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Abstract

For a high-performance parallel machine to be a scalable system, it must also have a scal-

able parallel I/O system. Recently, several commercial machines (e.g. Intel Touchstone Delta,

Paragon, CM-5, Ncube-2) have been built that provide features for parallel I/O. However, very

little is understood about the performance of these I/O systems. This paper presents an ex-

perimental evaluation of the Intel Touchstone Delta's Concurrent File System (CFS). The CFS

utilizes the declustering of large �les across the disks to improve the I/O performance. Data

�les can be read or written on the CFS using 4 access modes. We present performance measure-

ments for the CFS on the Touchstone Delta with 512 compute nodes and 32 I/O nodes. The

study focuses on �le read/write rates for various con�gurations of I/O and compute nodes. The

study attempts to show the e�ect of access modes, bu�er sizes and volume restrictions on the

system performance. The paper also shows that the performance of the CFS can greatly vary

for various data distributions commonly employed in scienti�c and engineering applications.
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1 Introduction

During the last decade, processor speeds have increased tremendously and this trend is likely to

continue for the foreseeable future. During the same period, several important strides have been

made in high-performance computing architectures. High speed processors coupled with massive

parallelism are expected to provide computing power in teraops in the next few years.

Some of the commercially available parallel computers include Intel Paragon [Int92], nCUBE

[nCU92], CM-5 [Thi91]. They are computational instruments of choice in the scienti�c community

and can be found in one form or another in almost every major academic and research institution.

Several prototypes are also being developed at various industrial and academic institutions. Exam-

ples of such machines are DASH [DJK+92], Alewife [ACD+91], J Machine [DCF+86] and Tera

[ACC+90]. However, compared to the attention accorded to processors, interconnection networks

and memories of these parallel systems, very little attention has been paid to the scalability and

performance of the I/O system.

Providing raw processing speed and large memories without balancing I/O capabilities, however,

is not su�cient in solving many real-world problems. A balanced memory hierarchy which can

supply data to processors at the required speeds is critical to the success of high performance

computing. Although semiconductor memories have become cheaper and faster, I/O systems'

performance has not kept pace with the advances in processor and memory speeds. Very few

parallel I/O systems have been developed which can balance the processor speeds and the I/O

bandwidth.

In this paper, we focus on the experimental evaluation of the Concurrent File System of the

Intel Touchstone Delta. The goal is to study the e�ects of various workloads on the performance of

a parallel I/O system. Based on the experimental study, we identify various parameters that a�ect

the system in a signi�cant way.

The rest of the paper is organized as follows. In section 2, we describe the parallel I/O model

and the Intel Touchstone Delta system. Section 3 discusses the evaluation methodologies and lists

some of the experiments presented in the paper. Section 4 presents performance evaluation results

for various experiments. Array distribution results are presented in section 5. Finally, we conclude

the paper in section 6.

2 The Touchstone Delta System

The Touchstone Delta system was developed by the Intel Corporation as a part of the Touchstone

program. The Intel Touchstone Delta system is a message passing multicomputer consisting of
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Figure 1: Intel Touchstone Delta System

processing nodes that communicate across the two dimensional mesh interconnection network.

The system supports various types of processing nodes (numeric, mass storage, gateway and

service). Numeric nodes form the computational core of the system. The Delta system uses of

Intel i860 processors as the core of computational nodes. In addition the Delta has 32 Intel 80386

processors as the core of I/O nodes. Each I/O node has 8Megabytes memory that serves as I/O

cache. There are other processor nodes such as service nodes and ethernet nodes. The Delta is

arranged as a mesh of 16*32 compute nodes and has 16 I/O node on each side.(Figure 1).

2.1 Concurrent File System

The Intel Touchstone Delta system consists of mesh connected compute nodes with attached set

of I/O nodes. Each I/O node is connected to 2 disks, each with 1.4 Gigabytes of space. I/O nodes

do not run any application processes but provide disk services for all users. A �le is uniformly

distributed over all 64 disks by default in a round-robin manner. The stripe unit is 4Kilobytes(one

block) per disk. When a �le is opened for reading or writing, data is accessed by default from 64

disks. A user, however, can restrict the number of disks on which a �le is distributed. All read-write

transactions are carried out in an integral number of blocks, where each block size is 4 Kilobytes.
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2.2 CFS File Structure

The CFS provides a UNIX view of a �le to the application programs. Each CFS �le has a header

and a body. CFS �le header stores �le information such as �le size, permission and link count.

The �le header is always allocated the �rst �le block. In case of small �les the header contains the

data whereas for large �les the header contains the pointers to the indirect blocks that store the

data. When the �le is striped across the disks, the �le header is stored on the �rst disk and all the

subsequent blocks are distributed in a round-robin fashion over the disks.

2.3 The I/O Modes

Four I/O modes are supported in the CFS. These are described below.

� Mode 0: In this mode, each node process has its own �le pointer. This mode is speci�cally

useful for large �les to be shared among the nodes. Here, sharing implies that the same

data is accessed by nodes (replicated). This should be distinguished from sharing a �le but

distributing the data, i.e, when di�erent nodes access di�erent (and distinct) parts of a �le.

This mode is useful for accessing the �le in GSA access pattern.

� Mode 1: In this mode, compute nodes share a common �le pointer. I/O requests are serviced

on a �rst-come-�rst-serve basis. Nodes can read and write at any point, but they use the

same �le pointer. Thus GSP �le access pattern is obtained.

� Mode 2 : Mode 2 treats reads and writes as global operations. The set of compute nodes

that open a concurrent �le must read the �le in a speci�ed order (in the increasing order of

the node-numbers). This mode performs global synchronization in the sense that the second

request by any node is blocked until the �rst request by all nodes in the set is complete.

This mode supports synchronized common �le pointer. Using this mode, nodes can perform

variable length read-write operations. Hence, the requests are serviced in a prede�ned order.

� Mode 3: Mode 3 is a synchronized ordered mode. The di�erence between mode 2 and mode 3

is that in mode 3, all read/write operations must be of the same size. This mode also supports

global synchronization. Hence, the requests can be serviced in any order, but still the second

request by a node is blocked until the �rst request of all nodes is completed. Hence this mode

can be used for obtaining GSI form of �le access.

The data accessed by each processor depends upon the mode . During the write operation, the

resultant size of the �le created depends on the �le mode used. Many scienti�c applications involve

Northeast Parallel Architectures Center at Syracuse University



To be appear in International Conference on Supercomputing 1993 Draft

automatic distribution of the data across processors. Using di�erent I/O modes, it is very easy to

decompose the data across the disks. Note the distinction between mode 0 and the other 3 modes.

In mode 0, reads/writes are to the same data in a shared �le, whereas in other modes reads/writes

are to distinct data (for each node) in the shared �le.

2.4 The I/O Network

Touchstone Delta does not provide an independent I/O network. The compute and I/O nodes share

a common interconnection network. The same network is used for both interprocess communication

and I/O communication.

In Touchstone Delta, for both interprocess communication and I/O, messages travel in the form

of packets. Touchstone Delta uses packet switched wormhole routing as a communication protocol

[Int91, Lio93, Rik92]. Each node of the machine is connected to the mesh using a mesh routine

chip (MRC). The message travels from MRC to MRC until it reaches the destination node.

Each message is split into packets of a �xed size (512 Bytes). On the physical level, the packet

travels through the network in form of its or ow control digits [Lio93, M. 93]. The packet

follows a XY routing protocol. The XY direction is speci�ed in the message header. In Touchstone

Delta, the message packets always travel �rst along X direction. During the journey, each MRC

decrements the X o�set. When the X o�set becomes zero, the packet travels in the Y direction.

The message reaches the destination when both the X and the Y o�set of the message become zero.

Using the same network for interprocessor communication and I/O may cause serious network

contention. Also since the I/O nodes are physically at the edge of the mesh, the position of

the compute nodes might a�ect the I/O performance. We will investigate these points in the

experimental analysis of Touchstone Delta.

3 CFS Evaluation Methodology

The overall performance of accessing data in a CFS depends on several factors including the number

of compute nodes participating in an I/O operation, size of access (bu�er size), number of disks,

block size, I/O mode and the overall available bandwidth from the I/O system as well as that of

the interconnection network (Figure 1). In principle, it is di�cult to decouple the inuence of

some parameters on the performance. Our study includes the following experiments:

� Single Compute Node

{ Single compute node and paged I/O
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In paged I/O experiments, we study the e�ects of bu�er size, node position, number of

disks and the �le size on the throughput. These experiments are carried out for smaller

bu�er sizes and relatively small �le sizes.

{ Single compute node and burst I/O

For burst I/O experiments, the bu�er size is very large. The factors that a�ect the burst

mode throughput include the bu�er size and the number of disks.

� Multiple Compute Nodes

{ Multiple compute nodes and paged I/O

Multiple processors access the �le system using various access modes. During multinode

accesses, the CFS performance not only depends on the bu�er size, number of processors

and disks, but also on the �le access modes. Hence, the paged I/O experiments are

carried for all the four �le access modes.

{ Multiple compute nodes and burst I/O

In burst I/O mode, the bu�er size is quite large compared to that in the paged mode.

For such �le accesses, the parameters that a�ect the throughput include the number

of processors and the number of disks. Furthermore, we study the performance of the

CFS when data is distributed using common data distributions found in typical scienti�c

programs.

� E�ect of Interconnection network on I/O Performance

We will investigate the e�ects of using the common network for both interprocess commu-

nication and I/O. We will especially study the e�ect of compute node position on the I/O

performance. The results will help in analyzing the mesh network performance.

Table 1 presents some de�nitions that will be used throughout this paper.

4 CFS Performance Evaluation

The main objective of the CFS performance evaluation is to determine the maximum read-write

rates observed for di�erent con�gurations. Therefore, the experiments try to saturate the I/O sys-

tem with the I/O requests so as to obtain a peak performance. Similar performance measurements

have been used in the study of Intel iPSC I/O system [FPD91a, FPD91b, FPD91c, FPD91b, Nit92].
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Table 1: De�nitions of various terms used in the paper

Term De�nition

F The size of the �le distributed over the disks.

Np The number of processors accessing the �le.

Fp The amount of �le data per processor.

Fp =
F

Np

.

(True only for modes 1,2 and 3.)

Nio The number of I/O requests per processor.

bio The size of the data bu�er.

Access size requested by the processor

ND Total number of disks (for Delta ND is 64).

BD Block Size ( Amount of data per block on each disk).

4.1 Single Compute Node

The �rst part of the study aims to determine the maximum I/O rates obtained for a single com-

pute node. These studies are performed both for paged as well as burst I/O modes. Paged I/O

performance is important for implementing and supporting node virtual memory to fetch or store

pages on disks. Burst-mode I/O is important for �le accesses when a node requires reading/writing

large �les containing data for an application. For both types of workload we study the maximum

throughput obtained from the I/O systems.

4.1.1 Paged I/O

Since there is no virtual memory support currently available on the Delta system, virtual memory

was simulated by opening a �le and reading (writing) it using �xed size bu�ers. The bu�er size Bio

indicates the amount of data fetched in each I/O request. In each experiment, the compute node

opens a �le and reads (writes) it using �xed size bu�ers. Other parameters varied for the following

experiments include the �le size, bu�er size, node position and the number of disks ND.

Figure 2 illustrates the performance of implementing paged I/O using various bu�er sizes. As

the bu�er size increases from 1K, Nio reduces and consequently the throughput increases. For a

bu�er size of about 4k, the read rate is about 340Kbytes/sec for all �le sizes. This convergence

of performance occurs because the bu�er size and the block size are both 4Kbytes, and therefore,

the requested size is same as the size of data read in one operation from the disk. Thus each I/O

request for 4K bu�er results in reading the prefetched blocks from the node cache. Beyond 4K

bu�er size, the throughput increases for small �les as a function of bu�er size whereas it degrades

slightly for larger �les. In summary, 4K bu�er size seems optimal for most of the �les but for

very small �les, larger bu�er sizes perform well. It should be noted that the throughput is not
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Figure 2: Single Compute Node - 32 I/O Nodes (64 Disks): Read Rates in KB/sec

limited by the I/O system, but is limited by how fast a node request is generated. For the paged

I/O experiments, new I/O request is generated only when the previous one is completed. Similar

results were obtained for a write operation.

In order to determine if the position of a compute node in the network has any e�ect on read

and write operations, di�erent nodes at various locations in the mesh were chosen as shown in

Table 2. Three were on one side of the mesh (Node Nos. 56,11,24), two in middle of the mesh

(Node Nos. 319,268), and the remaining three on the other side of the mesh. Keeping the bu�er

size �xed at 4K, �le read times were observed for �le sizes varying from 1M to 8M. The �les were

distributed over 64 disks, so each side had an equal amount of data distributed on the nearby disks

(32). The read times do not change signi�cantly as the position of the node varies. This experiment

shows that the distance that a request travels in the network does not have any signi�cant impact

on the performance when there is very little contention in the network. This also shows that the

inter-node \hop times" between the nodes are negligible.

4.1.2 Burst Mode I/O

When the compute nodes require to read (write) a large amount of data (large fraction or an entire

�le) then the operation may be performed in a burst mode. In burst mode, the bu�er size is very

large, maximum being the �le size being accessed. Figures 3 and 4 show that burst mode operation

is much faster than the paged mode. Using 64 disks, 1MB �le was read in 203 ms giving a peak
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Table 2: File Read Time is (ms)-Single compute node

Node Position 1 MB Read 2 MB Read 4 MB Read 8 MB Read

56 2954 5836 11642 23230

11 2926 5896 11754 23195

24 3018 5836 11749 23314

319 2968 5843 11694 23205

268 2951 5936 11729 23215

567 2994 5903 11941 23264

535 3078 6096 11790 23460

517 2972 5961 11897 23383

rate of 4.83 MBytes/sec. The peak write rate was 1.39 MB/sec. The peak read rate obtained for

paged mode was about 400 KB/sec. This increase in the throughput, compared to that in paged

mode is observed due to the large number of I/O requests in paged I/O mode where each request

must be sent explicitly.

Generally for the single processor con�guration, both for the paged and for the burst mode

I/O, the read rates are much higher than the write rates. Also as the number of disk volumes

increases the throughput increases upto a threshold. For large �les, the trend will be the same as

the \8-Mbytes" case shown in Figure 4. For small size �les, the data is unevenly distributed on

disks resulting in an imbalance, and therefore, we observe di�erent trends.

4.2 Multiple Compute Nodes

The most important use of a parallel I/O system and CFS is concurrent accesses by multiple

processors. This section presents performance of the �le system by varying di�erent parameters

such as the number of disks, the access modes and the number of processors.

4.2.1 Mode 0: Paged I/O

Mode 0 is useful for accessing shared �les by multiple compute nodes. Each processor has its own

�le pointer. Note that write operations are not protected in the sense that the processors can

overwrite each others data.

Figure 5 shows the read throughput for paged I/O as the function of number of processors for

various number of disks. There exists a threshold in terms of the number of disks beyond which

a substantial performance gain can be expected. As the number of processors is increased, the

performance does not change signi�cantly when Nd is increased from 2 to 32 disks. However for 64

disks, there is a signi�cant jump in the performance. The throughput obtained for 64 processors is
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Figure 5: Read Rates For Multiple Compute Nodes - Mode 0

11.2 MBytes/sec. Whereas for 2 disks, the throughput is about 4.5 Mbytes/sec. This shows that

the \declustering" of the �le data is very e�ective.

The throughput increases as the number of processors increases. Since each processor reads

the same data, as the number of processors increases, the total amount of shared data accessed

increases. However, the total time required to read the data increases slowly because one node's

read acts as a prefetch command for others.

Another interesting point to observe is that for a small number of processors, the e�ect of

the number of disks on the performance is negligible. That is, the performance is limited by the

bandwidth available at the computational node side rather than at the I/O subsystem side. Due

to system constraints thsese experiments are carried out for small processor sizes.

4.2.2 Mode 0: Burst I/O

Table 3 shows the performance of burst-mode read/write throughput as a function of number of

disks (processor size = 16). The speci�ed bu�er size at the application level is equal to the size of

the �le to be read/written. As we can observe, the performance improves as the number of disks

is increased. For a given processor grid size, the performance depends on two parameters, namely,

the �le size and the number of disks. For smaller �les (1 Mbytes/node), the performance saturates

for smaller number of disks (32 disks) and beyond which the improvements diminish. However, as

the �le size increases, the threshold number of disks for which performance improves also increases
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Table 3: Multinode (4*4) Burst Mode Throughput as a Function of Disk Volumes (Mode 0)

File size Bu�er size Disks Read (MB/s) Write (MB/s)

1M 1M 2 0.9329 0.748

1M 1M 16 5.88 3.069

1M 1M 32 11.11 3.147

1M 1M 64 11.21 3.506

4M 4M 2 0.74 0.603

4M 4M 16 3.630 2.0878

4M 4M 32 7.705 4.947

4M 4M 64 12.11 6.055

Table 4: Throughput of accessing 1 MB �le in Mode 0 (Burst Mode,64 Disks)

Mesh Size Write Rate(MB/sec) Read Rate(MB/sec)

4*4 3.506 11.21

4*8 5.421 11.75

8*8 7.027 11.672

8*16 3.314 11.766

16*16 3.244 11.813

16*32 2.839 11.992

as seen for the case of 4 MByte read/write per node.

Tables 4 and 5 presents the performance of burst mode I/O when the number of computational

nodes is varied from 16 to 512 (ND = 64). In general for burst I/O, good performance is obtained

and the saturation occurs due to bandwidth limitation of the I/O subsystem. Reads perform better

than writes. This is because reads can be performed from the I/O cache if a desired block exists

in the cache due to an access by some other processor. However, all writes must be written onto

the disks. The di�erence between paged and burst I/O performance is not signi�cant because the

system bandwidth is not limited.

Table 5: Thoughput Rates of accessing 2 MB �le in mode 0(Burst Mode)

Mesh Size Write Rate(MB/sec) Read Rate(MB/sec)

4*4 4.37 10.51

4*8 3.89 11.73

16*16 2.860 12.103

16*32 3.678 23.83
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Figure 6: Read for Grid Size 4*4

4.2.3 Modes 1, 2 and 3 : Paged I/O

These modes are useful for accessing data when the data set is distributed over multiple nodes.

The �rst experiment was used to observe the e�ect of di�erent modes and the number of disks.

In this experiment a data �le of size 16 Mbytes was read using modes 1, 2 and 3. As Figure 6

shows, for a 4*4 processor grid the maximum throughput is obtained for mode 3 and with 64 disks.

The peak rate in this case is 5.5 Mbytes/sec. For mode 1, the peak speed is 5.12 Mbytes/sec. The

lowest �le read throughput is observed for mode 2.

Another important point to be noted is that as the number of disks decreases, the read through-

put decreases. As the number of disks is decreased below a threshold (in this case 16 disks), the

read rate reduces drastically. Hence, the optimal operating point in terms of cost-performance (no.

of disks versus the throughput) will be near the knee of the curve.

In the next experiment, we use 64 disks ( maximum available) and vary the number of processors.

For this experiment, a 16 M �le was read using a 4K bu�er.

Figure 7 shows that as the number of processors increases the read throughput increases. The

highest read throughput was obtained for 64 processors. Modes 1 and 3 perform comparably. The

maximum read rate for mode 1 was 10 Mb/sec, while for mode 3, it was 9.8 Mb/sec. Due to access

ordering and synchronization costs, mode 2 performs worse than the other modes for all cases.

As the number of processors increases, the amount of data read per processor decreases. Hence,

the individual processors require less time to read. In other words, the available bandwidth at
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Figure 7: Reading a 16M File using 4K Bu�er for 64 Disk Volumes

the computational node side increases resulting in an increase in the throughput. However, as the

number of processors increases, the rate of increase in the throughput decreases indicating that the

bandwidth limitation shifts to the I/O system side.

For studying the performance of each I/O mode in some more detail, we performed three

additional experiments in which the number of processors and the number of disks were varied.

For these experiments, a 16 MB �le was opened and read by varying number of processors. Figures

8, 9, 10 show the e�ect of varying disk volumes and number of processors for di�erent I/O modes.

Figure 8 shows the performance of the �le system for mode 3. The peak read performance is

obtained for 64 disk volumes. This �gure also shows that the throughput is proportional to the

number of processors. For a 64 processor grid, a 16 MB �le was read at 10 MB/sec. For the same

grid size, if the �le is stored on 2 disk volumes, the read rate drops to about 900 KB/sec.

Note that as the number of processor is increased, the knee of the curve is observed at di�erent

points for di�erent number of disks. Hence, as indicated earlier, the choice of number of disks

depends on how many processors will be involved in an access. More experiments need to be

performed to relate this performance to di�erent �le sizes. Note that the knee of the curve in these

experiments signi�es a point indicating the bandwidth limitation shift from the computational

nodes to the I/O system.

Figure 9 shows the results for the same experiment for mode 2. The graph shows nearly same

trends as observed for mode 3. However, for mode 2, the peak rate obtained was 7MB/sec for

Northeast Parallel Architectures Center at Syracuse University



To be appear in International Conference on Supercomputing 1993 Draft

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70

Mb/s

No. Of .Processors

'2-disks'
'4-disks'
'16-disks'
'32-disks'
'64-disks'

Figure 8: Multicompute Nodes Read (Mode 3 and 16 Mbytes File)

64 processor grid. Note that the performance in mode 2 is sensitive to the order of arrival of the

requests because requests must be served in a �xed order. Therefore, we observe a less smooth

curve as compared to that for mode 3.

Figure 10 shows the performance of the multicompute nodes for the mode 1. The peak through-

put is 10 MB/sec and lowest observed throughput is 900 KB/sec. Note that mode 1 serves requests

in the order of arrival and does not require synchronization for each processor to �nish before going

to the next phase. Therefore, it performs slightly better than mode 3 (which requires synchro-

nization). Therefore, mode 1, is useful for log-structured �les or for those computations in which

order of accesses does not matter. For example, if the compute nodes perform a search operation

in a �le, they can access the �le in a self-scheduling mode for which mode 1 will provide the best

performance.

4.2.4 Modes 1, 2 and 3: Burst I/O

Tables 6 and 7 present a summary of results obtained for reads and writes using burst-mode

I/O for various system con�gurations. The number of processors was varied form 32 (8*4 mesh)

to 512 (16*32 mesh). Each processor accessed 1 Mbytes of data, and therefore, the resulting

�le size varied from 32 Mbytes to 512 Mbytes. Clearly, burst mode I/O is preferable for large

�le accesses. Furthermore, a consistent performance is observed over a wide range of processor

con�gurations. However, beyond 256 processors (actually, between 128 and 256) the I/O system
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Table 6: Read Throughput in Mbytes/sec (Burst Mode)

Mesh Size Mode 1 Mode 2 Mode 3

8*4 8.447 8.159 8.144

8*8 4.817 8.310 9.602

16*8 8.715 8.6821 8.891

16*16 6.519 7.18 7.169

16*32 6.21 6.742 6.944

Table 7: Write Throughput in Mbytes/sec (Burst Mode)

Mesh Size Mode 1 Mode 2 Mode 3

8*4 4.19 4.310 3.217

8*8 3.622 4.28 3.907

16*8 2.60 3.1545 2.862

16*16 2.53 2.4255 2.479

16*32 2.40 1.9845 2.286

becomes a bottleneck resulting in degraded, but still a comparable performance. It should be

observed that read rates were normally 2 to 3 times faster than the write rates.

5 Array Distribution Results

In large-scale scienti�c and engineering applications, parallelism is exploited by decomposing the

input domain (representing the physical domain model, normally represented by multi-dimensional

arrays). However, for load-balancing, expressing locality of access, reducing communications and

other optimizations, several decompositions and data alignment strategies can be used

In order to enable a user to specify the decomposition, Fortran D [FHK+90], and subsequently

High-Performance Fortran [For93], have been proposed. The important feature of these exten-

sions is the set of directives that allow a user to decompose, distribute and align arrays in the

most appropriate fashion for the underlying computation. The data distribution directives include

BLOCK, CYCLIC and BLOCK CYCLIC distributions (along any dimension of an array).

In this section, we study the performance of the CFS when the processors access �les based on

the data distributions. Note that the �le provides a linear map (e.g. column major) of multidimen-

sional data. Therefore, the number of I/O requests depend on the speci�ed data distribution on

the nodes as shown in Table 8. In this experiment a square character array was distributed across

the processors. The array were stored in a column-major form on the disks. The smallest size used
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Table 8: Number of I/O requests as a function of data distributions

1-D Distribution 2-D Distribution

Distr. Type No. Of Req. Data per Req. Distr. Type No. Of Req. Data per Req.

Column Block P N
2

P
Block-Block N �

p
P

Np
P

Column Cyclic N N Block-Cyclic N �
p
P

Np
P

Row Block N*P N

P
Cyclic-Block N

2 1

Row-Cyclic N
2 1 Cyclic-Cyclic N

2 1

was 1*1Kbytes and the maximum array that was distributed was 20*20 Kbytes (400 Mbytes). For

each mesh size, the array was distributed in four ways,column block, column cyclic, row block and

row cyclic.

The following is a summary of experimental results.

� Column Block: The column-block distribution implies that the matrix data is distributed

along its second dimension onto the processor array. This distribution also conforms with

the column-major data distribution over the disk. It requires a single application level I/O

request per processor and each processor node can read the entire distributed data in one

I/O access. The time required to distribute the data column-wise scales with the number of

processors for a portion of the con�guration space.

Table 9 contains the data for a column-block array distribution. The table shows the size of

the array, the number of processors participating in the read, the transaction completion time,

and the observed bandwidth. For small size arrays and the number of nodes, the bandwidth

of the I/O system is underutilized. As the data size and the number of processors increase,

the I/O bandwidth is more e�ectively utilized. However, beyond a certain point, the I/O

system becomes a bottleneck due to the large number of processors performing I/O, and the

need for synchronization.

The read rate increases quickly in proportion to the processor grid size, but plateaued at

about 64 processors. Degradation in the performance was observed after 256 processors due

to a large synchronization overhead. Performance for the small request (1K*1K) case was

poor.

� Column Cyclic: Table 10 shows the read access times for the same parameters but with

a column-cyclic data distribution on processors. Even though the degree of parallelism in

the data access remains the same, the number of I/O requests increases (Table 8) because

each processor must make an individual request for each column. This degrades the access

time and the bandwidth as illustrated in Table 10. The degradation in the performance in
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Table 9: Array Distribution (Column Block) Throughput in MBytes/sec (ND = 64)

Array Size Mesh Size Rate (Mode 2) Rate (Mode 3)

1K*1K 4 2.141 2.32

4K*4K 4 4.198 7.048

5K*5K 16 5.098 7.44

4K*4K 64 5.179 6.498

5K*5K 64 6.476 7.521

10K*10K 256 7.038 7.65

20K*20K 256 5.7 5.861

10K*10K 512 5.232 5.51

20K*20K 512 5.517 5.63

Table 10: Array Distribution (Column Cyclic) Throughput in Kbytes/sec (ND = 64)

Array Size Mesh Size Rate (Mode 2) Rate (Mode 3)

1K*1K 4 160.84 229.72

2K*2K 16 1061.85 1527.3

4K*4K 16 1791.31 3057.51

5K*5K 64 1962.16 2191.63

10K*10K 256 846.92 856.43

20K*20K 512 1522.04 1581.15

consistent for all con�gurations and it ranges between a factor of 2 to 10 as compared to that

for column-block distribution.

� Row Block: Table 10 shows the performance for reading the data array when distributed in

a row-block fashion over the processor array. Since the one-dimensional map of the �le on

the CFS is in column major order, this read operation essentially requires transposing the

data while it is being read from disks to nodes. As shown in Table 10, the number of logical

request is N*P. Hence, as observed from Table 10, the performance degradation due to this

distribution is almost two orders of magnitude when compared to the performance of the

column-block distribution. We do not present performance �gures for larger con�gurations

(i.e. large array and system sizes) since the time it took to complete these experiments

exceeded practical limits. Thus, we merely conclude that performance for this distribution

was at least more than two orders of magnitude worse than the �rst two con�gurations. The

peak bandwidth obtained was 0.69 Mbytes/sec. This is only 30% of the slowest case (the 1*1

Kbytes case) for the column-block decomposition of Table 9 above. Further, the 1K*1K case

for this distribution is 39 times slower than for the equivalent column-block case.
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Table 11: Array Distribution (Row Block) For Modes 2 and 3 (ND = 64)

Array Size Mesh Size Mode Rates Kbytes/sec

1K*1K 4 2 56.23

2K*2K 4 2 123.84

4K*4K 16 2 114.09

5K*5K 16 2 142.34

1K*1K 4 3 58.64

2K*2K 4 3 154.04

4K*4K 16 3 224.70

5K*5K 16 3 273.11

� Row Cyclic: The row-cyclic distribution involved the largest number of I/O requests. Also

the request size was the smallest. It took approximately 15 minutes to distribute 1K*1K

character array in row-cyclic order versus the 467 msec it would require in the column-block

form. This shows that the direct row distribution of an array is very slow, hence, not possible

in practice.

6 Conclusions

To summarize the results, we conclude that:

� The \declustering" of the �les improves the read and write performance of the �le system for

both single and multiple compute nodes.

� For single compute nodes, using the paged I/O mode, the read rate is higher than the write

rate. The �le access rates depend on the bu�er size used in �le access. For the �le read,

normally, as the bu�er size increases, the performance improves to a certain point. The

bu�er size which provides a reasonably good performance for various con�gurations is 4

Kbytes which is same as the block size and the stripe size. Currently, user has no control

over the block size and the stripe size. Further experiments are needed to study the e�ect of

stripe sizes.

� Using the burst-mode I/O, the �le access rates improve signi�cantly. It is observed that

in general the bu�er size for burst I/O access should be as large as possible for the best

performance.

� For the single compute node case, the position of the node in the Touchstone Delta mesh

does not a�ect the �le access times. This shows that the \inter-node" hops between the
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compute nodes are very small. This shows that there is no possible overhead in using the

communication network for the I/O transactions.

� For the multiple nodes case, the data accessed depends on the modes of �le access. Mode

0 should be used for reading the shared data, whereas modes 1 to 3 should be used for

data distributions. The access throughput depends on the number of processors and it also

depends on the total number of disks on which the data is stored. The performance increases

initially as the number of processors increase then it remains steady. In general, for small

processor grids, the bandwidth is limited on the computational node size, but as the number

of processors is increased, it shifts to the I/O system. the point at which this shift occurs

depends on the number of processors as well as on the number of disks.

� For the multinode con�guration, the performance can be further improved by using the burst

mode of operation. Using a large bu�er size (2 MBytes) for mode 0, the peak performance of

23.83 MBytes/sec is observed. For the same mode, the peak write rate is about 7 MBytes/sec.

For the remaining three �le access mode, burst mode gives a better performance than the

paged I/O mode.

� The choice between various modes (except mode 0) depends on the type of access pattern

and data organization. Mode 2 should be used only when the size of data access can vary and

cannot be determined in advance. Mode 3 should be used if access size is known in advance.

Mode 1 should be the choice when order of access is not important because mode 1 does not

improve global synchronization.
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