
A Probabilistic Analysis of a Locality

Maintaining Load Balancing Algorithm

Kishan Mehrotra, Sanjay Ranka1, and Jhy-Chun Wang1

4-116 Center for Science and Technology

School of Computer and Information Science

Syracuse University

Syracuse, NY 13210

1This work was supported in part by NSF under CCR-9110812 and DARPA under

contract No. DABT63-91-C-0028. The content of the information does not necessarily

re
ect the position or the policy of the Government and no o�cial endorsement should be

inferred.

Abstract

This paper presents a simple load balancing algorithm and its probabilistic analysis.

Unlike most of the previous load balancing algorithms, this algorithm maintains lo-

cality. We show that the cost of this load balancing algorithm is small for practical

situations and discuss some interesting applications for data remapping.

Index Terms - Data locality, irregularity, load balancing, mapping, probabilistic

analysis.

1 Introduction

In parallel computing, it is important to map the program such that the total execu-

tion time is minimized. Experience with parallel computing has shown that a `good'

mapping is a critical part of executing a program on such computers. This mapping

can be typically performed statically or dynamically.

For most regular and synchronous problems [9], this mapping can be performed

at the time of compilation by giving directions in the language to decompose the

data and its corresponding computations (based on the owner computes rule). We

are currently developing a compiler for Fortran D, which provides a rich set of such

directives [5]. Load balancing and reduction of communication are two important

issues for achieving load balancing. The directives of Fortran D can be used to

provide such a mapping for a large class of regular and synchronous problems.

For some other class of problems, which are irregular in nature, achieving good

mapping is considerably more di�cult. Further, the nature of this irregularity may

not be known, and can be derived only at run time. Many problems can be character-

ized as a discrete model of a physical system, and a set of values are to be calculated

at every domain point of the system [15]. The mapping of such problems entails

mapping of regions of model domain to each processor. The computational work as-

sociated with each subdomain may change over a period of time and hence the load

on each processor may become unbalanced. For many problems, the computations

may be characterized as a series of phases. The output of each phase acts as an input

for the next phase. Although the input may have uniform pattern, the output may

be nonuniform. For example, computer vision requires the conversion of image (low

level structure) into higher level structures. The processing passes through several

phases. The following are some of the low-level tasks, where the output of phase 1

would be used as a input to phase 2 or phase 3 or both:

1. The image is converted into a set of edges by application of Sobel operator [1](to

give an edge image).

2. The edge image can be used to detect lines or circles in the image.

1

3. Multiple images can be used to perform stereo e�ect for detection of motion or

distance of the object.

A typical parallelization of these tasks would require partitioning of the input

image. Assume that we have a image of size N �N distributed on p processors such

that each processor gets a N
p
�N rectangular block. (We note that it may be useful in

some cases to divide the image in each processor such that each node gets a Np
p
� Np

p

square block. However, we restrict ourselves to the previous mapping). The number

of edges in each partition in general will not be equal. However, phase 2 or 3 may

require locality of edges. In such cases the load needs to be balanced in a fashion

that each node has equal number of edges (assume that the computation depends on

the number of edges).

In such cases a remapping needs to be performed in order to achieve load bal-

ancing and have potential improvement in performance. There are many algorithms

described in the literature for mapping irregular problems (e.g. [4, 10, 12]). These

algorithms perform the mapping statically and are very time consuming. For many

problems this is acceptable, as the structure of the problem does not change over

its execution. However, they are prohibitive for a large class of applications. There

are several algorithms proposed in the literature for balancing the load at run time

[6, 11, 14, 18]. However, these algorithms shu�e data around in a fashion that lo-

cality between data items is no longer maintained. For applications possessing some

natural locality, i.e., the computations utilize data items which have some sense of

proximity, shu�ing of the data to balance the load will, in general, lead to a greater

and irregular communication and may signi�cantly reduce the advantages of having

the load balance.

In this paper, we analyze a simple load balancing algorithm for irregular problems.

A similar algorithm has been described in [13] for load balancing for �ne grained hy-

percube machines. We show that if irregularity is such that the computation points

are distributed with a certain class of distributions and the granularity (number of

points per processor) is reasonably high, then the cost of this load balancing is nom-

inal and reduces to a simple shift algorithm. Further the load balancing algorithm

2

maintains locality which is one of the desirable features. We give some simple appli-

cations of the load balancing algorithm which could be used in several domains.

The rest of this paper is organized as follows. Section 2 describes several di�er-

ent versions of the load balancing algorithm. Section 3 presents average analyses of

the load balancing algorithms. These algorithms are developed in an architecture

independent fashion using collective communication primitives with reasonable as-

sumptions about the cost of these primitives. This makes them suitable for a wide

variety of architectures. Section 4 presents a simple application. Finally, conclusions

are presented in Section 5.

2 Load Balancing Algorithm

Let the data which is useful in kth processor, Pk, be given by array aLock(0::Xk� 1),

where Xk represents the number of useful elements in Pk, where k = 0; � � � ; n�1. We

assume that the data in each local array is sorted in order of locality.

The load balancing algorithm is given in Figure 1. The following variables are

used in the algorithm:

� pre�x sum Yk =
Pk�1

i=0 Xi for k = 1; � � � ; n� 1, and Y0 = 0.

� average number of useful elements X = 1
n

Pn�1
i=0 Xi. We assume that X is an

integer (we make this assumption for ease of presentation). The algorithm can

be easily modi�ed when this is not satis�ed.

� Gk(i) represents aLock(i)
0s corresponding global index, Gk(i) = Yk+ i; 0 � i �

Xk � 1.

� packetki contains data elements which should be moved from processor Pk to

Pi. Let lbki = maxfiX; Ykg and ubki = minf(i + 1)X � 1; Yk + Xk � 1g, then
if lbki > ubki ; packet

k
i = �, otherwise packetki = faLock(j) j G�1

k (lbki) � j �
G�1
k (ubki)g; where G�1

k (i) = i� Yk.

3

Load Balancing Algorithm:

For processor Pk, 0 � k � n � 1, parallel do

1. Yk = Parallel Sum Prefix(Xk);

2. X = 1
n
� Parallel Sum(Xk);

3. Rshiftk = bGk(Xk�1)
X

c � k;

Lshiftk = k � bGk(0)
X

c;

4. Max L Shift = Parallel Max(Lshiftk);

Max R Shift = Parallel Max(Rshiftk);

5. call Data Movement();

Figure 1: Load Balancing Algorithm

� Lshiftk (Rshiftk) represents the maximum distance of left (right) shift Pk

will perform. It should be noted that Lshiftk and Rshiftk could be negative

(implying that this shift takes place on the opposite direction, it also represents

the minimum shift in that direction). Further Lshift0 = 0 and Rshiftn�1 = 0.

� Max L Shift (Max R Shift) represents the maximum distance of left (right)

shift among all processors.

In this paper, we analyze our algorithms in architecture independent fashion. We

assume a store-and-forward message passing approach for calculating the complexity

of the communication. However, our algorithms are developed using collective com-

munication, which could utilize wormhole or cut-through routing [7]. Further, the

main results of our paper are not dependent on the above choice. We assume that a

linear array can be e�ciently embedded in the architecture. This is true for popular

architectures like meshes, toruses, and hypercubes [16]. The time to send a message

4

of size S from any node to a neighbor node is assumed to be O(� + 'S), where �

represents the set up cost and ' represents the inverse of the data transfer rate. For

e�ciency reasons our algorithms require e�cient evaluation of parallel pre�xes. Pre-

�x operations are provided in hardware on CM-5 [20], it is expected that it would be

available on most future computer architectures.

In this paper we propose several schemes for data movement, each approach may

be suitable for a particular system architecture. The time required for step 1, 2, and

4 (Figure 1) is upper bounded by the time required for parallel pre�x. Step 3 can be

completed in O(1). We develop several algorithms for step 5. All three algorithms

assume that a linear array can be embedded in the given architecture.

2.1 Approach 1

In this approach (Figure 2), each processor Pk �rst concatenates all packets it needs

to send to its left hand side processors (i:e: Pi; i < k). At each stage, Pk shifts

its packets to Pk�1 and receives packets from Pk+1, Pk then accepts and removes

the packets which are targeted to it from the packets it received. The stage will be

repeated until all packets reach their �nal destination. The right shift operation will

follow the same procedure, but in other direction.

Assume S represents the maximum size of packets (in terms of data elements)

which would be left shifted among processors, also let D represent the longest left

shift distance among processors. Then in the worst case one processor may contain

as many as DS data needed to be left shifted, so the time takes to complete the left

shift process would be

(� +D'S) + (� + (D � 1)'S) + � � �+ (� + 'S)

= D� +
D(D + 1)

2
'S:

So the worst case time complexity of this approach is O(D� +D2'S)). This ap-

proach is geared towards architectures which utilize store and forward communication

method.

5

procedure Data Movement();

1. Let L packetsk = [k�1i=k�Lshiftkpacket
k
i ;

/* concatenate left-shift data in one packet */

2. for i = 1 to Max L Shift do

(a) Pk send L packetsk to Pk�1;

(b) Pk receive L packetsk+1 from Pk+1;

(c) Let L packetsk = L packetsk+1 � packet
j
k; k + 1 � j � n;

3. Let R packetsk = [k+Rshiftki=k+1 packetki ;

/* concatenate right-shift data in one packet */

4. for i = 1 to Max R Shift do

(a) Pk send R packetsk to Pk+1;

(b) Pk receive R packetsk�1 from Pk�1;

(c) Let R packetsk = R packetsk�1 � packetjk; 1 � j � k � 1;

Figure 2: Data Movement: Approach 1

The other way to perform the complexity analysis is to assume that the maximum

amount of data to be sent by any processor is X. In that case the complexity is

O(D(� +X')).

2.2 Approach 2

In this approach (Figure 3), each processor Pk initializes a vector sendk, where

sendk[i] = 1 if Pk needs to send packets to Pi, otherwise sendk[i] = 0. All processors

then participate in Parallel Sum(send[]), which will return a vector receive[] with

6

procedure Data Movement();

1. Let sendk[1::n] = 0;

2. for i = 1 to n do

if packetki 6= � then sendk[i] = 1;

3. receivek[1::n] = Parallel Sum(sendk[1::n]);

4. for i = 1 to n do

if packetki 6= � then send packetki to Pi;

5. for i = 1 to receivek[k] do

receive packet
j
k; 1 � j � n and j 6= k;

Figure 3: Data Movement: Approach 2

receive[k] representing number of processors which will send packets to Pk. Finally,

processors use this information to send and receive packets.

The complexity of this algorithm is di�cult to analyze. The cost of steps 1 to 3

(Figure 3) is upper bounded by the parallel sum. The cost of step 4 and 5 in the

worst case is di�cult to analyze as it will depend on the network congestion and

contention on which it is performed. A very loose upper bound on the complexity is

O(n2(� +'S)). The performance of this algorithm should be much better in practice.

2.3 Approach 3

During the load balancing process, assume that Pk will left shift packets to Pi, where

k � maxlk � i � k � minlk, maxlk and minlk represent Pk's maximum left shift

distance and minimum left shift distance (> 0), respectively. These values can be

calculated locally in O(1) time. We observe that Pk+1's maximum left shift distance

maxlk+1 must be less than or equal to minlk + 1. With this observation, we know

7

that at any left shift stage, if Pk left shift packets to Pa and Pk+1 left shift packets to

Pb, then a � b. So we can conclude there is no link con
ict at any shift stage. This is

assuming that shift is carried over on an embedded linear array. The same conclusion

holds for right shift operation.

The worst case time complexity of this algorithm (assuming that each node sends

out a maximum of T packets to a maximumdistance of D1) (Figure 4), is O(T �D(�+

'S)). This is because each shift can be performed in O(D(� +'S)) amount of time.

This algorithm will be better than algorithm 1 and 2 if T and D are small.

2.4 Total Complexity

Thus the cost of load balancing is of the order to the cost of computing a parallel

pre�x followed by the time required for one of the approaches for data movement.

The cost of parallel pre�x is O(log n � (� + ')) for hypercube architectures [17]. We

believe that many of the future architectures would have some hardware support for

such a primitive. In such case it can be assumed that parallel pre�x can be calculated

in O(1) time; such is the case for CM-5 [20]. (Approach 1 has a better worst case

time complexity than approach 2 and 3. However in practice, approach 2 and 3 may

work better.)

Up to now, we have only performed the worst case complexity analysis. The worst

case cost of the above algorithms makes them prohibitive for load balancing for many

problems. However, as we shall show in the next section, the cost will be small if the

granularity (amount of data) per node is reasonably large and the irregularity follows

some reasonable distribution.

3 Probabilistic Analysis

We assume that each node has number of elements which are given by a distribution

with mean � and variance �2. We will derive results without any assumption on

1D = maxfMax L Shift;Max R Shiftg

8

procedure Data Movement();

1. for i = maxlk downto minlk do

Perform a left shift of distance Max L Shift for packetkk�i in a store

and forward fashion. Whenever Pk receives a packet, if the packet

is targeted to it, then Pk accepts this packet and removes it from

communication channel. Otherwise, Pk forwards this packet toward

its destination. If a node does not have any packet to send, it sends

a dummy packet.

2. for i = maxrk downto minrk do

Perform a right shift of distance Max R Shift for packetkk+i in a

store and forward fashion. Whenever Pk receives a packet, if the

packet is targeted to it, then Pk accepts this packet and removes

it from communication channel. Otherwise, Pk forwards this packet

toward its destination. If a node does not have any packet to send, it

sends a dummy packet.

Figure 4: Data Movement: Approach 3

the distribution and present speci�c results for normal distribution. Within the load

balancing algorithm (Figure 1) there are two important parameters which typically

a�ect the complexity of the algorithm,

Z : the maximum number of elements at any node. This will a�ect the

maximum number of packets which are sent out by every node, and,

D : the maximum amount of distance which has to be traversed by a

packet sent out by any node.

9

In the following analysis we study properties of the above two parameters. To-

wards this goal we �rst state a general result.

Let U1; � � � ; Un be independent and identically distributed random variables with

mean 0, variance 1, distribution function F , and associated density function f . Let

Z� = maxfU1; � � � ; Ung:

Then, for large n, the distribution of normalized Z� is given by the extreme-value-

distribution [8]. More precisely,

lim
n!1

P (bn(Z
� � an) � x) = e�e

�x
;

where an and bn are sequences of constants satisfying

F (an) =
n� 1

n
; bn = n � f(an):

From the properties of the extreme-value-distribution we know that

E(Z�) = an +

bn

where
 = Euler0s constant = 0.5772, and

V ar(Z�) =
�2

6b2n
:

In particular, if Ui's are normally distributed, then both an and bn are approxi-

mately equal to
p
2 ln n.

Now suppose that each X has the normal distribution function with mean � and

variance �2 and Z = max(X1; � � � ;Xn). Then Z = �+ �Z� and substitution of mean

and variance of Z� gives

E(Z) = �+ �

"p
2 lnn+

p
2 ln n

#
;

10

and

V ar(Z) =
�2�2

6b2n
=

�2�2

12 ln n
:

From the properties of the extreme value distribution described above we can

evaluate

P

�
Z � �

�
� x

�
= e�e

�(x�
p
2 ln n)

p
2 ln n

for any x. For, 0 < � < 1, let

� = e�e
�(x�

p
2 ln n)

p
2 ln n

;

then

x =
p
2 lnn +

� ln(� ln�)p
2 ln n

:

So, in general the �th percentile of (Z � �)=� would be given by x and, for

n = 16; 64, they are 3.6 and 3.9, respectively. It also means that for Z the �th

percentile would be �+ �x, implying that (Z � �) would have to go as much change

as �x with probability (1��). Consequently, probability that at least one processor

will acquire a large number of elements is high even for small number of processors

(if the variance is high).

In comparison with Z, distributional properties of D are considerably more in-

volved. Let

Vk = X1 + � � �+Xk � kX

where X = n�1(X1 + � � �+Xn). Thus, Vk=X represents the amount of shift which is

required for the �rst few elements of processor k. Distributional properties of Vk are

easy to observe by rewriting

Vk = (1� k

n
) (X1 + � � � +Xk)�

k

n
(Xk+1 + � � �+Xn)

11

and recalling that each of the X's are independent random variables.

1. E(Vk) = 0

2. V ar(Vk) =
k(n�k)

n
�2, corr(Vk ; Vl) =

r
k(n�l)
l(n�k) , k < l

3. Vn � 0

4. for k = 1; � � � ; n � 1, distribution of Vk is given by the normal distribution

N(0; k(n�k)
n

�2), if X's are normally distributed.

Thus behavior of each Vk is given by the properties of a normally distributed

random variable. These properties of Vk's show that more deviation from zero will

occur in the middle. Since Vk indicates amount of data movement from one processor

to another, it would be useful to �nd probabilistic bounds on size of Vk's. For example,

when n = 16, the eighth processor would encounter large data movement [variance

of Vk is largest for n = 16] and since P (jV8j=� > 4) = 0:05 it follows that as much as

(4��) elements may have to move from this processor to some neighboring processors

with probability 0.05. If n = 64, then as much as (8��) elements may have to move

from this processor in either direction with the same probability.

Now we consider properties of another random variable, W , which is of interest

in analysis of D. This variable is de�ned as

W 0 =
1

�
p
n
W = maxf V1

�
p
n
; � � � ; Vn

�
p
n
g

Thus, random variable W represents maximum change among all processors.

Properties of this random variable will allow us to quantify amount of data move-

ment from one processor to others. Approximate asymptotic distribution of W 0 is

obtained by realizing that the stochastic process generated by V1=�
p
n, V2=�

p
n, � � �

is a Brownian Bridge. In other words, if we de�ne

W 0(t) =
Vbntcp
n�

+ (t� bntc
n

)
Vbntc+1p

n�
; 0 � t � 1;

12

Then, as n ! 1, the behavior of the process fW 0(t) : 0 � t � 1g is such that

(i) E(W 0(t)) = 0 for all t, (ii) E(W 0(t)W 0(s)) = s(1 � t) for s � t, and (iii) for all

values of t the distribution of E(W 0(t)) is Gaussian.

Therefore, properties of this process can be used to obtain asymptotic distributions

of interest. In particular, asymptotic distribution ofW 0 is the same as the distribution

of sup0�t�1W
0(t) and the latter satis�es [3]:

P

(
sup
0�t�1

W 0(t) � x

)
= 1� e�2x

2

; x > 0:

Therefore, for large n

P (W 0 � x) = 1 � e�2x
2
, x > 0:

In summary, the distribution of W , i.e., P (W � x), can be approximated by

1 � e�2(x
2=�2n) for x > 0. The �th percentile of W is easily obtained from this

approximate distribution and is given by �
q
n=2(� ln(1��))1=2. For example, when

� = 0:95 and n = 16, then the 0.95 percentile of (W=�) is approximated by 4.895,

and for n = 64 it goes up to 9.791. This is consistent with our previous observations

about V 's.

It would also be of interest to �nd the distribution of

D0 =
1

�
p
n
D� = max

1�k�n

(����� V1p
n�

����� ; � � � ;
����� Vkp

n�

����� ; � � � ;
����� Vnp

n�

�����
)

which represents the maximum shift in either direction. However, our algorithms

perform a shift along left followed by right. Hence the above distribution is not useful

for evaluating the complexity of the algorithms. We give the following result for

sake of completeness. Again using properties of the Brownian Bridge, we obtain the

following asymptotic distribution for D0: as n!1, [3],

P (D0 � x)! P

(
sup
0�t�1

���W 0(t)
��� � x

)

13

= 1 + 2
1X
i=1

(�1)ie�2i2x2; x > 0

Consequently, for large n, the distribution ofD�, P (D� � x), can be approximated

by 1 + 2
P1

i=1(�1)ie�(2i
2x2=n�2); for x > 0.

Returning back to W 0, it is easy to show that

E(W 0) =
1

2

r
�

2
= 0:626:

Finally, we consider the behavior of the normalized maximum right shift random

variables

W � = max
1�k�n

(
V1

X�
p
n
; � � � ; Vn

X�
p
n

)
=

Wp
n�X

=
W 0

X
=

D

�
p
n
:

By the strong law of large numbers, it follows that X ! � almost surely [19],

and by Slutsky's Theorem [2], asymptotic distributions of W � and D are `essentially'

the same as of W 0=� and D0=� respectively. Consequently, for large values of n, the

following approximations can be used

P (W � � x) = 1� e�2x
2�2 ; x > 0

(By symmetry, the distribution for maximum left shift should be similar.)

These distributions can be used to obtain desired probability bounds on the mag-

nitudes of amount of data items sent from one processor to another.

From above, we have,

P (W � � x) = e�2x
2�2; x > 0

and

P (D � x) = e�
2x2�2

�2n ; x > 0:

14

Now consider the expected time � to complete step 5 of load balancing algorithm,

using the data movement algorithm in Approach 1. Realizing that X � D� and using

the property that it takes O(D(� +X')) time to move X amount of data, we get

� =
Z 1

0
(dDe� + dDeD'�) f(D)dD

�
Z 1

0

�
(D + 1)� + (D2 +D)'�

�
f(D)dD

= (E(D) + 1)� + (E(D2) + E(D))'� :

Since D = max1�i�n jVij=X , therefore

� � (1 + 0:626
�
p
n

�
)� + (0:31

�2n

�2
+ 0:626

�
p
n

�
)'� :

The cost of left shift is also the same. Hence total cost of load balancing = 2 � �.
The above gives the upper bound on the expected time for completion of our

algorithm. In case � � �
q

k
2
n ln n, we observe that

P (D � 1) = e�2
(1)2�2

�2n

� e�
2(1)2�2kn ln n

�2n

=
1

nk
:

Thus the probability of a shift of more than 1 unit in D is very low provided above

property is satis�ed by �. This result indicates that most of the data movement occur

among neighbor processors.

3.1 Discussion

From the analysis in the previous section, the cost of performing the data movement

is

O(2(1 + 0:626�)� + 2(0:31�2 + 0:626�)'�); where � =
�
p
n

�

15

Thus for all distribution with � = O(�
p
n), the e�ective time for data shifting on

an average is O(�(� + '�)). We will show in the next section that binomial distri-

bution satis�es the above properties. Assuming that parallel pre�x can be calculated

reasonably e�ciently (it can be calculated in O(� log n) for most architectures, and

nearly constant time in architectures like CM-5), the cost of load balancing should

make it practical for use for many applications. Further if � is negligible when com-

pared to '� and parallel pre�x can be calculated in O(1) time, then the total cost

is proportioned to O(�'�). Assuming that the cost of computation is at least pro-

portional to number of elements in every local array, this result shows that the cost

of load balancing should be no greater than the cost of computation. Typically load

balancing needs to be performed after several iterations of computation. Our load

balancing algorithms would add a small incremental cost if the above assumptions

are satis�ed.

4 A Simple Application

In the following we analyze the cost of load balancing for a speci�c instance. Assume

that the input of a computational phase is a dense linear array which is distributed

equally (each node has M elements). Assume that each element represents a compu-

tation with probability p (and no computation with a probability 1 � p) which can

be demonstrated by following statements (Figure 5).

The array A is distributed in a block distribution fashion so each processor has a

local array A[1::M]. This would in general reduce the total communication. C(M)

represents the computation cost of the if � then block. The cost in each node can

be given by the binomial distribution B(M;p). For reasonably large M this can be

approximated by a normal distribution N(� = Mp; �2 = Mp(1 � p)). Let maxX =

max0�i<nXi (Xk represents the number of useful elements in Pk), the extra expected

cost dues to load imbalance will be C(M)(E(maxX)� �). If the cost is greater than

the expected cost of load balancing (and possibly remapping), then it will bene�t from

the load balancing. Before proceeding further we make this comparison under the

16

for i = 1 to M �N do

if condition (= TRUE with probability p) then
...

A[i] = f(A[i� 1]; A[i]; A[i+ 1]);
...

endif

Figure 5: Simple application

assumption that Mp

1�p > n and since, under our assumption � = �
p
n

�
=

r
n(1�p)
Mp

< 1,

it follows that

C(M)(E(maxX)� �) � 2 � �

) C(M)(E(maxX)� �) � 2[(1 + 0:626�)� + (0:31�2 + 0:626�)'�]

It is observed that

C(M)(E(maxX)� �) � 2[(1 + 0:626�)� + (0:31�2 + 0:626�)'�] :

We substitute the expected value of maxX for this case to obtain

C(M)�
p
2 ln n � 2[(1 + 0:626�)� + (0:31�2 + 0:626�)'�]

The above analysis has to be modi�ed suitably if the cost of parallel pre�x is not

O(1).

For example, for the CM-5 the time required for a scan operation is approximately

10 �sec, the value of � is approximately 140 �sec, and the value of ' is approximately

0.5 �sec=word (assuming a word size of 4 bytes). AssumingM = 4096; n = 256, and

p = 0:5, we have

� = 2048; � = 32; and � = 0:25 :

17

Neglecting the cost of parallel pre�x, we have

C(M)� 32 � 3:33 � 2(1:156� + 360')

) C(M)� 106:56 � 2:312� + 720'

) C(M) � 0:022� + 6:756'

Substituting � = 140 � 10�6sec and ' = 0:5� 10�6sec,

) C(M) � 6:458 � 10�6

Assuming a peak performance of 5 MFlops (the current CM-5 SPARC micropro-

cessor), above analysis implies that we need approximately 30 instructions at right

hand side. Thus load balancing will be preferable if the above condition is satis�ed

(which will be true for a large variety of applications). We should note that the value

(in terms of number of instructions) of load balancing would go up if the processing

speed increases (with the possible addition of vector units in CM-5).

5 Conclusions

In this paper, we present a simple load balancing algorithm and its probabilistic

analysis. We demonstrate that the cost of load balancing is O(�(� + '�)) plus the

cost of a parallel pre�x. Our analysis indicate that in most practical cases the number

of packets sent out by each processor is less than or equal to 2 (at most one on each

side), and the size of these packets is almost surely less than or equal to the average

number of elements on every node.

Our algorithms are suitable for most commercial architectures, which in most cases

reduce the data movement to neighbor processors' shift operations. Our algorithms

also preserve the data locality between data items which is extremely important in

reducing inter-processor communication.

This paper provides load balancing only along one dimension. For many cases

the data is distributed along two or more dimensions. We are currently analyzing a

similar load balancing algorithms for two or more dimensions.

18

References

[1] Dana H. Ballard and Christopher M. Brown. Computer Vision. Prentice Hall,

Englewood Cli�s, NJ, 1986.

[2] Bickel and Doksum. Mathematical Statistics: Basic Ideas and Selected Topics.

Holden Day, 1977.

[3] Patrick Billingsley. Convergence of Probability Measures, page 85. John Wiley

and Sons, NY, NY, 1968.

[4] T. Chou and J.A. Abraham. Load balancing in distributed systems. IEEE Trans.

on Software Engineering, 8(4):401, July 1982.

[5] Alok Choudhary, Geo�rey C. Fox, Seema Hiranandani, Ken Kennedy, Charles

Koelbel, Sanjay Ranka, and Chau-Wen Tseng. Compiling fortran 77d and 90d for

mimd distributed-memorymachines. In Proceedings of the Frontiers of Massively

Parallel Computation, 1992. to appear.

[6] Y.C. Chow and W.H. Kohler. Models for dynamic load balancing in a hetero-

geneous multiple processor system. IEEE Trans. on Computers, 28(5):354, May

1979.

[7] Willian J. Dally and Chuck L. Seitz. Deadlock-free message routing in multi-

processor interconnection networks. IEEE Trans. on Computers, 36(5):547, May

1987.

[8] H.A. David. Order Statistics. John Wiley and Sons, NY, NY, 1970.

[9] Geo�rey C. Fox. The architecture of problems and portable parallel software

systems. Technical Report Revised SCCS-78b, Syracuse University, July 1991.

[10] E.K. Haddad. Partitioned load allocation for minimum parallel processing ex-

ecution time. In Proceedings of the 1989 International Conference on Parallel

Processing, page 192, 1989. Vol. II.

19

[11] D.Y. Hinz. A run time load balancing strategy for highly parallel systems. In

Proceedings of the 5th Distributed Memory Computing Conference, page 951,

Charleston, SC, April 1990.

[12] M.A. Iqbal, J.H. Saltz, and S.H. Bokhari. A comparative analysis of static

and dynamic load balancing strategies. In Proceedings of the 1986 International

Conference on Parallel Processing, page 1040, 1986.

[13] J. J�aJ�a and K.W. Ryu. Load balancing and routing on the hypercube and

related networks. Technical Report UMIACS-TR-89-61, CS-TR-2264, University

Maryland, June 1989.

[14] L.M. Ni and K. Hwang. Optimal load balancing in a multiple processor system

with many job classes. IEEE Trans. on Software Engineering, page 491, May

1985.

[15] D.M. Nicol and Jr. P.F. Reynolds. Optimal dynamic remapping of data parallel

computations. IEEE Trans. on Computers, 39(2):206, February 1990.

[16] Michael J. Quinn. Designing E�cient Algorithms for Parallel Computers.

McGraw-Hill, 1987.

[17] Sanjay Ranka and Sartaj Sahni. Hypercube Algorithms with Applications to Im-

age Processing and Pattern Recognition. Springer-Verlag, 1990.

[18] V.A. Saletore. A distributed and adaptive dynamic load balancing scheme for

parallel processing of medium-grain tasks. In Proceedings of the 5th Distributed

Memory Computing Conference, page 994, Charleston, SC, April 1990.

[19] Galen R. Shorack and Jon A. Wellner. Empirical Processes with Applications to

Statistics. John Wiley and Sons, NY, NY, 1986.

[20] Thinking Machines Corporation, Cambridge, MA. The Connection Machine

CM-5 Reference Manual, 1992.

20

