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Abstract

We consider computations associated with data parallel iterative solvers used for the numerical

solution of Partial Di�erential Equations (PDEs). The mapping of such computations into load

balanced tasks requiring minimum synchronization and communication is a di�cult combinatorial

optimization problem. Its optimal solution is essential for the e�cient parallel processing of PDE

computations. Determining data mappings that optimize a number of criteria, like workload balance,

synchronization and local communication, often involves the solution of an NP-Complete problem.

Although data mapping algorithms have been known for a few years there is lack of qualitative

and quantitative comparisons based on the actual performance of the parallel computation. In

this paper we present two new data mapping algorithms and evaluate them together with a large

number of existing ones using the actual performance of data parallel iterative PDE solvers on the

nCUBE II. Comparisons on the performance of data parallel iterative PDE solvers on medium and

large scale problems demonstrate that some computationally inexpensive data block partitioning

algorithms are as e�ective as the computationally expensive deterministic optimization algorithms.

Also, these comparisons demonstrate that the existing approach in solving the data partitioning

problem is ine�cient for large scale problems. Finally, a software environment for the solution of

the partitioning problem of data parallel iterative solvers is presented.

1 Introduction

Partial Di�erential Equations (PDEs) are the fundamental mathematical tool for describing the phys-

ical behavior of many applications in science and engineering. Most of the existing PDE software

systems deal primarily with the solution of speci�c classes of PDE problems on sequential or vector

machines. The techniques and software tools developed and analyzed in this paper have been applied

to general second order elliptic PDEs de�ned on 1, 2 and 3 dimensional domains. They can easily be

extended to computations associated with the numerical simulation of more complicated \steady-state"

mathematical models. The structure of the PDE problem assumed throughout this paper is depicted

in Figure 1.
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part by NSF grant CCR86-10817, AFOSR grant F49620 and Alex G. Nason Foundation at Syracuse University.
yWork supported in part by NSF grants CCR 86-19817, CCR 92-02536, and AFOSR grant 91-F49620.



Figure 1: The components of a typical continuous PDE problem and example of continuous domain D

in R2. The PDE equation Lu = f is satis�ed within the interior D and the boundary conditions Bu =

g are satis�ed on the boundary @D of D.

There are two general parallel methodologies for solving PDEs on distributed and shared memory

MIMD machines. The �rst methodology is based on the decomposition of the continuous PDE domain

D into non overlapping substructures or subdomains (see [GGMP88], [CSS86], [CR87] and [KG87]).

The original PDE problem is reduced to a set of \smaller" PDE problems de�ned on each subdomain

where auxiliary conditions have been \arti�cially" extended on the interior subdomain interfaces. The

components of the decomposed PDE problem are depicted in Figure 2.

Figure 2: The components of the decomposed PDE problem based on the splitting of the domain D

into a substructure of domains Di.

Continuity or smoothness of u at the subdomain interfaces is usually required; these requirements are

usually handled by an iterative technique over the subdomains. The proof of the equivalence of the

decomposed PDE problem to the original one is not trivial. It depends very much on the arti�cial

conditions employed and the operator L. The theoretical results in this area are limited

The second methodology is based on the decomposition of the mesh or grid Dh of the PDE domain

which results into a splitting of the corresponding algebraic data structures consisting of the discrete

equations corresponding to the node or grid points of the subdomain and their interfaces (boundary).

Figure 3 describes the decomposition of the discrete PDE problem. Throughout this paper, we refer to

the �rst approach as the continuous domain decomposition approach and the second one as the discrete

domain decomposition approach for partitioning PDE problems.

The computation associated with data parallel iterative PDE solvers that preserve the ordering
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Figure 3: The components of the decomposed discrete PDE problem based on the splitting of the mesh

or grid Dh used numerically. This discrete mesh is partitioned by interfaces nodes (shown as circles)

into discrete subdomains Dh
i

of the corresponding sequential computation is loosely synchronous [Fox91]. The programming model

for loosely synchronous computations is single-program-multiple-data, where parallelism is achieved

by partitioning the underlying geometric data (continuous or discrete) of the PDE problem and al-

locating the disjoint subproblems or subcomputations to the processors. During each iteration the

processors perform : (i) an exchange of local data (interface unknowns) with the processors that

handle geometrically adjacent subdomains in order to enforce continuity requirements for the PDE

solution (local synchronization/communication) (ii) an execution of matrix-vector operations (local

computation) on the local subdomain data, and (iii) an evaluation of stopping criteria and accelera-

tion of the convergence (global synchronization). The high performance of these solvers on distributed

memory MIMD machines depends on the minimization of the local and global communication time

and synchronization delays, assuming that the local computations properly use the memory hierarchy

(registers-cache-memory) of each processor. The global communication time depends on the e�cient

hardware/software implementation of reduction operations. During the last �ve years such operations

have been identi�ed and studied extensively (see in [JH89], [SS89], [SW90], and [FK89]) and as a result

there are implementations for these operations on the commercially available parallel machines.

In this study we focus on the minimization of the local communication time per iteration. The

local communication time depends both on data partitioning characteristic like interface length and

degree of connectivity of the subdomains, and machine characteristics like the interconnection network

and routing. The data partitioning problem is NP-Complete [GJ79] and many heuristic methods have

been proposed for �nding good suboptimal partitions of the data. These heuristics are divided into

three classes, namely, data clustering, deterministic optimization and stochastic optimization. The

rest of the paper is organized as follows. First, in Section 2, we describe the data mapping problem

for the parallel PDE iterative solvers. In Section 3 we summarize the data partitioning algorithms.

A brief high level description of the parallel iterative PDE solvers pertinent to the data partitioning

problem is presented in Section 4. Sections 5 and 6 describe two new data partitioning algorithms.

Section 7 evaluates most of the existing clustering and deterministic data partitioning algorithms.

In Section 8 we present an interactive software environment for the manipulation and visualization
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of data partitionings for 2-dimensional iterative PDE solvers. We conclude with a discussion of the

evaluation of data partitioning algorithms. The evaluation of di�erent partitions is based on the actual

performance of the Jacobi Semi Iterative (Jacobi-SI) method [CHK+92].

2 Data Mapping Problem

The objective function for the mapping of a mesh M (or grid) onto a distributed memory MIMD

machine so that the workload of the processors is balanced and the required communication and

synchronization among the processors is minimum, can be formulated by :

min
m

max
1�i�P

f W (m(Di)) +
X

Dj2CDi

C(m(Di); m(Dj)) g (2:0)

where Di is the set of mesh points (subdomain) that are assigned to the same processor, CDi
is the set

of the subdomains that are adjacent to the subdomain Di, m : fDig
P
i=1 ! fPig

P
i=1 is an assignment

function that maps the subdomains to processors,W (m(Di)) is the computational load of the processor

m(Di) per iteration, which is related to the number of mesh points in Di, and C(m(Di); m(Dj)) is

the communication required (per iteration) between the processors m(Di) and m(Dj), and P the

number of available processors of the target parallel machine. The synchronization of the processors

is a nonlinear correlation of computational and communication work-load and overlapping. In the

case of data parallel PDE iterative solvers without the overlapping between the computation and the

communication phases the synchronization term in equation (2.0) is included in W (m(Di)).

One approach to solve the optimization problem (2.0) is to approximate its of the objective function

(2.0) by another function which is smoother, more robust and suitable for the existing optimization

methods [Fox86a], [FOS88], [Wil90] and [Man92]. A second approach is to split the optimization prob-

lem into two distinct phases corresponding to the partitioning and allocation of the mesh [CHENHR89],

[CHH90], [Chr92] and [Sim90]. In the partitioning phase we decompose the mesh (or grid) in a pre-

speci�ed number (usually equal to the number of processors) of subdomains such that the following

criteria are approximately satis�ed:

(i) the maximum di�erence in the number of active mesh (or grid) points of the subdomains is

minimum,

(ii) the ratio of the number of active interface points to the number of active interior points for each

subdomain is minimum,

(iii) the number of subdomains that are adjacent to a given subdomain is minimum,

(iv) each subdomain is a connected domain.

In the allocation phase the these subdomains are assigned to processors such that the following objective

is satis�ed:

(v) the communication requirements of the underlying computation between the processors of a given

architecture are minimum.

For a given discrete domain Dh with N mesh points, the merit of a partition into P non-overlapping

subdomains fDig
P
i=1 is characterized in terms of the set of geometrical adjacent subdomains CDi

to

subdomain Di and the number of the interface mesh points, c(Di; Dj), shared by the subdomains
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Di and Dj . Then, the optimal partitioning, as de�ned by criteria (i) to (iv), can be viewed as the

one which simultaneously minimizes :

max
1�i;j�P

j jDij � jDj j j (2:1)

max
1�i�P

f
(
P

Dj2CDi
c(Di; Dj))

jDij
g (2:2)

max
1�i�P

jCDi
j (2:3)

where jDij is the size of the subdomain Di and it is de�ned as the cardinality of the set of mesh points

that belong in Di.

3 Overview of Data Partitioning Algorithms

In this section we identify the three classes of data partitioning algorithms, namely, data clustering,

deterministic optimization and stochastic (or physical) optimization and discuss some examples..

Data Clustering Algorithms

The objective of a data clustering algorithm is to group the mesh points into clusters such that the

points within a cluster have a high degree of \natural association" among themselves while the clusters

are \relatively distinct" form each other. In our case, the \natural association" is expressed in terms of

the locality properties of the �nite element and �nite di�erence stencils that are used to approximate

a continuous PDE operator, and the \relative distinction" is expressed in terms of the address space

that is associated to the unknowns of the mesh or grid points that belong in the same cluster.

The simplest, oldest and one of the most e�ective data partitioning methods is to sort the geometric

or topological mesh data in some direction and then partition the resulting ordered sequence of nodes

into P-groups, where P is the number of available processors. The sorting of geometric data like the

coordinates of node points, the coordinates of the sector origin of the elements, and the coordinates of

the centroid of the elements of a mesh have been considered by many researchers (see [Bok81], [SE87],

[FOS88], [LF90] and [PAF90]). This idea is referred in the literature under di�erent names, some of

them are : one-dimensional (1D) strip partitioning, two-dimensional (2D) strip partitioning, multilevel

load balanced method, median splitting, and sector splitting. Throughout this paper, we refer to this

clustering algorithm as a block partitioning algorithm. In the case of 2-dimensional domains the block

partitioning algorithm is called P�Q partitioning algorithm, where P is the number of subdomains

(blocks or strips) along the x-axis, Q is the number of subdomains (blocks or strips) along the y-axis,

and P � Q = P. Some of the advantages of the P�Q partitioning algorithm are that it satis�es criteria

(i) and (ii), it is not sensitive to a prede�ned enumeration of the nodes (or elements), and it is suitable

for the mapping of the subdomains onto a linear array and 2D-mesh architectures. Its disadvantage

is that it usually partitions a non-convex domain into disconnected subdomains. In this paper we

present a block clustering method that avoids this disadvantage for star-shape domains - a large class

of non-convex domains. Figure 4 illustrates the partitioning of triangular meshes of a semi-annulus 2D

non-convex domain using (a) 1�8 and (b) 4�4 algorithms.
A generalization of the block data partition method is scattered decomposition [MO87] which consists

of the following two steps : (i) embed the machine's interconnection graph into a two-dimensional

processor lattice and (ii) cover the mesh with several copies of this processor lattice. Its advantage is

the ability to map a large class of irregular scienti�c computations without ever analyzing them (see
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(a) (b)

Figure 4: (a) Partition of a discretized semi-annulus domain using the 1�8 partitioning algorithm. (b)

Partition of a discretized semi-annulus domain using the 2�4 partitioning algorithm.

[CT88]) and it is inexpensive ( by using lattices of �ne granularity). Its main disadvantage is the higher

communication cost due to �ne granularity of the mapping (see [CT88] and Section 7).

Another class of data clustering heuristics is based on reorderingmethods developed to solve the �ll-

in problem [GL81]. These problems are NP-Complete [Gil80]. See [LS76], [Geo73], [GL78], and [GM78]

for the following methods : Cuthill McKee, reverse Cuthill McKee, automatic nested dissection, and

minimum degree. Generalizations of these algorithms appear in [Gil80] and [Liu89b] which can be used

to partition a mesh intoP connected submeshes (P-way partition) . A generalization of these techniques

for connected graphs has been made by Farhat [Far88] who presented a greedy algorithm based on the

rooted level structure scheme. Throughout this paper we refer to this algorithm as the CM-Cluster

algorithm. It produces load balanced partitionings with a minimum amount of interface points among

the subdomains and handles domains with irregular geometry and arbitrary discretization, but it may

generate disconnected partitions. In [ANN90], Al-Nasra et al. improve the CM-Cluster algorithm

by using both the topology and the geometry of the mesh to avoid disconnected subdomains. The

improvement introduces an additional weight for the nodes based on the calculation of the long and

short directions of the two dimensional domain. The new weight !i of the ith node is

!i := ci +P2 � (
�

f
) � (

f

g
� 1)

where ci is the node connectivity (i.e., the number of adjacent nodes to ith node) , � is the step size

of the mesh along the long direction of the smallest rectangular, say R of size a� b, that encloses the

domain, f := max fa; bg, and g = min fa; bg.
Finally, a divide-and-conquer class of algorithms, recursive bisection [Fox86b], [Sim90], [Wil90],

[Man92], [S92] and [Chr92], have been used as data clustering algorithms. These algorithms bisect of a

mesh by using either the coordinates of the mesh (or grid) points [Fox86b] or a rooted level structure

or the spectral properties of the Laplacian matrix [Sim90]. The Laplacian matrix L(M) of a mesh M is
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de�ned as :

Li;j(M) =

8><
>:

+1 if vertex i and j are joined by an edge (i,j)

�degree( of vertex i ) if i = j

0 otherwise

Deterministic Optimization Algorithms

A general approach for combinatorial optimization problems is local (or neighborhood) search [PS82].

Each feasible solution is associated with a cost which is to be optimized locally. Local search algorithms

require the de�nition of a neighborhood structure for each feasible solution, i.e., a �nite set of neighbors

which are in some sense \close". For example, in partitioning the �nite element mesh M , an obvious

neighborhood of a given partition (M1;M2) of M is the �nite set f(M1i;M2i); where M1i ;M2i are

connected meshes and M1i = (M1�fxg)[fyg and M2i = (M2�fyg)[fxg with y 2M2 and x 2M1g.

The only di�erence between various local search algorithms is in the de�nition of their neighbor-

hood structures. Since the problem of partitioning the nodes of a mesh or grid is the same as the

partitioning problem of a general graph, the neighborhood structures that have been de�ned for the

graph partitioning problem can be used for the partitioning of PDE computations based on the discrete

geometry of the physical domain.

See [KL70], [Got81], [PK89] and [TZTS92] 1) for some of the neighborhood structures for the graph

partitioning problem that appear in the literature. The simplest neighborhood structure for a given

2-way partitioning (A, B), is the set :

Ns(A;B) = fall partitionings A�; B� that can be obtained from the

partitioning A, B by a single swap operation g,
where the swap operation of forming A�; B� is de�ned by :

A� = (A n fag)[ fbg, and B� = (B n fbg)[ fag
with a 2 A and b 2 B. Kernighan and Lin (KL) in [KL70] generalized the above idea by replacing

a single swap operation with a sequence of swaps. At each step of the algorithm, the swap involving

a pair of unswapped vertices is chosen that yields the best cost. As Figure 5 illustrates the �rst few

swaps might worsen the initial partitioning but they will help the local search to climb out of some local

minima. The algorithm stops at any point where no improvement can be made by further swapping.

A more complicated generalization by Satoshi Goto [Got81] replaces the pairwise swapping with

an interchange of more than two vertices at the same time. The same extension can be used to de�ne

neighborhood structures for the P-way graph partitioning problem. Finally, Lee et al. [PK89] and Tao

et al. [TZTS92] present a transformation of the bisection (and P-way) graph partitioning problem into

the max-cut problem.

Stochastic (or Physical) Optimization Algorithms

Finally, the third class of heuristics are the stochastic optimization techniques which are not evalu-

ated in this paper. These include the physical optimizationmapping algorithms [Mans 92] and simulated

annealing (SA) technique [KGV83]. Several authors [Fox86b], [FOS88], [Wil90], and [Man92] have ap-

plied this technique to the data partitioning problem. These techniques tend to be computationally

very intensive [Wil90]. Another alternative is to use Hop�eld neural networks [Hop82] whose objective

is to minimize an energy function associated with the combinatorial problem. In [Fox86b], [HKB90]

and [Man92] various arti�cial Hop�eld neural networks have been developed for the solution of the

data partitioning problem. This approach also tends to be computationally very intensive.

1These algorithms have a longer history, some were discused in the elementary text Introduction to Computer Science,

John R. Rice, 1969 and were analyzed mathematically in the early 1960's by Stanley Reiter.
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Figure 5: Performance of local search to reduce the size of the separator (number of interface points).

4 Data Parallel Iterative Solvers

We want to minimize the synchronization and communication costs of the data parallel PDE iterative

solvers [CHK+92] based on discrete domain decomposition methods by �nding an optimal solution

for the partitioning and the allocation of the computation to the processors of a distributed memory

MIMD machine. The structure of these computations is inherently parallel and suitable for MIMD

machines. Figure 6 suggests a formulation of our approach implemented in the parallel ELLPACK

system [HRC+90] using the nCUBE II machine.

Assumptions

First, we assume that the targeted parallel machine consists of a network of processors connected

by communication links. Each processor exchanges information in packets whose lenghts vary from a

few tens of bytes [nCU91] to several thousands of bytes [iPS90]. The bytes of a packet are consecutively

transmitted without interruption. Sending or receiving a message stored in a bu�er is the transmission

of a number of packets. The local memory of each processor is used for storing some problem data and

intermediate results (local data structures).

Communication requirements of the data parallel PDE iterative solvers

The iterative PDE solvers of a linear system of algebraic equations can be reduced to matrix-

vector multiplication operations (see [HY81] and [KRYG82]). The operations consist of two steps :

(a) the local communication of data between subdomains and (b) the local computation (see [FJL88],

[CR92]). Throughout this paper, we also refer to it as local synchronization. A high level view of the

steps of an iterative solver (that preserves the ordering of the corresponding sequential computation)

for the discrete domain decomposition methods pertinent to the data mapping issue is : (i) Local

Synchronization, (ii) Local Computation, and (iii) Global Synchronization. In this work we address

only the local synchronization issue and not global synchronization. The local synchronization consists

of an exchange of messages between the processors of the parallel machine; the messages transfer some

of the local data (i.e., interface unknowns) required by the neighbor subdomains, see Figure 3. The

local computation mainly consists of matrix-vector and vector-vector operations. Finally, the global

synchronization consist of reduction operations that are required for the acceleration of convergence

and for the checking of stopping criteria [CHK+92].
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Figure 6: A problem partitioning and allocation methodology for PDE solvers on MIMD machines

based on the domain decomposition approach.

The local synchronization mechanism used is as follows :

1. Tcopy : Copy inner interface unknowns from local data structures to a bu�er.

2. Tsend : For each Dj 2 CDi
send Sbuffer(j) to the processor m(Dj)

3. Trecv : For each Dj 2 CDi
receive Rbuffer(j) from the processor m(Dj)

4. Tcopy : Copy the outer interfaces Rbuffer(j) 8Dj 2 CDi
to local data structures.

The execution time of the local synchronization scheme is analyzed as follows. The execution time for

the processor m(Di) is decomposed into three components, namely the time to send (Tsend) a set of

messages to processors �(m(Di)) = fm(Dj) processor; where Dj 2 CDi
g, the time to copy (Tcopy)

the local data structures into and from a bu�er, and the time to receive (Trecv) the messages from the

set of processors �(m(Di)). Thus, the total local synchronization time is modeled by :

T
m(Di)
LS = 2Tcopy + Tsend + Trecv (4:1)

In this relation the Tsend is the time required by the processor to assemble the message and move

it to the appropriate bu�er. This includes tasks like appending and addressing information as well

as selecting a link on which to transmit the message. Tsend depends on architectural parameters like

packet or circuit switching mechanisms, the size of the message bu�er, and resource management , as

well as on problem parameters like the number of neighbor subdomains (i.e., j CDi
j) and the number

of interface points (i.e.,
P

Dj2CDi
c(Di; Dj)). The time Tcopy mainly depends on the interface length

(i.e.,
P

Dj2CDi
c(Di; Dj)). Finally, the time Trecv depends on all the factors of Tsend plus any delays due

to the messages not being ready to receive; note that for almost all commercially available distributed

memory MIMD parallel machines the receive operation is a blocking operation.
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There are two ways to minimize the processors' idle time due to the blocking of the receive operation

and due to the di�erence in actual and expected order of message arrivals. The �rst obvious way is

to order the messages of each processor so that the actual and expected orders of message arrivals are

identical. The computation of such an ordering scheme is yet another di�cult optimization problem.

We feel that the preprocessing overhead is too high for this approach.
A simpler and less expensive way to implement Trecv is to use primitives like ntest [nCU91] and

busy-wait mechanisms. The following algorithm demonstrates a run time ordering scheme which min-
imizes the message passing idle time in the processors m(Di) by slightly increasing its computation by
few cycles (ntest execution time).
Run Time Ordering Scheme :

1. isrc = �1

2. for i = 1 to CDi

3. while ((isize = ntest(isrc, isize) > 0)

4. get message form source isrc

5. set isrc = -1;

6. endfor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Processors

9500.0

19500.0

29500.0

Cy
cle

s

Compile time ordering
Run time ordering

(a) (b)

Figure 7: (a) A 4�4 partitioning of a rectangular domain. (b) Performance comparison of run time

(squares) and compile time (circles) ordering of message arrivals for this problem on a 16 node nCUBE

II.

Figure 7b illustrates the performance of the receive operation for two di�erent implementations and

the 4�4 partition of a rectangular domain (7a). The partitions of a moderate sized problem (27,000

equations) are mapped using 2-dimensional gray code (optimum mapping). The �rst implementation

(shown with circles) is a blocking compile time ordering of the local messages and the second one

(shown with squares) is a non-blocking run time ordering using busy-wait and primitives like ntest and

nread of the nCUBE II or irecvc on the iPCS/860 and DELTA machines. The non-blocking run time

FIFO mechanism is cheaper than the compile time ordering of the local messages by 10,000 cycles.
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5 Data Block Partitioning Algorithm

The failure of the P�Q data partitioning algorithm to always produce partitions with connected

subdomains is the result of the choice of attributes (Cartesian Coordinates) used for the clustering.

We propose to replace the Cartesian coordinates of the nodes by attributes that characterize the

boundary shape (geometry) of the physical domain, namely by attributes associated with the curvilinear

coordinate system that is de�ned by a boundary-value problem on the physical domain. This idea is

used in numerical mesh generation [TWM85] and provides the key to remove the problem of boundary

shape from data partitioning algorithms. Examples are seen in Figure 8, where on the left, the clustering

of the nodes is �rst along the x�-axis and then along the y�-axis of the coordinate system (x�; y�) de�ned

by the following transformation : "
x�

y�

#
=

"
1 1

1 � 1

# "
x

y

#

On the right, cylindrical coordinates (r, �) are used, where r(x; y) =
p
(x2 + y2); �(x; y) = tan�1 y

x
:

We can use boundary-conforming curvilinear coordinate systems to generalize this heuristic for more

general 2D (or 3D) star-shaped [Prep 88] domains as follows. For P = P�Q processors : (1) sort the

node points (or elements) along the coordinate lines conforming to the boundaries (analogous to the

way in which lines of constant radial coordinate coincide with circles in cylindrical coordinate system),

(2) group the node points (or elements) into P subgroups, and (3) sort the points of each subgroup

along the other curvilinear coordinate (analogous to the angular coordinate in the cylindrical coordinate

system). This coordinate varies monotonically along the boundary. Finally, group the node points (or

elements) of each of the P subgroups into Q subgroups. Figure 9 illustrates the curvilinear lines of a

2D curvilinear coordinate system and shows a 16-way partitioning based on these curves. We call this

the boundary conforming P�Q algorithm. This algorithm seems to appear expensive since we solve one

PDE in the preprocessing step for solving another PDE. However the accuracy requirement in solving

the preprocessing PDE that de�nes the curvilinear coordinate system can be quite low. This makes

this approach feasible for practical use.

(a) (b)

Figure 8: (a) A 16-way partition based on attributes associated to (x�; y�) coordinate system and (b)

A 4-way partition based on the cylindrical coordinates.
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Figure 9: Block data partition based on curvilinear coordinate system de�ned by level curves of an

elliptic problem on the domain.

6 Geometry Graph Partitioning (GGP) Heuristic

This section presents a partitioning heuristic based on local search algorithms for Euclidean graphs.

The element mesh (or tensor-grid) of a 2D or 3D domain is an Euclidean graph, with vertices being the

node points and links being the edges of the elements. The matrix and domain decomposition methods

require quasi-uniform partitionings of the spatial domain with a minimum diameter. A partitioning

heuristic for arbitrary graphs, like the KL heuristic, is unable to use the geometric properties of

Euclidean graphs and produce partitionings appropriate for matrix and domain decomposition methods.

In [CHENHR89] we present the geometry graph partitioning (GGP) heuristic which uses the geometrical

properties of mesh graphs by using Euclidean metrics (see Figure 10) and minimizes the diameter of the

subdomains, thus it can deliver quasi-uniform partitions with the minimal diameter. Next we give an

improved (in terms of time and space complexity) version of the algorithm presented in [CHENHR89].

The partitioning problem of a discrete PDE domain is transformed into a graph partitioning problem

of an Euclidean graph (mesh graph). Then this graph is decomposed by the GGP algorithm. The

performance of the GGP algorithm is improved by representing the geometry and the topology of the

graph with two augmented open hash tables. These data structures guarantee the linear space and

quasi-linear time complexity of the KL and thus the GGP algorithm (see in [FM82] for more details

on time complexity.) The cost function that GGP algorithm minimizes is given by :

PX
k;`=1

X
ei2Dk

X
ej2D`

�(ei; ej) (6:1)

where �(ei; ej) = 1 if ei and ej are adjacent and in di�erent subdomains and �(ei; ej) = 0 otherwise.

The criteria (ii) and (iv) are imposed implicitly during the minimization of the objective function (6.1)

12



by seeking solutions that optimize certain function known as pro�t functions :

X
i

(!1f(ai; bi) + !2g(ai; bi)) (6:2)

where :

f(ai; bi) = 2
X
e2cai

�(ai; e)� jcaij+ 2
X
u2cbi

�(u; bi)� jcbij � 2�(ai; bi) (6:3)

and

g(ai; bi) = (
dai;cA
rA

� 1)� (
dbi;cA
rA

� 1) + (
dai;cB
rB

� 1)� (
dbi;cB
rB

� 1) (6:4)

These formulas use the following notation :

- jcaij and jcbi j are the number of vertices adjacent to the vertices ai 2 A, bi 2 B respectively,

- cA, cB are the mass center of the subdomains A, B (see Figure 10),

- dai;cA and dbi;cB are the distances between the elements ai, bi and the mass centers cA, cB
of the subdomains A, B respectively,

- rA, rB are the \ideal" radius of the subdomains A, B,

- !1 and !2 are positive weights.

The GGP algorithm's pro�t function is a weighted combination of the KL algorithm's pro�t function

f and the function g which selects pairs of nodes whose swap reduces the diameter of the subdomains.

The GGP algorithm climbs out of local minima of the objective function (6.1) by swapping points that

might increase temporarily the value of the objective function but will decrease the diameter of the

subdomains by bringing their mass centers far apart. The GGP algorithm is described in complete

detail in Appendix A.
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Figure 10: (a) Illustration of the Euclidean graph metric. The points cA and cB are the mass centers

of the subdomains A and B, dai;cA and dbi;cB are the distances between the elements ai and bi and

the mass centers cA and cB of the subdomains A and B, and rA and rB are the\ideal" radii of the

subdomains A and B, for a 2-way partitioning of a quadrilateral mesh. (b) The values of the cost

function (i.e number of interface points) and of the distance between the mass centers cA and cB of

the two subdomains for the 2-way partition using the GGP algorithm.
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7 Performance Evaluation of Data Mapping Algorithms

In this section we present the performance evaluation of the following six data partitioning algo-

rithms plus a comparison of the GGP and KL algorithms. The latter justi�es not including a KL based

recursive bisection method among the six algorithms evaluated carefully. The P�Q algorithm used

in the evaluation is the one originally described in Section 3 and not the boundary conforming P�Q
algorithm presented in Section 5. The latter will always be as good as the P�Q and in some cases be

substantial better. Preliminary evaluation supports this belief but a complete set of performance data

has not been collected similar to that given below for the six algorithms.

P�Q : Block partitioning along the x and y direction (Section 3).

1�Q : Strip partitioning along x or y direction (Section 3).

ScatDec : Scattered decomposition (Section 3).

CM-Clust : Clustering techniques based on an ordering of node points (Section 3).

RB : Recursive bisection based on 2-way rooted level structure (Section 3).

Hybrid : Recursive bisection using the GGP heuristic whose

initial 2-way partitioning is determined by CM-Clust (Section 6).

7.1 Comparison of the GGP and KL Partitioning Heuristics

An experimental comparison of the GGP algorithm with the KL partitioning heuristic shows that

GGP consistently returns, with less computation, partitionings whose separators are smaller. Figure

11a shows the evaluation of KL and GGP algorithms based on the quality of the partition (i.e., number

of interface points) and the e�ectiveness of the swap operations of the algorithms. Both algorithm

use as an initial partition the result of 1�2 algorithm (Figure 11b-top). Figure 11b also shows the

�nal partition produced by KL algorithm (center), and the �nal partition produced by GGP algorithm

(bottom).
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Figure 11: Comparison of the GGP and KL algorithms. The initial partition is at the top, the result

by KL algorithm is in the middle and by GGP algorithm is at the bottom. The e�ciency of these

algorithms is shown where the number of interface points is plotted as a function of the number of

swaps made.
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Figure 12 shows the partitions produced by KL algorithm (top middle) and GGP algorithm for di�erent

values of the weights !1 and !2. Both algorithms use as an initial partition the result of the CM-Clust

algorithm (top right).

Figure 12: A comparison of 2-way partitioning algorithms. The initial partition is shown at the upper

left corner. Three results (right top corner and bottom) for the GGP algorithm are shown with weights

!1 = 1 and !2 = 0, 1, and 4. The KL algorithm result (top-middle) and GGP without using the

distance criterion (i.e., !2 = 0) are not so good.

7.2 Machine-independent Evaluation

The evaluation of the six algorithms is divided into two phases, a machine-independent phase and

a machine-dependent phase. In the machine-independent phase we measure the relative satis�ability

of the criteria (i) to (iv) presented in Section 2, since the optimum solution of the data partitioning

problem is not known. In the machine-dependent phase, we �rst measure the impact of the di�erent

degrees of satis�ability of the load balance, the degree of subdomains connectivity and the number of

interface points on the local communication time of the data parallel iterative PDE solvers. Then we

measure the message passing overhead of the Jacobi-SI method for di�erent data partitions. All the

reported timing data re
ect the performance per iteration, since the convergence rate of data parallel,

point, semi-iterative methods does not depend on the data partition. The evaluation of the data

partition algorithms is performed on two model problems with a Poisson PDE operator and Dirichlet

boundary conditions (the data partition is independent of the PDE operator). The di�erence between

the two problems is in the complexity of the domain. The domain of the Model Problem A (Figure

13) is very simple 2-dimensional, almost convex domain, while the domain of the Model Problem B

(Figure 14) is an irregular non-convex domain with a hole. Another di�erence is in the size of the

triangular mesh and thus, the size of the computation. The mesh for the Model Problem A consists of

57,756 elements, 29,223 nodes and generates 28,535 equations, while the mesh for the Model Problem

B consists of 18,890 elements and 9,880 nodes and generates 8,981 equations.
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For Model Problem A the P�Q and boundary conforming P�Q are essentially identical so we

expect very little di�erence between their performance for this problem. Model problem B is just at

the limit of geometric complexity that can be handled easily by the boundary conforming heuristic.

The technique shown in Figure 8b does not quite work because the domain for this problem is not star-

shaped. One could make an ad hoc modi�cation for this domain to make the appropriate curvilinear

coordinate system. An examination of Figure 17a supports that the P�Q partition might be improved

substantially for criterion (iv), appearance of the splitting. The performance improvements in the other

criteria might be less substantial.

Figure 13: Model Problem A.

Figure 14: Model Problem B.

The evaluation of the data partitioning algorithms is based on the following indicators : a) the

minimum, average, maximum, and di�erence between the maximum and minimum number of equations

per processor. Note that the number of equations (or active node points) and not the number of total

mesh points is the indicator of the load balance. b) the ratio of the total number of interface points

to the total number of the points of the mesh, c) the ratio of the number of interface points to the

total number of points per subdomain, d) the average connectivity of the subdomains, e) the maximum

connectivity of the subdomains, and f) the splitting of the subdomains. The last criterion is evaluated

by inspection.

Most data partitioning algorithms in the literature balance the work-load of the processors by min-

imizing the di�erence between the minimum and maximum number of active and non-active mesh

points (
h). These algorithms ignore the boundary conditions (Dirichlet, Newmann, Mixed) of the

boundary points (@
h). In this paper the load balance of the data parallel iterative solvers is measured

by the di�erence between the minimum and maximum number of active mesh points only (i.e., equa-
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tions) per processor. This is possible by symbolically analyzing the boundary conditions of the PDE

problem. Table 1 indicates the load imbalance produced by the data partitioning algorithms using

only the active mesh points, while Table 2 indicates the load imbalances produced by the same data

partitioning algorithms using both the active and non-active mesh points. Table 1 shows that only the

data clustering algorithms produce partitions with perfect load balance. The optimization algorithms

using local search techniques are capable of preserving the load balance of total (active and non-active)

nodes of an initial partition (see swap operation, Section 3); but are not equipped with constraints to

keep the number of active mesh points in balance. A version of the GGP that uses the information

related to the boundary conditions of the node points and a swapping operation with additional con-

straints that enforce the balance of active node points is under development. Finally, Table 2 indicates

that none of the above data partitioning algorithms applied on all node points (active and non-active)

leads to the perfect load balance of the computation.

Table 1: The number of equations per processor for data partition algorithms applied only on the

active (non-boundary) points of the mesh for Model Problem A.

P�Q 1�Q ScatDec CM-Clust RB Hybrid

MINIMUM 444 445 428 445 402 391

AVERAGE 446 446 446 446 446 446

MAXIMUM 446 446 448 446 458 476

MAX � MIN. 2 1 20 1 56 85

Table 2: Indicates the number of equations per processor for data partition algorithms are applied on

active and non-active node points of the mesh for Model Problem B.

P�Q 1�Q ScatDec CM-Clust RB Hybrid

MINIMUM 107 101 109 86 76 117

AVERAGE 140 140 140 140 140 140

MAXIMUM 155 152 144 155 155 155

MAX � MIN. 48 49 35 69 79 38

Figure 15 shows the percentage of interface node points per subdomain as the number of processors

increases. This measure is the ratio of the number of interface points to the total number of points

which is closely related to the ratio of communication time to computation time. Figure 16 shows the

maximum and average degree of connectivity of the subdomains. Later we will see that subdomains

(processors) with high degree of connectivity have higher local communication due to startup latency,

edge/node contention and large di�erences in actual and expected message arrival times. Figure 17

shows two partitions for the Model Problem B and criterion f) is evaluated subjectively inspecting the

splitting. In this case, as usual, the Hybrid algorithm produces the partition most pleasing to the eye.

7.3 Machine-dependent Evaluation

The objective of data partioning algorithms is to distribute the mesh over the processors so that

the solvers spend minimum time in interchanging the data required for their local synchronization so

they must be evaluated by the actual performance of the data parallel solvers. In [Chr92] we found
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Figure 15: (a) The percentage of interface node points per subdomain and (b) the percentage of

interface node points in the total points for Model Problem B and the six data partitioning algorithms

listed above.
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Figure 16: The maximum degree (a) and average degree (b) of the decomposition graph for Model

Problem B and the six data partitioning algorithms listed above.
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(a) (b)

Figure 17: The subdomains produced by the 4�4 (a) and Hybrid (b) data partitioning algorithms for

Model Problem B.

that the performance of the solvers is independent of the allocation of the subdomains to processors

for small con�gurations (P � 64).

In this section we �rst examine the impact of the optimization of di�erent criteria on the message

passing overhead of the data parallel iterative solvers and then we evaluate the partitioning algorithms

with respect to the time spent by the parallel solver for message passing and delays due to load

imbalance.

Three measures for the performance of data parallel iterative solvers

We use three measures : (a) the impact of an uneven distribution of mesh points on the processors

work load for the nCUBE II machine, (b) the relationship between the connectivity of the subdomains

and the message passing overhead (2Tcopy + Tsend + Trecv) of the PDE solvers (see Section 4) , and (c)

the relationship between the number of interface points (size of the graph separator) and the message

passing overhead.

To measure the impact on the uneven distribution of the computation we use the Model Problem

A (see Figure 13) and the P�Q partition algorithm in two di�erent ways. In Case (I), we consider only

the mesh points that are active (i.e., the points which correspond to an equation), these points are all

the interior mesh points and the boundary points with boundary conditions other than Dirichlet. In

Case (II), we use the same algorithm but we consider all the mesh points (active and nonactive). Table

3 gives the performance measures for the two cases.

To measure the relationship between the connectivity of the subdomains and the message passing

overhead of the data parallel iterative solvers we use the P�Q partitioning algorithm and another

algorithm, Ext P�Q [Chr92], which is a simple modi�cation of the P�Q algorithm. The Ext P�Q

algorithm reduces the connectivity of the subdomains by uncoupling subdomain (i,j) from the subdo-

mains (i+1, j+1) and (i�1, j�1). The uncoupling takes place by properly extending the interfaces

of the other surrounding subdomains. Figure 18 shows the relationship between the message passing

overhead of the Jacobi SI method and the subdomain connectivity for P�Q and Ext P�Q algorithms

using the nCUBE II with 64 processors. There is very hight correlation between processors that handle
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Table 3: The impact of the distribution of the points is measured in terms of the number of actual

equations being solved per processor, and the resulting total elapsed time of the Jacobi-SI method used

on Model Problem A.

Case I Case II

MINIMUM 444 409

AVERAGE 446 446

MAXIMUM 446 457

MAX � MIN. 2 48

SOLVER TIME 11.53 11.67

subdomains with high connectivity and those that have higher message passing overhead and that the

pattern of the message passing overhead is dominated by the connectivity pattern of the subdomains.

6 12 18 24 30 36 42 48 54 60
Processor  ID’s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.0 + Connectivity x 0.1
1.0 + Number of Interfaces x 0.001
Local Communication  Time in seconds
Message Preprocessing  Time in seconds   

6 12 18 24 30 36 42 48 54 60
Processor  ID’s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.0 + Connectivity x 0.1
1.0 + Number of Interfaces x 0.001
Local Communication  Time in seconds
Message Preprocessing  Time in seconds   

(a) (b)

Figure 18: Relationship between the connectivity and message passing overhead of the Jacobi SI method

on nCUBE II with 64 processors and Model Problem A for (a) P�Q block partition and (b) Ext P�Q

block partition.

To measure the relationship between the number of interface points and the message passing over-

head for the Jacobi-SI method on the nCUBE II (P = 64) we use the 1�Q partition algorithm. We force

the 1�Q partitioning algorithm to generate subdomains with small connectivity but a very large number

of interface points. Figure 19a shows the relationship between the number of interfaces and the mes-

sage passing overhead for communication with physically neighboring processors. The 1-dimensional

gray code mapping of the subdomains to processors is optimum and preserves the nearest-neighbor

property. Figure 19b shows that the imbalance of the computation due to the di�erence in the number

of interface points of the subdomains. Note that the global communication time includes the idle time

of a processor due to waiting for other processors to �nish their local communication since in this case

the computational work-load of the processors is perfectly balanced (see Table 1).

Finally, we evaluate the partitioning algorithms with respect to the total performance of the iterative

solver. Table 4 shows the di�erence in the load balance of the computation of the Jacobi-SI method

for the six partitioning algorithms, and also shows the additional computation due to load imbalance.
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Figure 19: Relationship between the number of interfaces and message passing overhead of the Jacobi-SI

method on the nCUBE II with 64 processors and Model Problem A, using the (a) 1�Q block partition

algorithm, and (b) the global and local communication.

Clustering algorithms result in partitions with perfect load balance. Table 5 shows the degree of

connectivity along with the ratio of the time spent in sending and receiving messages over the total

elapsed time spent by slowest processor. It also shows the number of interface points along with the

percentage of time spent in �lling the communication bu�er over the the total elapsed time required

by the slowest processor for the Model Problem A. We use the Jacobi SI method and the nCUBE II

with 64 processors. Table 6 shows the same data for Model Problem B. These data strongly suggest

that the simple and cheap P�Q algorithm performs very well compared to the others.

Table 4: Load balance obtained using the data partitioning algorithms for the Model Problem A and

64 processors. The percentage of the additional time due to load imbalance is given at the bottom.

P�Q 1�Q ScatDec CM-Clust RB Hybrid

MINIMUM 444 445 428 445 402 391

AVERAGE 446 446 446 446 446 446

MAXIMUM 446 446 448 446 458 476

MAX � MIN 2 1 20 1 56 85

ADDT WK 0.45 0.22 4.46 0.22 12.23 17.86

8 DecTool

In this section we describe a software system which assists the user to visualize and manipulate do-

main decompositions in the environment of the Parallel ELLPACK (// ELLPACK) system [HRC+90].

The // ELLPACK system is a prototype intelligent parallel programming environment for solving

PDEs de�ned on two and three dimensional domains. It is implemented on a hardware facility con-

sisting of a graphics workstation supporting the X11 window system and connected to the nCUBE II
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Table 5: The column N gives the degree of connectivity and number of interfaces of the data partitioning

algorithms for the Model Problems A and B. The column Time gives the send/receive time divided by

the total elapsed time and percentage of the elapsed time spent in bu�er �lling.

Problem A P�Q 1�Q ScatDec CM-Clust RB Hybrid

N Time N Time N Time N Time N Time N Time

Connect 8 7.31 2 5.03 13 11.34 21 15.35 11 9.52 8 7.15

Interf 206 1.52 979 6.58 783 5.01 677 6.19 346 2.34 224 1.69

Problem B P�Q 1�Q ScatDec CM-Clust RB Hybrid

N Time N Time N Time N Time N Time N Time

Connect 7 14.40 3 7.81 20 32.08 22 38.36 11 21.74 7 14.96

Interf 135 2.68 388 7.06 431 6.65 215 3.21 211 4.05 112 2.85

machine through a local area network. The software infrastructure includes a) a PDE problem oriented

language processor, b) a geometry processing tool which is capable of generating meshes and their de-

compositions either automatically or interactively, and c) an algorithm mapper facility for partitioning

and mapping the underlying PDE computation onto the nCUBE.

The interactive environment called DecTool (short for Domain Decomposer Tool) [CHENH+91]

provides facilities for both automatic (using prede�ned algorithms) and manual decomposition of a

given 2-D or 3-D discrete domain. An example display is shown in Figure 20.

Figure 20: An instance of the the DecTool and Parallel ELLPACK environment.

The DecTool consists of three di�erent windows. In the main window, there are three additional

widgets for invoking the library decomposition techniques and specifying the appropriate initializations.

The decompositions are displayed and manipulated in another window. Each subdomain is colored

di�erently and the interface nodes are displayed as colored circles or squares. The colors indicate the
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assignment of subdomains (processes) to processors with a color map (color palette) displayed in a

di�erent window.

DecTool was used in the performance evaluation to create the domain partitions using various

algorithms. It provided the visual displays and data for measuring the criteria used. A few of the

measurements (e.g. number of interface points) are provided automatically by DecTool but most

required speci�c programs to be run within the DecTool environment.

9 Discussion - Conclusions

The qualitative comparison of the data clustering and deterministic optimization algorithm is based

on the inspection of the partitionings resulting from the six representative algorithms we evaluated.

The P�Q, 1�Q and Scattered Decomposition algorithms for general domains result into partitions with

disconnected subdomains. Moreover, the 1�Q algorithm partitions the domains into narrow subdomains

with large diameter, while the CM-Clust and Recursive Bisection algorithms partition the domains into

disconnected subdomains with \fuzzy" interfaces. None of the above algorithms utilizes information

about the shape of the boundary of the domain. The Block partitioning algorithm based on curvilinear-

coordinates has been designed to re
ect the boundary shape of the star-shaped domains, a large class of

non-convex domains, and gives partitions with connected subdomains. Finally, the Hybrid algorithm,

a recursive bisection algorithm based on data clustering and deterministic optimization, gives more

compact subdomains with relatively small diameter. The Hybrid algorithm is designed to minimize

the diameter of the initial partition and the size of the interfaces. The Hybrid algorithm creates

partitions that are visually pleasing.

The CM-Clust algorithm has been implemented with open hash tables and thus is of O(N) time

complexity. The P�Q, 1�Q and Scattered Decomposition algorithms have O(NlogN) time complexity.

The divide-and-conquer algorithms, Recursive Bisection and Hybrid are more computationally intensive

algorithms. The Hybrid is the most expensive algorithm for three reasons : (1) it requires an initial

partition which is at least of O(N) time, (2) it performs a number of iterations on the initial partition,

each iteration is of O(N) time but the number of iterations depends on the initial partition, and (3)

it requires integer and 
oating point operations while the rest of the algorithms require only integer

operations with an exception of spectral bisection that uses the Lanczos algorithm to compute the

Fiedler eigenvector.

Table 7 summarizes the qualitative and quantitative evaluation of the data partition algorithms.

The overall evaluation of the algorithms is based on their performance on general non-convex domains.

Tables 8 and 9 show the impact of di�erent partition algorithms on the total elapsed time and message

passing overhead.

Table 6: Performance evaluation of all six partitioning methods considered with respect to the satis�-

ability of criteria (i) to (iv) and minimization of local communication time.

Algorithm (i) Load Balance (ii) Interfaces (iii) Connectivity (iv) Splitting of Subdomains

P�Q Perfect Very Good Small Most of the Time

1�Q Perfect Poor Small Always

ScatDec Very Good Poor Large Always

CM-Clust Perfect Poor Large Always

RB Good Good Large Always

Hybrid Good Very Good Small Some Times
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Table 7: Elapsed time per iteration (in microseconds) of the Jacobi-SI method for Model Problems A

and B.

P�Q 1�Q ScatDec CM-Clust RB Hybrid

Problem A 2.89e�2 2.94e�2 3.16e�2 3.20e�2 3.06e�2 3.00e�2

Problem B 1.39e�2 1.26e�2 1.63e�2 1.48e�2 1.38e�2 1.24e�2

Table 8: The message passing overhead of the Jacobi-SI for Model Problems A and B.

P�Q 1�Q ScatDec CM-Clust RB Hybrid

Problem A 2.51e�3 2.94e�3 5.07e�3 5.46e�2 2.99e�3 1.99e�3

Problem B 2.17e�3 1.83e�3 6.01e�3 6.15e�3 3.36e�3 2.09e�3

Tables 4, 5, 6, 7, 8, 9 and the above discussion indicate that the simplest, oldest and one of the

least expensive algorithms, P�Q, is the most suitable data partition algorithm for the data parallel

iterative solvers based on the discrete domain decomposition approach for solving PDEs, while the

Hybrid algorithm is the most suitable for the data parallel iterative solvers based on the continuous

domain decomposition approach. These six tables provide 14 quantitative measures of performance for

these six algorithms. Table 9 gives the average and worst rank (rank 1 = best, rank 6 = worst) of each

of the algorithms for these measures. In computing the ranks similar measurements (ones within 5 or

10 %) are counted as ties. The overall superiority of the P�Q and Hybrid algorithms is quite apparent

from this summary data. Table 10 indicates that none of the above algorithms is suitable for the

solution of the data partition problem for very large meshes since most of the time is spent not on the

data partition but on initializing, meshing and loading sequentially the huge data structures onto the

nodes of the processors. These data imply that problem preprocessing work such as mesh generation

and problem partitioning must be moved from the workstation to the MIMD machine. This, in turn,

requires that new parallel approaches to mesh generation, data partition, and problem initialization

be developed. Thus a basic change in the paradigm for solving the PDE problem is needed rather

than just �nding e�cient parallel implementation for the data partitioning algorithms. Of course the

parallel I/O of the most recent parallel machines will improve the loading time but still the I/O will

remain a bottleneck.

Table 9: Average and worst ranks of the algorithms for the 14 quantitative measures of performance

(rank = 1 is best).

P�Q Hybrid 1�Q RB ScatDec CM-Clust

Average rank 1.6 2.1 2.5 3.6 4.4 4.8

Worst rank 3 5 6 5 6 6
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Table 10: The execution time of the di�erent phases required for the sequential preprocessing for the

numerical solution of Model Problems A and B using the P�Q partition algorithm. The time is in

seconds on the SPARC workstation and nCUBE II.

SPARC Workstation phases Problem A. Problem B

Mesh generation 24.01 10.56

Initialize decomposer 7.73 2.56

Partition of domain. 8.35 2.70

Save data 51.88 20.78

nCUBE II phases Problem A. Problem B

Load data 57.45 11.37

Synchronize/initialize processors 11.93 17.91

Discretize PDE 2.06 0.75

100 iterations of solver 2.93 1.40
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