Rtrans = Rdist and each processor will require only 1 request (nodes 0 & 1 from the first disk, and nodes 2

& 3 from the second disk). However, if the stripe size was Sstripe = 128K, then we see that Rtrans = Rdist x (256K/

128K) = 2 x Rdist. Thus, each processor will need 2 requests (e.g., node 0 will take its first 128K from disk 0 and its

second 128K from disk1).

3.  Performance of Distribution based Direct Access

In this section we present performance results for direct data access based on the data distribution specified within

the computational array. Experimental results are presented for the Intel Touchstone Delta and nCUBE-2.

3.1 Intel Touchstone Delta

In this experiment, the mesh size was varied from 4 processors to 512 processors; 64 disks were used. While the

mesh size was held constant, the array size was varied; a square two-dimensional array was distributed across the pro-

cessors. The smallest array used was 1Kx1K (1MByte), and the largest was 20Kx20K (400 MBytes). For each mesh

size, the array was distributed in four ways: Row-Block, Row-Cyclic, Column-Block, Column-Cyclic. The larger

arrays were distributed over larger mesh sizes such as 256 and 512†. The input file was distributed over 64 disks in a

round-robin fashion (32 I/O nodes, 2 disks per I/O node) with a stripe size of 4 Kbytes. Note that on the Intel Touch-

stone delta, the stripe size and storage distribution over the disks (i.e., round-robin) cannot be controlled from a user

level program. Since a file is a one-dimensional map of the array, the file is stored in column-major order. The follow-

ing subsections describe the performance of data access by the computational array for various data distributions.

The CFS on the Touchstone Delta supports several modes of operation, each one determining a degree of syn-

chronization and sharing of file pointers. For our experiments, we restrict ourselves to mode 3 since this gives the best

results for direct access. Mode 3 can be characterized as providing a shared file pointer, and synchronized access with

fixed length records per access. The synchronization requires that all the processors access data at once.

3.1.1 Column-Block Distribution

The Column-Block distribution implies that the matrix data is distributed along its second dimension onto the pro-

cessor array. This distribution also conforms with the column-major data distribution over the disks. It requires a sin-

gle application level I/O request per processor and each processor node can read the entire distributed data in one I/O

access. The time required to distribute the data column-wise scales with the number of processors for a portion of the

configuration space.

Table 2 contains the data for a Column-Block array distribution. The table shows the size of the array (file on

disks), the number of processors participating in the read, the transaction completion time, and the observed band-

width. For small size arrays and number of nodes, the bandwidth of the I/O system is under-utilized. As the data size

and number of processors increase, the I/O bandwidth is more effectively utilized. However, beyond a certain point,

the I/O system becomes a bottleneck due to the large number of processors performing I/O, and the need for synchro-

nization.

The read rate increased quickly in proportion to the processor grid size, but plateaued at about 64 processors. Deg-

radation in the performance was observed after 256 processors due to a large synchronization overhead. Performance

†. large files cannot be read into smaller computational arrays because the total memory required to store the
data on nodes is smaller than the file size.



for the small request case (i.e., 1Kx1K) was poor.

3.1.2 Column-Cyclic Distribution

Table 3 shows the read access times for the same parameters but with a Column-Cyclic data distribution on pro-

cessors. Even though the degree of parallelism in the data access remains the same, the number of I/O requests

increases (table 1) because each processor must make an individual request for each column. This degrades the access

time and the bandwidth as illustrated in table 3. The degradation in performance is consistent for all configurations

and it ranges between a factor of 2 to 10 as compared to that for Column-Block distribution.

3.1.3  Row-Block Distributions

Table 4 shows the performance for reading the data array and decomposing it in Row-Block fashion over the pro-

cessor array. Since the one-dimensional map of the file on the concurrent file system is in column major order, this

read operation essentially requires a transposition of the data while it is being read. As shown in table 1, the number

of logical requests is NxP. Hence, as observed from table 4, the performance degradation due to the decomposition is

almost two orders of magnitude when compared to the performance of the Column-Block distribution. We do not

present performance figures for larger configurations (i.e., large array and system sizes) since the time it took to com-

plete these experiments exceeded practical limits. Thus, we merely conclude that performance for this distribution

was at least more than two orders of magnitude worse than the first two configurations. The peak bandwidth obtained

was 0.69 Mbytes/sec. This is only 30% of the slowest case (the 1Kx1K case) for Column-Block decomposition of

table 2 above. Further, the 1Kx1K case for this distribution is 39 times slower than for the equivalent Column-Block

case.

Table 2: Column-Block distribution

Array size Mesh Size Time (ms)
Rate

MBytes/sec

1Kx1K 4 431 2.32

4Kx4K 4 2277 7.05

5Kx5K 16 3357 7.44

5Kx5K 64 3324 7.52

10Kx10K 256 13707 7.65

20Kx20K 512 70953 5.63

Table 3: Column-Cyclic distribution

Array size Mesh Size Time (ms)
Rate

MBytes/sec

1Kx1K 4 4353 0.23

4Kx4K 16 5233 3.06

5Kx5K 64 11407 2.19

10Kx10K 256 116763 0.86

20Kx20K 512 252980 1.58



3.1.4 Row-Cyclic Distribution

The Row-Cyclic distribution involved the largest number of I/O requests. Also the request size was the smallest.

It took approximately 15 minutes to distribute a 1Kx1K character array in Row-Cyclic order versus the 467 msec. it

would require in Column-Block form. This shows that the direct row distribution of an array is very slow, hence, not

possible in practice.

3.2  nCUBE

For this experiment, the nCUBE-2 Model 10 was used. The nCUBE-2 Model 10 architecture has a hypercube

interconnection network backplane which can be populated by up to 1024 computational processors. Up to 8 16-

channel I/O boards can be attached to each side of the computational array, each channel containing an I/O node with

a connection for a string of disks. The system used for this experiment had 256 compute processors and 8 disks, each

on a separate I/O node.

The effects of distribution on the performance of the nCUBE parallel I/O system was measured by running a

series of experiments using 16 and 64 processor subcubes, and 8 disks. Read times for 16MB and 64MB arrays were

measured. Four array distributions were used: Row-Block, Row-Cyclic, Column-Block, Column-Cyclic. Also, the

effects of stripe size on data access were measured by varying the stripe size for read configurations where subcube

size, file size, and array distribution remained fixed. On the nCUBE, the stripe size and declustering strategy (i.e.,

data distribution over the I/O disks) can be manipulated at the application level. However, to limit the complexity of

the experiments, a row-major striping was selected. Therefore, all the results of table 1 apply here by switching “row”

to “column” and vice-versa.

For all distribution measurements, the best results were used regardless of stripe size (i.e., the stripe size is not

fixed for a given distribution, and the stripe size that afforded the best performance was used in each case). To a large

extent, this enabled us to decouple the effects that arise due to stripe size, thus allowing the study of the effects of data

decomposition strategies on the performance of the I/O system.

3.2.1 Row-Block Distribution

On the nCUBE, the Row-Block distribution often provides the best performance because, compared with other

data distributions, it coincides best with the distribution strategy of data over the disks. The data in table 5 shows the

transfer rate increasing and read time decreasing with subcube size for a given data set.

Table 4: Row-Block distribution

Array size Mesh Size Time (ms)
Rate

MBytes/sec

1Kx1K 4 17051 0.06

2Kx2K 4 25966 0.15

4Kx4K 16 71205 0.22

5Kx5K 16 91536 0.28

5Kx5K 64 38018 0.69



3.2.2 Column-Block Distribution

The Column-Block distribution requests, in effect, that a transpose of the array be performed as it is read. The

data size per request is smaller and so the number of requests larger than for the Row-Block case; this fact is made

evident by the much slower read times shown in table 6. Here, read times increase by over a factor of 36, 50, and 33

times respectively over the Row-Block distribution cases.

3.2.3  Row-Cyclic Distribution

The Row-Cyclic distribution is a median between Column-Block and Row-Block with respect to the number of
requests required to complete a transaction; this results in correspondingly median read times as reflected in table 7.

The increase in read time in going from 16 to 64 processors for a 4Kx4K file size (see tables 6 & 7) is further evi-

dence of this behavior. However, the transfer time for each processor has also decreased since the processor data size

has decreased. This indicates that, for the present configuration, the cost of an increase in the number of requests has

overridden the expected gains from increased bandwidth. This is a significant result in that, for certain cases, it may

be more efficient to allow a subset of the computational array to perform the I/O, subsequently redistributing the data

over the entire set of processors in the array.

Table 5: Row-Block distribution

Array size Subcube size Time (ms)
Rate

MBytes/sec

4Kx4K 16 5140 3.26

4Kx4K 64 4290 3.91

8Kx8K 64 17700 3.79

Table 6: Column-Block distribution

Array size Subcube size Time (ms)
Rate

MBytes/sec

4Kx4K 16 190000 0.09

4Kx4K 64 215000 0.08

8Kx8K 64 593000 0.11

Table 7: Row-Cyclic distribution

Array size Subcube size Time (ms)
Rate

MBytes/sec

4Kx4K 16 8290 2.02

4Kx4K 64 9080 1.85

8Kx8K 64 24400 2.75



4.  Two-Phase Access Strategy

In this section, we present a two-phase access strategy for conducting parallel I/O. We are motivated by the fol-

lowing observations from our experimental results: for all cases, performance fluctuates greatly with varying data dis-

tributions (i.e., logical request size), performance degradation by a factor of 20 or more is commonly observed; the

bandwidth for a given configuration is highly dependent upon the file size; lastly, stripe size dependent factors (e.g.,

load-balance, request size) cause widely divergent read times for most distributions.

4.1 Strategy Description

Our I/O strategy involves a division of the parallel I/O task into two separate phases. In the first phase, we perform

the parallel data access using a data distribution, stripe size, and set of reading nodes (possibly a subset of the compu-

tational array) which conforms with the distribution of data over the disks (i.e, we introduce an intermediate mapping

M2', and access data with M2' = M1). Subsequently, in phase two, we redistribute the data at runtime to match the

application’s desired data distribution (i.e., from M2' to M2). Figure 5 illustrates what a read segment might look like.

By employing the two-phase redistribution strategy, the costs inherent in many of the I/O configurations are

avoided. Selecting a single, “good” configuration effectively reduces the bottleneck activity - I/O to the parallel

device. Further, the redistribution phase improves performance because it can exploit the higher bandwidths made

available by the higher degree of connectivity present within the interconnection network of the computational array.

4.2  Experimental Results

In this section we present performance results for the runtime primitives when used in conjunction with a variety

of data distributions. The tables below contain Best Read, Redistribute, Total Read, and Direct Read times for the

four 1-dimensional distributions considered in this paper.

For a given array size, the Best Read time represents the minimum of the read times of the four distributions; this

is derived by using the distribution that most closely conforms to the disk storage distribution for the given file. The

Redistribution time is the time it takes to redistribute data from the conforming distribution to the one desired by the

application. The Total Read time is the sum of the Best Read and Redistribution times; it denotes the time it takes for

the data to be read using the optimal Read access and then be redistributed (two-phase access). The Direct Read time

is the time it takes to read the data with the selected distribution using direct access. The last row of each table shows

the speedup

We show that the Total Read times are less than the Direct Read times for all the cases tested. Furthermore, the

variation in the Total Read time across distributions is at most a factor of 2 of the Best Read times for the cases tested.

/*
 * Code to read satellite data and distribute it over the computational array.
 * /

 void ReadSatelliteData () {
char *buf;
int nbytes;
. . .
read (fd, buf, nbytes, ROW_BLOCK);

 }

Figure 5: Read algorithm example



4.2.1  Intel Touchstone Delta

Table 8 shows timing data for 5Kx5K and 10Kx10K files read and distributed over 16 processors. The Best Read

time is for the Column-Block distribution. For all cases below, the ‘*’ symbol denotes a read time on the order of

hours. The following observations are made by comparing the direct access read times with run-time data redistri-

butions. For all cases, the performance improvement range from a factor of 2 up to several orders of magnitude. For

example, the amount of overhead avoided by using the redistribution strategy ranges from 1.7 secs, to well over 60

minutes for the 5K Row-Cyclic case; the deviation in Total Read time is at most a factor of 1.9.

Table 9 shows timing data for 5Kx5K and 10Kx10K files read and distributed over 64 processors. The cost of

reading is reduced from 7.4 secs, to over 60 minutes for the 5Kx5K Row-Cyclic case. The variation in Total Read

time is at most a factor of 1.27.

4.2.2 nCUBE

Table 10 shows timing data for 4Kx4K files read and distributed over 16 processors with varying decompositions.

The Best Read time is for the Row-Block distribution which corresponds with the row-major striping over the disks.

Table 8: Redistribution on 16 processors

Distribution
Column
Block

Column
Cyclic

Row
Block

Row
Cyclic

Best Read
(a)

5Kx5K
10Kx10K

3357
10376

3357
10376

3357
10376

3357
10376

Redistribute
(b)

5Kx5K
10Kx10K

-
-

1805
7105

673
2772

2603
10320

Total Read
(c) = (a)+(b)

5Kx5K
10Kx10K

3357
10376

5162
17481

4030
13148

5960
20696

Direct Read
(d)

5Kx5K
10Kx10K

3357
10376

9890
19271

69939
84683

∗
∗

Speedup
(d) / (c)

5Kx5K
10Kx10K

1
1

1.92
1.10

17.36
6.44

> 604.03
>173.95

Table 9: Redistribution on 64 processors

Distribution
Column
Block

Column
Cyclic

Row
Block

Row
Cyclic

Best Read
(a)

5Kx5K
10Kx10K

3324
11395

3324
11395

3324
11395

3324
11395

Redistribute
(b)

5Kx5K
10Kx10K

-
-

703
2478

246
1028

768
3092

Total Read
(a)+(b)

5Kx5K
10Kx10K

3324
11395

4027
13873

3570
11623

4092
14487

Direct Read
(d)

5Kx5K
10Kx10K

3324
11395

11407
63400

38018
78767

∗
∗

Speedup
(d) / (c)

5Kx5K
10Kx10K

1
1

2.83
4.57

10.65
6.78

>879.77
>248.50



For all cases below, the ‘*’ symbol denotes a read time on the order of an hour. A comparison of the Total Read times

with Direct Read times show that the performance improvements obtained by using the redistribution strategy range

from 2.5 secs, to up to 35 minutes for the 4Kx4K Column-Cyclic case, and the deviation in Total Read time is at most

a factor of 2.8.

Table 11 presents timing data for 4Kx4K and 8Kx8K files read and distributed over 64 processors for varying

decompositions. The Best Read time is again for the Row-Block distribution. By comparing the Total Read times

with Direct Read times, we see that the redistribution strategy improves performance be 4.6 secs, to over 59 minutes

for the 4Kx4K Column-Cyclic case, and the Total Read time deviates by at most a factor of 1.8

Table 12 presents timing data for 4Kx4K and 8Kx8K arrays redistributed from Row-Block distribution on 16 pro-

cessors to 16, 32, and 64 processors with varying distributions, and its percentage of the cost of Total Read and Direct

Read times. We see that the redistribution costs, with few exceptions and although non-optimized algorithms are

used, are extremely small relative to Total Read times presented in previous tables; they are even much smaller per-

centages of the Direct Read times.

Table 10: Redistribution on 16 processors

Distribution
Row
Block

Row
Cyclic

Column
Block

Column
Cyclic

Best Read
(a)

4Kx4K 5140 5140 5140 5140

Redistribute
(b)

4Kx4K - 603 615 9700

Total Read
(c) = (a)+(b)

4Kx4K 5140 5743 5755 14840

Direct Read
(d)

4Kx4K 5140 8290 190000 ∗

Speedup
(d) / (c)

4Kx4K 1 1.44 33.02 >242.59

Table 11: Redistribution on 64 processors

Distribution
Row
Block

Row
Cyclic

Column
Block

Column
Cyclic

Best Read
(a)

4Kx4K
8Kx8K

4290
17700

4290
17700

4290
17700

4290
17700

Redistribute
(b)

4Kx4K
8Kx8K

-
-

203
780

242
877

2500
9980

Total Read
(c) = (a)+(b)

4Kx4K
8Kx8K

4290
17700

4493
15480

4532
18577

6790
27680

Direct Read
(d)

4Kx4K
8Kx8K

4290
17700

9080
24400

215000
593000

∗
∗

Speedup
(d) / (c)

4Kx4K
8Kx8K

1
1

2.02
1.58

47.44
31.92

>530.19
>130.06



4.2.3  Discussion

The results above show that for every case but one, performance is improved to within a factor of 2 of the Total

Read performance of the “best” distribution. Upon examination of the one exception (table 10: Column-Cyclic), we

see that the predominant cost arises from redistribution. This result is not alarming because the redistribution algo-

rithms used for the experiment were implemented without optimizations which would otherwise have been incorpo-

rated into a real system. Thus, optimizing the redistribution algorithms would improve performance for these

exceptions so that they lie within the expected range. Further, although redistribution costs for these exceptions were

high relative to Total Read times, they were still orders of magnitude less than Direct Read times for all cases, thereby

guaranteeing significant performance improvements.

The results also show that speedups range from about 2 for Block distributions to on the order of 100 for Cyclic

distributions. This result is really equivalent to the previous result (that performance is within a factor of 2 of the best

case). However, it does emphasize that the use of more complex distributions have a high probability of producing

performance comparable to that of Block distributions. Two-phase access has effectively decoupled data and storage

distributions by introducing a level of indirection into the mapping.

Although write cases have not been addressed in this paper, it is expected that results for writes will be analogous

to those for reads.

5.  Conclusion and Future Work

The goal of this research has been to develop a strategy for optimizing parallel I/O over the wide variety of possi-

ble access patterns. We have demonstrated that, with the two-phase access strategy for parallel I/O, it is possible to

obtain significant improvements in performance over previously used methods. Data distribution and storage distri-

bution have been decoupled, enabling the most effective configuration to be used for parallel I/O. Speedups obtained

ranged from about 2 for simple Block distributions to orders of 100 for more complex distributions. Among others,

worst case times were improved to within a factor of 2 of the best read times. Therefore, performance of the I/O sys-

tem can be made more consistent over a wide variety of data distributions. Optimizing redistribution algorithms

should result in further gains.

 Our current task involves the integration of this strategy into a parallel I/O run-time system that will implement

this strategy automatically and transparently. Future work includes a more complete characterization of the parallel I/

O parameter space, and compiler participation through language extensions and preprocessing of information provid-

ing selection assistance.

Table 12: Redistribution for Row-Block from 16 to 16, 32, and 64 processors

Row-Block to:
Column-Block Column-Cyclic Row-Cyclic

t msec % of Tot. % of Dir. t msec % of Tot. % of Dir. t msec % of Tot. % of Dir.

16 to 16 4Kx4K 615 10.69 3.24 9700 65.36 0.02 603 10.50 7.27

16 to 32 4Kx4K 678 11.65 -NA- 9670 65.29 -NA- 605 10.53 -NA-

16 to 64 4Kx4K 722 12.32 0.36 9640 65.22 0.02 584 10.20 6.43

64 to 64 4Kx4K 242 5.33 0.11 2500 38.52 0.01 203 4.52 2.23

64 to 64 8Kx8K 877 4.72 0.15 9980 36.05 0.02 780 5.03 3.19
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