
MENUS-PGG : A MAPPING ENVIRONMENT FOR

UNSTRUCTURED AND STRUCTURED NUMERICAL

PARALLEL GRID GENERATION

NIKOS CHRISOCHOIDES, GEOFFREY FOX, AND JOE THOMPSON

Abstract. MENUS-PGG is a problem solving environment (PSE) for devel-

oping parallel algorithms that generate structured and unstructured static and

adaptive grids (or meshes) required for the implementation of scalable paral-

lel partial di�erential equation (PDE) solvers based on domain decomposition

methods. Whereas the �rst generation PSEs for the numerical solution of

PDEs on distributed memory multiprocessor systems are based on the data

mapping of sequentially generated grids and support only the data parallel

programmingmodel, MENUS-PGG generates and maintains grids on the pro-

cessors of parallel/distributed systems and combines the most valuable aspects

of the data parallel programmingmodel with the exibility of the task parallel

programming model. MENUS-PGG assumes a machine model that consists

of homogeneous and heterogeneous clusters of processors operating in a dis-

tributed address space implemented on remote memory modules via message

passing through a high-speed interconnection network. The major contribu-

tion of MENUS-PGG should be the reduction of the pre-processing overhead

required by the data parallel PDE solvers and the e�cient maintenance of the

distributed data structures that support h, p, and hp-re�nements. We present

preliminary results indicating that the parallel grid generation results in a sub-

stantial reduction of the pre-processing overhead needed for the solution of the

data mapping problem.

1. Introduction

Parallel computing and speci�cally high performance software for scienti�c com-

puting will be made more attractive to scientists and engineers if these systems

will provide support for all aspects of a simulation : grid generation, PDE solvers,

adaptive re�nement, and I/O. While a fair amount of work has been carried out for

�eld solvers limited or none made towards parallel algorithms and software mod-

ules for numerical grid generation. Our aim in this paper is to describe a software

system for the parallel numerical generation of structured and unstructured static

and adaptive grids.

Besides the geometric modeling and grid visualization we identify and focus on

four additional stages for parallel numerical grid generation. The �rst stage requires

The research of the �rst author was supported by the Alex G. Nason Prize Award.

AMS(MOS) key words : parallel, numerical, grid, software.

1

2 NIKOS CHRISOCHOIDES, GEOFFREY FOX, AND JOE THOMPSON

the decomposition of the continuous domain into a set of non-overlapping subdo-

mains with simpler shape (e.g. four- or six-sided polygons for 2- or 3-dimensional

spaces). The second stage requires the partitioning and placement of the sub-

domains on the processors of the target machine so that certain criteria are sat-

is�ed. The third stage requires independent grid generation on the subdomains

and sometimes maintenance of grid conformity and continuity on the interfaces

of the subdomains. Finally, the fourth stage requires the run-time migration of

grids among the processors so that processors workload (computation and com-

munication) is balanced and local communication and synchronization among the

processors are minimized during the parallel execution of PDE computation. The

MENUS-PGG design is based on these stages. In the rest of the paper we describe

the MENUS-PGG software infrastructure and the individual software components

that correspond to the above stages.

2. Software Infrastructure

The design objective of MENUS-PGG is to provide a uniform environment and

the basic software components to implement, analyze and test scalable algorithms

for parallel grid generation. The software infrastructure of MENUS-PGG consists

of three major subsystems, namely, the front-end subsystem, corresponding to the

domain de�nition and the �rst two stages described above, the grid generation

subsystem, corresponding to the last two stages, and the back-end subsystem, corre-

sponding to the visualization of grid and performance data. Next we describe the

software modules of the subsystems and their functionalities. Fig. 1 depicts the

software architecture of MENUS-PGG and the interaction among these modules.

Software Module Computational Phase / Functionality

Front-end :

Geometry Modeler Specify and discretize the boundary curves or surfaces

of the domain.

Domain and Decompose the domain into four or six-sided subdomains

Subdomain Decomposer and discretize internal subdomain boundaries.

Subdomain Mapper Map subdomain to the processors of the target machine.

Grid Generation Subsystem :

Static & Adaptive Concurrently generate grids on the subdomains and

Grid Generator maintain grid conformity - if it is necessary.

Scheduler Maintain computation and communication load balance

of the processors during the PDE computation.

Back-end :

Visualization Tool Visualize grids, solution and performance data.

The geometry modeler and the 3D visualization tool are provided by the

National Grid Project which is under development at NSF Engineering Research

Center for Computational Field Simulation, ERC-CFS, at Mississippi State Uni-

versity [14]. The geometry modeler constructs the boundary surface (or curve) of

the region we want to discretize. The boundary representation of the region can

be received as patches from an external CAD system or it can be computed by an

MENUS-PGG : A GRID MAPPING ENVIRONMENT 3

Scheduler API

Visualization Tool

MENUS-PGG
P

a
r
a

ll
e

l
M

a
c

h
in

e

Grid Generator

Static & Adaptive

Geometry Modeler

Mapper

SubdomainDomain

Decomposer

& Subdomain

MPI

P
D

E

S
o

lv
e

r

Front-end

Back-end

Grid Generation

Subsystem Subsystem
Solution

Figure 1. MENUS-PGG software architecture and NGP's Geom-

etry Modeler.

internal available CAD system. An instance of the geometry modeler and the 3D

visualization tool are depicted in Fig. 1. The 3D visualization tool is a user

friendly interface with functionalities allowing graphical movement of block struc-

tures (for the graphical construction of grid topology) as well as scaling, rotation,

and transformation of surface segments.

The domain and subdomain decomposer is the module that decomposes

the given domain into four or six-sided subdomains. Such decompositions can be

achieved either interactively using graphical user interface tools [14] or automat-

ically using computational geometry tools, like the Medial Axis Transformations

[12]. The domain decomposer is essential for the conventional trans�nite mapping

techniques used for the generation of structured grids. The composite block struc-

tures generated by this module can also be used for parallel unstructured grids.

The subdomain mapper is based on a library of Mapping Templates for Load

Balancing (MTLB) [4]. The MTLB library of templates provides algorithmic and

software infrastructure for the mapping of the subdomains to the processors of the

target parallel machine. Such mappings often involve the solution of an intractable

combinatorial optimization problem that optimizes a number of criteria, like the

minimization of the number of grid points that separate the subdomains residing on

di�erent processors, the proper distribution of grids so that the computation and

communication work load of processors is balanced, or the appropriate placement

of subgrids so that network contention is minimized. Although many heuristics for

�nding good suboptimal mapping solutions have been proposed in the literature

(see in [6], [1], [7], [11], [8] and [2]) there is no general-purpose software that can

be used independently of the speci�c characteristics and data structures of the

4 NIKOS CHRISOCHOIDES, GEOFFREY FOX, AND JOE THOMPSON

application. The MTLB library aims to provide a common software framework

for the implementation and evaluation of existing and new heuristics for the data

mapping problem.

The static and adaptive grid generator will provide the algorithmic and

software infrastructure for the concurrent grid generation of the subdomains and

for the maintenance of grid continuity and conformity on the interfaces. Grids (or

meshes) are classi�ed into structured grids, formed by intersecting grid lines, and

unstructured grids or meshes, formed by �rst creating all the node points and then

connecting the nodes to form \best" possible triangles. Another classi�cation of

grids is based on their static or dynamic evolution during the PDE computation.

Grids that remain the same throughout the PDE computations are called static and

grids that evolve according to the behavior of prede�ned error estimators are called

dynamic or adaptive. Fig. 2 depicts a taxonomy of the �ve di�erent methods and

types of grids that are under development within MENUS-PGG environment and

they are : (1) parallel structured grids for 2 and 3-dimensional complex domains

based on composite block structures [15] and (2) parallel unstructured grids using

Delaunay triangulation, (3) parallel adaptive semi-structured grids based on a

combination of nested structured grids and local equidistribution approaches (4)

moving structured grids and (5) adaptive unstructured grids. A detailed discussion

of the individual tools and issues related to parallel numerical grid generation is

out of the scope of this paper and appears elsewhere [3], [4].

Existing Technology New Technology

Unstructured Meshes

Delaunay Triangulations

Static Grids

Moving

Structured

Adaptive

UnstructuredAlgebraicElliptic

Structured Grids Nested Grids

Semi-Structured

Dynamic Grids

1. 2. 3. 4. 5.Phases

Type of
Grid

:

Parallel Grid Generation

Figure 2. Taxonomy of grid types to be generated by MENUS-PGG.

The scheduler is a machine independent library of communication and syn-

chronization routines required for the implementation of the computational engine

on distributed memory MIMD/SIMD machines using the data and task-parallel

message passing programming model. The portability of the computational engine

will be guaranteed by developing the scheduler on the Message Passing Interface

standard (MPI) de�ned recently [10]. A run-time support system suitable for par-

allel adaptive grid generation computations is the major software component of the

scheduler. The run-time support system is limited to a very small set of parallel

MENUS-PGG : A GRID MAPPING ENVIRONMENT 5

adaptive PDE computations. The system is organized in four layers (from the lower

to higher layer) : (0) Network Interface Layer (interrupt and polling driven), (1)

Multithread priority based scheduling layer (2) Thread Scheduling Layer (schedul-

ing algorithms for di�erent pairs of grid/architecture), and (3) Interface Layer to

static and adaptive grid generator. The run-time support system will be available

in the second version of the software. In the mean time the system will be based

on existing incremental data mapping methods.

3. Summary and Conclusions

In this paper we discussed the MENUS-PGG software architecture and the mod-

ules that correspond to the six steps needed for the parallel numerical grid gener-

ation. Preliminary results indicate substantial reduction in the overhead intro-

duced for the solution of the data mapping problem. Another advantage of the

MENUS-PGG is that it generates and maintains grids on the processors of paral-

lel/distributed systems and combines the most valuable aspects of the data parallel

programming model with the exibility of the task parallel programming model.

With the use of composite block structures (CBS approach) as a tool for contract-

ing the size of the problem not only we reduce the pre-processing overhead but we

achieve optimality of the mapping.

Table 1 depicts performance data associated to the time (in sec) required to

sequentially generate (Grid-Gen.), partition and store (Mapping) the subgrids onto

the 64 nodes of the nCUBE 2, and the time (in sec) to sequentially generate and

partition Cf (
) (Cf (
)-Proc.) plus the time (in sec) to generate on a 64 node

nCUBE 2 an algebraic grid using Cf (
). Columns fourth and seventh indicate the

total sum of times (in sec) for the sequential grid generation and CBS approaches

respectively. A SPARC workstation was used for the sequential generation and

partitioning of grids and Cf (
).

Table 1. Performance data for sequentially generating, partition-

ing and storing grids on the 64 processors of nCUBE 2 and data for

sequentially generating, partitioning and storing composite block

structures together with the data for parallel grid generation on a

nCUBE 2 with with 64 processors.

Grid Points Grid-Gen. Mapping Total Cf (
)-Proc. (//) Grid-Gen. Total

2.5 � 103 0.38 17.81 18.19 3.44 0.08 3.52

10 � 103 1.61 46.45 48.06 4.38 0.35 4.73

22.5 � 103 3.61 100.15 103.76 8.48 0.71 9.19

40 � 103 6.45 195.13 201.58 16.06 1.25 17.31

ACKNOWLEDGMENTS

The authors are grateful to Wayne Mastin and AdamGaither for their help with the

NGP code. We also thank David Keyes for his detailed and constructive comments

that improved the presentation of the paper.

6 NIKOS CHRISOCHOIDES, GEOFFREY FOX, AND JOE THOMPSON

References

1. Charbel, F., A simple and e�cient automatic FEM domain decomposer, Computers and

Structures, Vol. 28, pp 579{602, 1988.

2. Chrisochoides, N., E. Houstis and J. Rice, Mapping Algorithms and Software Environment for

Data Parallel PDE Iterative Solvers, Special Issue of the Journal of Parallel and Distributed

Computing on Data-Parallel Algorithms and Programming, Vol. 21, No 1, pp 75{95, 1994.

3. Chrisochoides, N., An Alternative to Data Mapping for Parallel PDE Solvers : Parallel Grid

Generation, Proceedings of Scalable Parallel Libraries Conference, pp 36{44, October, 1993.

4. Chrisochoides, N., Mapping Templates for Load Balancing. To be submitted to ACM Trans.

of Mathematical Software. (In preparation)

5. Fox, G., M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker Solving Problems on

Concurrent Processors. Prentice Hall, New Jersey, 1988.

6. Fox, G., P. Messina R.Williams. Parallel Computing Works! Morgan Kaufmann, San Mateo,

CA 1994

7. Hammond, W. S., Mapping Unstructured Grid Computations to Massively Parallel Comput-

ers, Ph.D Thesis, Rensselaer Polytechnic Institute, Troy, NY.

8. Mansour N., Physical Optimization Algorithms for Mapping Data to Distributed-Memory

Multiprocessors. PhD thesis, Computer Science Department, Syracuse University, 1992.

9. Mansour N., R. Ponnusamy, A. Choudhary, and G. Fox. Graph Contraction for Physical

Optimization Methods: A Quality-Cost Tradeo� for Mapping Data on Parallel Computers.

International Supercomputing Conference, Japan, July 1993, ACM Press.

10. MPI Forum, Message-Passing Interface Standard, April 15, 1994.

11. Simon,H., Partitioning of UnstructuredProblems for Parallel Processing, RNR-91-008, NASA

Ames Research Center, Mo�et Field, CA, 94035.

12. Tam T.K.H., Price M., Amstrong C., and McKeag. Computing the critical points of the

medial axis of planar object using a Delaunay point triangulation algorithm. Submitted to

IEEE, PAMI, 1993.

13. Thompson, J., Z. U. A. Warsi and C. Wayne Mastin, Numerical Grid Generation. North-

Holland, New York, 1985.

14. Thompson, J., The National Grid Project, NSF Engineering Research Center for Computa-

tional Field Simulation, 1991.

15. Thompson, J., A survey of composite grid generation for general three-dimensional regions.

Numerical Methods for Engine-Airframe Integration, S.N.B. Murthy and G. C. Paynter eds.,

1984.

Northeast Parallel Architectures Center, Syracuse University, 111 College Place,

Syracuse, NY, 13244-4100

E-mail address : nikos@npac.syr.edu

Northeast Parallel Architectures Center, Syracuse University, 111 College Place,

Syracuse, NY, 13244-4100

E-mail address : gcf@npac.syr.edu

Engineering Research Center for Computational Field Simulation, Mississippi State

University, P.O. Box Drawer 6176, Mississippi State, MS 39762

E-mail address : joe@erc.msstate.edu

