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Abstract

The last few decades have seen an impressive developments in every aspect of parallel computing technol-

ogy; viz. processing and storage technology, interconnect technology and software technology. Although these

systems incorporate large amount of computing power, they are not general enough to e�ciently support

today's computation-intensive problems (e.g. the Grand Challenges), that warrant multiple computational

models and levels of parallelism. We believe that the future of parallel computing lies in the integration of the

plethora of \specialized" architectures into a single Heterogeneous High Performance Computing (HHPC)

environment that allows them to cooperate in solving complex problems. Software development in such

an environment is a non-trivial process and requires a thorough understanding of the application and the

architecture. Evaluation tools form a critical part of any software development environment. These tools

enable the developer to visualize the e�ects of various design choices on the performance of the application,

to study the scalability of the application with system and problem size and to investigate the e�ects of

changes in system run-time status and its con�guration on the application execution. The objective of this

paper is to propose an interpretive model for a source driven performance prediction framework which can

meet challenges presented by an HHPC environment. The model provides a comprehensive characterization

methodology to abstract and parameterize the behavior of the application and the computing environment.

Interpretive techniques are then used to predict the performance of the abstracted application on the ab-

stracted computing environment. A prototype performance prediction framework has been developed for the

iPSC/860 using the proposed interpretive model. Numerical results obtained on this system are presented.

These results con�rm the potential of interpretive performance prediction techniques and their applicability

to an HHPC environment.

1 Introduction

The last few decades have seen an impressive developments in every aspect of parallel computing tech-

nology; viz. processing and storage technology, interconnect technology and software technology. High

performance computer systems today, include SIMD architectures like CM2 and DECmpp, shared mem-

ory MIMD, vector and pipelined architectures like the CRAY C90, NEC SX3, IBM POWER/4, distributed

memory MIMD machines like the Paragon XP/S and iPSC/860 from Intel, the CM-5 from TMC, the KSR1,

transputer based machines like the Parsytec GC, special purpose architectures like the BBN MP2000, etc.
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Figure 1: The Heterogeneous High Performance Computing Environment (HHPC)

Each of the above architectures have resulted from a unique set of trade-o�'s in system parameters and

design decisions causing speci�c architectures to favor certain computational models and thereby deliver

maximum performance only to a speci�c set of applications which lend themselves to one of those compu-

tation models. Further, this narrow applicability of current architectures has prevented them from being

cost-e�ective. As a result, even though these architectures incorporate a large amount of computing power,

they are not general enough to e�ciently support today's computation-intensive problems, that warrant

multiple computational models and levels of parallelism (e.g. The Grand Challenges [1]). Tackling ap-

plications of this magnitude and diversity would require a general, cost-e�ective, scalable, yet powerful

computing model which will be able to e�ciently support its varied computational and communication re-

quirement. It is this realization that has spurred intense research in heterogeneous computing environments

[2, 3, 4, 5, 6, 1, 7, 8].

We believe that the future of parallel computing lies in the integration of the plethora of \specialized"

architectures into a single Heterogeneous High Performance Computing (HHPC) environment that allows

them to cooperate in solving complex problems. The HHPC environment will capitalize on existing ar-

chitectures and on current advances in computing, networking and communication technology to provide

e�cient, cost-e�ective, scalable, high-performance distributed computing.

Software development in any Parallel/Distributed environment is a non-trivial process and requires a

thorough understanding of the application and the system architecture. This apparent from the fact that

currently, applications are able to achieve only a fraction of peak available performance [7, 1]. The problem

further intensi�es as systems evolve into HHPC environments. Although, an HHPC environment provides

the user with enormous computing power and a great deal of 
exibility in using this power, this 
exibility

implies increased degrees of freedom which have to be optimized in-order to exploit the available potential.
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For example, during software development in an HHPC environment, the developer is required to select

the optimal hardware con�guration for the particular application, the best decomposition of the problem

on the selected hardware con�guration, the best communication and synchronization strategy to be used,

etc. The set of reasonable alternatives that have to be evaluated in such an environment, is very large and

selecting the best alternative among these is a non-trivial task.

It is imperative therefore, that evaluations tools be provided as part of any HHPC software development

environment, which enable the developer to visualize the e�ects of various design choices on the performance

of the application, to study the scalability of the application with system and problem size and to investigate

the e�ects of changes in system run-time status and its con�guration on the application execution. Further,

these tools must provide information about the contribution of various factors e�ecting the performance

of the application. Finally, there is a need for a symbiotic relationship between the evaluation tools and

other development tools (such as mapping, analysis, and optimizing tools) so as to complete the feedback

loop of the \develop-evaluate-tune" cycle.

Predictive evaluation techniques have the potential of being e�ectively applied to software development in

an HHPC environment. These techniques enable the estimation of performance of a given implementation

on a given hardware con�guration without having to actually execute it. Further it allows the developer to

evaluate individual modules of the application during development instead of having to implement the entire

application before evaluation. Heuristics and abstractions can be incorporated into the prediction models

to signi�cantly reduce the time required for evaluation; thereby allowing a greater number of options to be

evaluated and increasing the probability of �nding the best implementation. A key part of the evaluation

process is to evaluate the application under di�erent run-time conditions like loads, contentions etc. and

in the presence of faults. The scalability of the application with problem and machine size also needs

to be evaluated. Prediction techniques enable the user to experiment with the di�erent scenarios in a

cost-e�ective manner (both, in terms of resources required and time taken).

Conventional evaluation/prediction tools and techniques are either tuned to speci�c systems and cannot

incorporate the heterogeneity and dynamic nature of an HHPC environment or are too general and lack

feasibility and accuracy needed in HHPC software development. Analytic models for parallel/distributed

systems [9, 10, 11] lead to large state spaces which result in large evaluation times. These techniques can

be made tractable by introducing simplistic assumptions, but this makes them unrealistic and inaccurate.

Monitoring techniques [12, 13, 14, 15], on the other hand, require extensive experimentation and data collec-

tion on the actual hardware. The process is not feasible or cost-e�ective since parallel/distributed systems

are expensive resources and usually not freely available for such experimentation. Further, programming,

running and data collection on most parallel/distributed systems is a tedious process and exhaustively

evaluating the possible alternatives is usually not practical. Finally, these techniques are intrusive and can

alter the execution of the application.

In this paper, we present the design of a performance prediction framework targeted to a general HHPC

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973



An Interpretive Framework for Application Performance Prediction

Technical Report: SCCS-479 4

environment. The framework uses a novel interpretive approach to provide accurate and cost-e�ective

performance prediction. A comprehensive characterization methodology is proposed to abstract the system

and application components of the HHPC environment into a set of well de�ned parameters. An interpreter

engine then interprets the performance of the abstracted application in terms of the parameters exported

by the abstracted system. The parameters required to abstract a system component can be generated

o�-line using existing techniques or even system speci�cation. Further, the most e�ective techniques

can be selected for each component. This 
exibility allows the approach to be e�cient, cost-e�ective,

while maintaining desired accuracy and enabling the developer to capitalize on existing research. Further,

the approach allows the developer to introduce heuristics into the evaluation and to experiment with

various run-time and \What-if ?" scenarios. The evaluation approach can be applied to the application

(or part of the application) and at any stage of the development process. The performance measures

generated by the framework provide information about all aspects of the application and at all levels of the

application, i.e. application level, node level, process level, procedure level, etc. A prototype system has

been developed for the iPSC/860 hypercube. Our experience with this system and the numerical results

obtained con�rm the potential of interpretive performance prediction techniques and their applicability to

an HHPC environment.

The rest of this paper is organized as follows: Section 2 discusses existing evaluation techniques and

brie
y describes existing evaluation tools. Section 3 introduces the interpretive model and describes the

structure of the performance prediction framework and its modules. The characterization and abstraction

methodology proposed is described in detail. An interpretive algorithm is de�ned and its application to

interpret the performance of applications is described. Section 4 presents some numerical results obtained

on a prototype system implemented on the iPSC/860 hypercube. Section 5 presents some concluding

remarks.

2 Existing Evaluation Tools & Techniques for HHPC

Existing evaluation tools and techniques can be classi�ed into the following categories: (1) Analytic, (2)

Simulation, (3) Monitoring and (4) Estimation. In addition, some of the proposed systems make use of

combination of the above techniques and are categorized as (5) Hybrid. In what follows we brie
y discuss

each of these categories.

2.1 Analytical Techniques

The development of accurate analytic models for concurrent hardware and software is an extremely di�cult

process because of the complex interactions that exist in such an environment. Further, modeling parallel

operations leads to very large state spaces which makes them intractable and thereby infeasible. Another

problem is the determination of appropriate probabilities and probability distributions for the various
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parameters that are required in such models. These issues are usually resolved by making simplistic

assumptions and approximations. Although these simpli�cations allow the models to be evaluated in a

reasonable time, they are associated with a loss in accuracy. Another drawback of analytic models is that

the performance information that can be obtained and the levels at which it can be obtained is limited.

Finally, heterogeneity cannot be easily incorporated into analytic models.

A number of general analytic models have been developed to model both hardware [9, 16] and soft-

ware [10, 17, 18, 19]. Analytic models for di�erent interconnections and networks as well as transport

protocols have also been proposed [20, 21]. Models for heterogeneous systems are proposed in [22, 23]

but are limited to fork-join type of parallelism and apply to �xed system con�gurations. An analytic

performance prediction technique has been proposed by B. Qin and R.A. Ammar in [11]. The approach

followed is to approximate the parallel 
ow graph into a sequential 
ow graph by replacing well de�ned

parallel structures by a single node with the same time-cost as the parallel structure. A more general

analytic model for performance prediction on shared memory multiprocessors has been proposed by D. P.

Siewiorek et al. in [24].

2.2 Simulation Techniques

Techniques in this category, simulate the hardware and the actual execution of a program on that hard-

ware. However, most current computing systems are extremely complex and simulating these architectures

in an intricate process requiring signi�cant amounts of time and computing resources. This problem

further intensi�es in an HHPC environment. More feasible approaches sacri�ce some accuracy for accept-

able evaluation times and computing requirements by using approximations. These approaches include

Distribution-Driven Simulations wherein the simulation is driven by statistical models and Trace-Driven

Simulations which use execution traces gathered using instrumentation and monitoring techniques to drive

the simulation. The former approach su�ers from drawbacks of analytic techniques while the latter tech-

nique requires execution on the actual hardware to generate the traces. This technique also su�ers from

the problem inherent in monitoring approaches which are discussed in the following section.

The performance prediction package for the CEDAR shared memory multiprocessor (CPPP) [25] pri-

marily uses normal Instruction-Driven simulation and handles loop parallelism (Doall, Doaccross). Because

of the large execution times the CPPP system provides two additional tools for performance prediction

which are less accurate but faster.

Execution-Driven Simulation is used in the Rice Parallel Processing Testbed (RPPT) [26]. This approach

advances simulation time only when the parallel processes interact, thereby interleaving the execution of

the simulation model and the program. This approach reduces simulation overhead at the cost of accuracy.

The SiGLe system (Simulator at Global Level) [27] provides special description languages to describe the

architecture, application and the mapping of the application onto the architecure. Simlation techniques

are then used on these descriptions to provide an environment for constructing, testing and evaluating the
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implementations of applications on distributed systems.

2.3 Monitoring Techniques

Monitoring techniques have been extensively used for evaluating parallel and distributed systems; the

reason being that they are more deterministic than the other approaches. Commonly used monitoring

techniques include software monitoring by source code instrumentation, software monitoring by object

code instrumentation, hardware monitoring and hybrid monitoring. Monitoring techniques, in general,

give rise to a number of issues which need to be addressed. The source code instrumentation required in

software and hybrid monitoring introduces the overhead of modifying the code and re-compiling it and

then executing it to obtain the required information. Object code instrumentation may not be feasible in

an HHPC environment because of the di�erent object code formats. Hardware monitoring, is expensive

and requires special resources. Monitoring, in general involves a trade-o� between the accuracy of the

evaluation and the intrusiveness of the instrumentation. Not only does monitoring e�ect the execution

of the application, it e�ects the accuracy of the perforamnce measures since the overheads introduced by

the monitoring procedures itself are di�cult to account for. Monitoring requires that the application be

executed on the actual hardware so that evaluation data can be gathered. This procedure can be expensive

in term of time required and resources needed (both computing and storage). Further, the technique

cannot be applied to evaluate new system con�gurations or new designs nor can it be used to evaluate

algorithmic templates or parts of the application. Finally, these techniques are dependent on the hardware

or software instrumentation/monitoring probes and are sensitive to their operation and malfunctions. The

heterogeneity of the HHPC environment introduces the additional problem of trace data representation

and interpretation. Since evaluation in such an environment involves evaluating the interaction between

processes running on di�erent heterogeneous systems, it is necessary that instrumentation and monitoring

techniques be portable across the platforms and that trace data formats be compatible so that inter-process

communications and synchronization can be evaluated.

With respect to the software development process in an HHPC environment, evaluating the di�erent

alternatives available or the various run-time scenarios using monitoring techniques would require, imple-

menting, running and then analyzing the trace data collected, for each of these alternatives. This is not

practical since implementing the di�erent alternatives involves considerable time and e�ort. In addition,

it prevents the automation of the software development process. Further, most real-world applications

require considerable time to execute (even on parallel computers). This execution time added to the time

required to implement and evaluate alternatives can lead to impractical development times. Finally paral-

lel computers are expensive resources and may not always be available for such \experimentation". Some

existing evaluation tools using monitoring techniques are described below.

The IPS-2 system [12] uses software monitoring techniques to gather execution statistics and presents

performance data to the user in a hierarchical form consisting of 4 levels, viz. Program level, Machine
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level, Process level and Procedure level. The instrumentation is achieved using a compile time option.

The JEWEL system [28] is a distributed measurement environment and is made up of four functional

blocks; viz. the system under test (SUT), the data collection and reduction system (DCRS), the graphical

presentation system (GPS) and the experiment control system (ECS). The system allows the user to select

the aspect (topic of interest), the level of detail and the performance index to be viewed.

The ZM4/SIMPLE system [14, 29] developed at University of Erlanghan, Germany, is a performance

evaluation environment based on hybrid event-driven monitoring. It proposes a model-driven instrumen-

tation methodology which uses a monitoring model as the desired level of abstraction. ZM4 is a special

purpose hardware monitoring system which interfaces with the SIMPLE environment. SIMPLE also pro-

vides the capability of using the trace data collected to generate runtime distributions and branching

probabilities, which can be used in an analytic performance model for performance prediction.

The performance evaluation tool within the TOPSYS parallel application development environment [13],

PATOP, uses object-code instrumentation and hardware monitoring techniques to gather trace data.

PATOP measures idle times, delays (in queues) and resource utilization and displays them at system,

node or programming model object levels. It interfaces with the VISTOP visualization/animation tool

which has the capability of displaying performance statistics online. Statistics of the host program, how-

ever cannot be monitored. TOPSYS has been implemented on the iPSC/2 and iPSC/860 hypercube

systems.

The INCAS project [30] at the University of Kaiserslautern uses hybrid monitoring techniques in its

performance measurement tools. It uses special hardware support based on the Test and Measurement

Processor (TMP), which is a part of each node in the multicomputer system. Individual TMP's are

connected via a TMP interconnection network to a central test station. The monitoring approach used in

this system has very low interference but lack a global time base to synchronize the TMP's.

2.4 Estimation Techniques

Estimation techniques use heuristics, assumptions and simpli�cations to make the evaluation more tractable

and cost-e�ective. Estimations are typically introduced while choosing distributions or probabilities or in

reducing the solution space in the case of analytic techniques. They are used to simplify the operation

model of the hardware in case of simulation techniques. In monitoring techniques, they are used to reduce

the amount and level of instrumentation required. These techniques generally result in the reduction of

accuracy in the obtained evaluations. Further, most heuristics or assumptions used are valid only for a

particular set of systems or applications. Existing approaches using estimation techniques are discussed

below.

Alan Sussman [31] has proposed a performance estimation technique to be used for automatic mapping

of programs onto distributed memory architectures. The approach used is to create an execution model

of the application description at compile time. Execution models have been de�ned for a set of structured
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mapping techniques like block and interleaved data partitioning and forall loop body partitioning. The

output of the system is the estimated execution time for the particular mapping. The system is targeted

to the Warp systolic array machine.

An alternate approach to performance estimation of data decompositions on a distributed memory

machine has been proposed by Balasundaram et al. in [32]. This approach uses a set of \training

routines" to benchmark the performance of the the architecture. These benchmarks are then used by

the estimator to estimate the cost of a particular data decomposition. The estimator is targeted to

loosely synchronous problems implemented as SPMD programs using the Cubix paradigm and with no

overlap between communication and computation. The synchronization delay is not modeled. The user is

prompted for unknown variable and branch probabilities. This system is a part of the ParaScope parallel

programming environment [33].

The Sigma editor of the FAUST system [34, 35] assists the developer in re-targeting and optimizing

application code by estimating its performance on the hardware. Sigma analyzes the assembly code for

each node, generated by the compiler, to estimate the execution time of parallel loops present. Analytic

models are incorporated to estimate the performance of the memory system. The performance estimation

is provided in terms of inputs and other unknown variables. Sigma estimates the performance of loops

only in structured scienti�c applications and is targeted to the Alliant FX/8 architecture.

The MARC environment (MApping Routing Con�guring) [36] developed at the IAM of the University

of Berne uses performance information to determine the appropriate mapping of application components

onto the distributed system. The approach uses monitoring to gather application execution statistics on a

single processor. This information is then used to estimate the performance on multiple processors. The

tool has been developed for Occam programs running on transputer based systems.

An approach for predicting the end-to-end performance for the Internet is presented in [37]. It uses

experimental data to develop a predictive model to the predict the latency and bandwidth for the Internet.

An alternate approach to predicting the performance of distributed memory multiprocessors is presented

D. Poplawski et al. in [38]. The approach, called \Synthetic Models" is based on the premise that

performance on distributed memory machines is more dependent on communication performance than

computation. A synthetic model of an application is generated by replacing the computation by empty

delay loops with delays equal to the estimated computation time, and retaining only the communication

structure of the application.

A general model for performance prediction using deterministic techniques is presented in [39]. The

deterministic model views performance as the interaction of resources demanded by programs and pro-

vided by the multiprocessor system, in both, a system dependent and independent manner. This model

parameterizes the architecture in terms of the structure and requirements of the application and then uses

these parameters deterministically to express the execution time of the application. The model has been

described for the Loughborough University NEPTUNE MIMD parallel computer system.
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2.5 Hybrid Techniques

Hybrid techniques combine the approaches discussed above so as to overcome the drawbacks of the individ-

ual techniques and to obtain acceptable tradeo�s. Some existing evaluation tools using hybrid techniques

are discussed below.

A hybrid performance prediction tool has been developed for the RP3 machine. The approach uses

simpli�ed analytic queueing models which are then tuned with the help of simulation results. The system

requires hardware and software speci�cations (such as instruction mix, hit ratios, load, branch probabilities

etc.) to be speci�ed by the user.

An approach for performance prediction on the BBN GP1000 parallel processing system is presented

in [40]. This approach builds load/store templates that can automatically characterize the performance of

the architecture. Analytic models which match the experimental results of these templates, are then used

to predict performance.

The Chitra system [41] uses monitoring techniques to generate a program execution sequence (PES). It

then develops a homogeneous semi-Markov chain model �tting the PES. This model is used to predict the

performance of the program for di�erent parameters.

The performance predictor used to evaluate machine-level mappings is presented in [42]. This approach

models the parallel program as a stochastic graph and uses approximation techniques to solve the model.

The runtime of each node in the stochastic graph is modeled as a random variable and their distributions

are obtained using hardware monitoring. Using these distributions, the overall runtime of the application

graph is approximated.

3 An Interpretive Model for Performance Prediction

It is clear from the discussion above, that there exist a large number of tools and approaches for evalu-

ating the performance of applications on parallel/distributed computers. Although these tools have been

used e�ectively to model particular systems, they have a narrow applicability and can not incorporate

the heterogeneity and dynamic nature of an HHPC environment. General methodologies that have been

developed, lack the feasibility and accuracy needed in HHPC software development. The challenges pre-

sented by the HHPC environment to the software developer are summarized as follows: (1) Inherent lack

of synchrony and global ordering; (2) Heterogeneity in architectures, programming models, data repre-

sentation, communication and synchronization structure, etc.; (3) Increased design options and available

degrees of freedom that have to be optimized; (4) Dynamically changing computing environment in terms

of size, components, con�guration, topology, etc. In this section we present an interpretive model for a

source driven performance prediction framework which can meet these challenges. The model provides a

comprehensive characterization methodology to abstract and parameterize the behavior of the application

and the computing environment. Interpretive techniques are then used to predict the performance of the
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Figure 2: A Interpretive Performance Prediction Framework for HHPC - Functional Block Diagram

agram of the performance prediction framework. The proposed framework consists of four modules: (1)

Application Module, (2) Systems Module, (3) Interpreter Engine and (4) Output Module. Each module

abstracts a speci�c set of components of the HHPC environment and presents a well de�ned interface to

the rest of the system. A key feature of this framework is that each module is independent i.e. it is viewed

by the rest of the system as a black box with the desired interface. This allows each module to be optimized

independently. In what follows, we present a detailed description of each module.

3.1 Model Inputs

The proposed performance prediction framework requires the following inputs:

� An application description which could be the source of the entire or part of the application, an

algorithmic description or a set of templates.

� A mapping description which associates tasks in the application description to components in the

computing environment on which they are to be evaluated.

In addition to these essential inputs, the framework also accepts information about current system run-time

status and parameters (e.g. load, existing faults, etc.), or about \What-if?" scenarios to be evaluated. If
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these values are not provided, preset default values are used. If the inputs required by the application are

not speci�ed, the user is prompted for them during the course of the interpretation.

3.2 Systems Module

The systemsmodule abstracts the target computing system into a set of parameters which are then exported

to the Interpreter Engine. The abstraction is performed in a hierarchical manner, wherein, at each level of

the hierarchy every unit is independent and is viewed by the other units as a black box with a well de�ned

interface. A unit's interface can be generated using evaluation techniques best suited to that particular

unit (e.g. analytic, simulation, speci�cations, etc.) The rest of this section presents a detailed description

of the system abstraction model and the characterization methodology.

3.2.1 System Abstraction Model

The function of the system abstraction model is to provide an abstract representation of the underlying com-

puting environment and to de�ne the interface presented to the rest of the framework. The model hierar-

chically characterizes any heterogeneous network-based computing environment into a System Abstraction

Graph (SAG). SAG is a rooted tree such that each level of the tree represents a corresponding level in the

characterization hierarchy. Figure 3 illustrates the SAG corresponding to the HHPC environments shown

in Figure 4 (a description of each level of this graph and how it is generated is described in the following

section). Each vertex of the SAG is a System Abstraction Unit (SAU) that represents the fundamental unit

of abstraction at a particular level of the abstraction hierarchy. Each SAU is a tuple with 4 components: viz

(1) Processing Component (P), (2) Memory Component (M), (3) Communication/Synchronization Com-

ponent (C/S), and, (4) Input/Output Component (I/O); i.e. SAU � hP;M;C=S; I=Oi. Each component

of the tuple can be Compound, Simple, or Void. A compound component can be further decomposed into

one or more levels in the hierarchy. A simple component represents the lowest level in the classi�cation

hierarchy and exports actual timing information required to abstract that component. A void component

implies that the particular component is not applicable at that level. An SAU is considered compound if

at least one of its components is compound. Further, every SAU has at least one component that is not

void. Every leaf SAU in an SAG is simple. An SAG can now be formally de�ned as follows:

De�nition 1 The System Abstraction Graph (SAG) is a rooted tree

SAG = [fSAUg; ']

where : 8SAU 2 fSAUg; SAU � hP;M;C=S; I=Oi

and : P;M;C=S; I=O 2 fCompound; Simple; V oidg

and ' is a predecessor-successor relation de�ned such that SAUi ' SAUj ; SAUi; SAUj 2 fSAUg implies SAUj is a sub-

component of SAUi.
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Figure 3: System Abstraction Graph (SAG)

In what follows we de�ne the system characterization algorithm and illustrate the steps required to obtain

the SAG for a particular computing environment using a running example. The four components of the

SAU tuple and the parameters required to abstract them are also described.

3.2.2 System Characterization Methodology

The system characterization methodology abstracts each component of the underlying computing system

according to the system abstraction model presented in Section 3.2.1. The methodology itself views the

HHPC environment as a hierarchical structure. The highest level of the hierarchy consists of the entire

HHPC system viewed as a single virtual machine while the lowest level of this hierarchy is made up of

individual physical elements within each node in the environment. Units at each level of the hierarchy,

are abstracted into four components (P,M,C/S,&I/O), corresponding to the SAU tuple. The process-

ing component abstracts the processing capability of the unit while the memory component abstracts

accesses to the memory system. The communication/synchronization component abstracts the communi-

cation/synchronization structure and protocol of the unit. The input/output component abstracts �le and

device I/O. As mentioned above, these components can be simple, compound or void. The characterization

methodology proceeds recursively down the system hierarchy, generating units of �ner granularity at each

level. The process terminates at the level at which the parameters required to abstract the performance

of all units (at that level) can be obtained with the desired level of accuracy and cost-e�ectiveness. The

output of the system characterization methodology is a SAG as de�ned in Section 3.2.1. The system

characterization algorithm is de�ned below:
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Algorithm 1 SystemCharcterize

(1) Level0  h3;
;
;
i (Level 0 consists of a single compound processing component representing the entire computing

system)

(2) foreach level in the characterization

� foreach compound component at that level

characterize component

end foreach

end foreach

End

In what follows, we use the HHPC environment shown in Figure 4 as a running example to demonstrate the

use of the system characterization algorithm. The sample environment consists of two high speed backbone

networks (HSBN) interconnected via a local area network (LAN). Each backbone network interconnects

high performance computing elements (HPCE), storage systems (SS), etc. HSBN-1 interconnects a CM2

and an iPSC/860 while HSBN-2 interconnects 2 high performance workstations (HPW) and an SS. The

methodology is illustrated in Figures 4-8.

HSBN-1

SS-1

HPCE-1: iPSC/860

HPCE-3: HPW

HSBN-2

L
A

N

HPCE-2: CM2

HPCE-4: HPW

SAU-0

Figure 4: System Characterization Methodology

- Level 0

SAU-0

SAU-00

SAU-02

HSBN-1

SS-1

HPCE-1: iPSC/860

HPCE-3: HPW

HSBN-2

L
A

N

HPCE-2: CM2

HPCE-4: HPW

SAU-01

Figure 5: System Characterization Methodology

- Level 1

Level 0 At the highest level of the abstraction hierarchy, there is a single system abstraction unit (SAU-

0) which abstracts the entire system as a single virtual machine. At this level, we have a compound

processing component. The memory, communication/synchronization and input/output components are

void. Level 0 characterization of the system is shown in Figure 4. This level corresponds to step 1 of the

system characterization algorithm.
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Level 1 Level 1 of the characterization hierarchy is shown in Figure 5. This level contains three units;

two of which (SAU-00 & SAU-02) contain compound processing components while the third unit (SAU-01)

contains a simple communication/synchronization component. The processing components abstract the

HPCE clusters on the two HSBN. The communication/synchronization component exports parameters

which abstract the performance of the LAN interconnecting the two HSBN's.

HSBN-1

SS-1

HPCE-1: iPSC/860

HPCE-3: HPW

HSBN-2
LA

N

HPCE-2: CM2

HPCE-4: HPW

SAU-0
SAU-00

SAU-02

SAU-001

SAU-000

SAU-002

SAU-021

SAU-020

SAU-023

SAU-022

SAU-01

Figure 6: System Characterization Methodology - Level 2

Level 2 Level 2 of the characterization hierarchy is shown in Figure 6. At this level, the compound

processing components of SAU-00 and SAU-02 are further broken down. SAU-00 is decomposed into

3 units (SAU-000, SAU-001 & SAU-002). SAU-000 abstracts the CM2 node of the environment. It

consists of a compound processing component, a compound memory components, a compound com-

munication/synchronization component, and a compound input/output component. SAU-001 abstracts

the iPSC/860 hypercube system and consists of a compound processing component. The other three

components are void at this level. SAU002 abstracts the HSBN and contains a simple communica-

tion/synchronization component. Its processing, memory and input/output components are void. SAU-02

is broken down into 4 units (SAU-020 through SAU-023). SAU-020 and SAU-021 abstract the two HPW's.

They consist of a simple processing component and a compound memory component. SAU-023 abstracts

the �le server and consists of a simple input/output component only. SAU-022 abstracts the HSBN and

contains a simple communication/synchronization component.

The subsequent levels of the characterization hierarchy are described in detail for the iPSC/860 (SAU-

001). The particular unit is chosen since it provides insight into the applicability of this methodology to
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an existing architecture and because the iPSC/860 is the target of our prototype system.

Level 3 At level 3, the iPSC hypercube system (SAU-010) is decomposed into 3 units; viz. SAU-0010,

SAU-0011 and SAU-0012. SAU-0010 abstracts the actual cube. This unit consists of simple processing

component, a compound memory components (memory hierarchy and main memory), a simple communi-

cation/synchronization component and a compound input/output component (i/o node and SS). SAU-0011

abstracts the interconnection between the System Resource Manager (SRM) and the iPSC/860 cube. It

has a simple communication/synchronization component. SAU-0012 abstracts the SRM (or host) of the

iPSC/860 hypercube system. It has a simple processing component, a compound memory component, and

a compound input/output component.

HPCE-1: iPSC/860

SAU-001

SAU-0010

SAU-0012

SAU-0011

Figure 7: System Characterization

Methodology - Levels 3

iPSC/860 (SAU 0010)
Component Type

Processing

Memory

Comm/Synch

Input/Output

Simple

Compound

Simple

Compound

Figure 8: System Characterization Methodology - Levels

4

Level 4 We use level 4 of the characterization hierarchy to illustrate the nature of the parameters

exported by the various types of (simple) components since, the granularity of characterization at this

level was su�cient to parameterize the iPSC/860 hypercube with the accuracy required by our prototype.

In the discussion below, only the iPSC/860 cube (SAU-0010) is considered, without the SRM. The

prototype system however, does model the SRM and interactions between the node processors and the

SRM while predicting performance.

It should be noted that the parameters exported by each component may be either in the form of absolute

times or as a count of the system clock. Since the clock frequency is a part of the parameters exported by

the processing component, the parameters can be converted to a standard format (real time) before being

exported to the unit interface. Further, a parameter can have its values in the form of a range specifying
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the minimum and the maximum. During interpretation, the user can decide which of these values to

use depending on whether best-case or worst-case performance is required. The user may also de�ne some

function of these two values to be used (e.g. required time = (max - min)/2 + min). Finally, if a parameter

is a known function of a run-time parameter (like system load), then this function can be exported to the

interface. During interpretation, the current value of that parameter is used to evaluate the function. For

the prototype system, we use a combination of timing values and clock counts. Also, wherever possible,

a range of values is speci�ed to provide additional 
exibility. The values of these parameters have been

obtained either via benchmarking runs performed on the hypercubes at the Center for Research in Parallel

Computing (CRPC) at Rice University and at the Northeast Parallel Architectures Center (NPAC) at

Syracuse University, or from iPSC/860 hardware documentation. In addition, performance information

reported in [43, 44, 45] was referenced.

The parameters exported by each component are discussed below.

Processing Component The processing component models the cost of di�erent operators occurring in

a typical application description. The parameters exported by this component can be grouped into the

following classes on the basis of the operators they model. Some key parameters required to abstract the

di�erent operators of the processing component are summarized in Table 1.

Algebraic Operators This class characterizes algebraic operators like +; �; � & �. The number of

clocks required by these operators when used with integer, real and 
oating point operations is exported.

In addition, the overhead associated with mixed operations are also characterized. In case of the iPSC/860,

mixed operation represents an integer operand used in an expression to generate a 
oating point result or

alternately a 
oating point operand used in an expression to generate an integer result.

Iterative Operators The iterative operators class characterizes the overhead associated with iterative

loops (e.g. DO-ENDDO, WHILE, etc.). This class abstracts the time required to check and update loop

indexes and to make appropriate branches. The parameters exported by this component are of two types:

those required to abstract a �xed overhead incurred every time a loop operator is encountered and those

required to abstract the per-iteration overhead associated with each iteration of the loop. The overheads

are determined for both types of loop limits; viz. when a stride (step) is present and when it is absent (i.e.

the default stride of 1 is used).

Conditional Operators This class characterizes the overhead associated with conditional structures

(e.g. IF-THEN-ELSE). Speci�cally, the time required for each condition, i.e. each \if", \else if" & \else"

statement, is abstracted. In addition, the overheads associated with a fall-through and a branch-taken are

also parameterized.
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Processing Component

Parameter Class Parameters iPSC/860 Characterization

General

Unit Name iPSC/860

Unit Clk Freq. 40 Mz. (2.5e-8 sec)

Unit Max Procs. 16

Operators Maximum Minimum

Algebraic Opers

Int/Real Add/Sub 1 1

Int/Real Mul 3 2

Int Div (1.256e-6/Clk)+2 (1.106e-6/Clk)+1

Real Div (2.391e-6/Clk)+5 (2.241e-6/Clk)+2

Mix Oper: Int ! Real 14 8

Mix Oper: Real ! Int 2 1

.........

Iterative Opers

No Step Limit Ovhd 10 5

Per-Iter Ovhd (No Step) 14 8

Step Lim Ovhd (1.256e-6/Clk)+17 (1.106-6/Clk)+10

Per-Iter Ovhd (Step) 17 10

.........

Conditional Opers

Condt Ovhd 1 1

Branch Taken Ovhd 1 1

.........

Func/Sub Call Opers

Call Ovhd 2 1

.........

Library Characs


oat() 15 7

abs() 7 4

.........

Machine Spec Libs/Opers

numnodes() (NX/2) (5.683e-7/Clk) (5.552e-7/Clk)

mynode() (NX/2) (5.421e-7/Clk) 5.302e-7/Clk)

.........

Table 1: Processing Component Characterization

Function/Subroutine Call Operators This class characterizes the overheads associated with each

call to a function or a subroutine or for a system call. The overhead consists of two components: the

overhead of making the call itself and the overhead associated with each argument passed.

Library Characterization This class characterizes the performance of standard libraries (e.g. math

libraries, etc.) and system routines (e.g. time, etc.).
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Memory Component

Parameters iPSC/860 Characterization

General

Cache Size 8 KBytes

Cache Blk Size 32 Bytes

Cache Assoc 2

Cache Repl Policy Random

Cache Write Policy Write-Back

MM Size 8 MBytes

MM Page Size 4 KBytes

Inst Cache Size 4 KBytes

Inst Cache Blk Size 32 Bytes

Inst Cache Assoc 2

Memory Hierarchy Clks

Fetch 1

Fetch Miss 6

Store 2

Store Miss 4

Main Memory Clks

Main Memory Fetch 3-1 (pipelined)

Main Memory Store 3-1 (pipelined)

Table 2: Memory Component Characterization

Machine Speci�c Operators/Libraries This class models operators, system calls and library calls

which are speci�c to that particular machine. In case of the iPSC/860, this includes the \load" operator

which loads a program onto a processing node and speci�c functions to obtain con�guration information

like the number of nodes used, node id's, etc.

Memory Component The memory component is actually a compound component which models the

2 level memory hierarchy. The �rst component models accesses to the entire memory hierarchy in a

conventional manner. The second component abstracts accesses made directly to the second level of the

memory hierarchy (i.e. the main memory). Typically it would lead to another level in the characterization

hierarchy wherein each level would be modeled individually. However, for the compactness of description,

the two levels have been combined (with no loss in detail) into a single simple level in the hierarchy. The

parameters exported by the memory component are the fetch and store access times and the overheads

associated with a read/write misses (if applicable). The physical size and organization of the memory

hierarchy and replacement/writing policies used are also parameterized. Some key parameter used to

abstract the memory component are listed in Table 2
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Communication/Synchronization Component

Component Parameters iPSC/860 Characterization

Speci�cations

Topology hypercube

Routing e-cube, circuit switched

Static Bu�er Size 100 Bytes

Communication Structure

Static Bu�ers Time (sec)

Startup Ovhd 70e-6

XMission/Byte 0.42e-6

Link Ovhd/Hop 11 e-6

Receive Ovhd -

.......

Dynamic Bu�ers Time (sec)

Startup Ovhd 175e-6

XMission/Byte 0.36e-6

Link Ovhd/Hop 33e-6

Receive Ovhd -

.......

Synchronization Structure Time (sec)

Sync Ovhd 67e-6

.......

Table 3: Communication/Synchronization Component Characterization

Communication/Synchronization Component This component models the communication and syn-

chronization structure of the computing node. The parameters applicable to each structure are discussed

below.

Communication Structure Typical parameters required to abstract the communication structure are

the startup overheads (required for packing and marshaling messages), the actual transmission times per

unit and network link, overhead associated per hop and the receive overhead (for unpacking and copying

messages). Further, these parameters are exported for communication using static and dynamic bu�ers.

Other speci�cations like the size of the static bu�ers, the routing scheme followed, etc. are also speci�ed.

The value of some key parameters for the iPSC/860 hypercube are listed in Table 3.

Synchronization Structure Parameters required to abstract the synchronization structure include the

overheads required to create and check barriers and to lock/unlock and test global variables (if a shared

memory space exists). The value of some relevant parameters for the iPSC/860 hypercube are listed in

Table 3.
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Input/Output Component The input/output component models �le and device I/O for the computing

unit. It exports parameters which provide two levels of abstraction. The �rst level models I/O at a higher

level and parameterizes the opening and closing of units, positioning within units and the read/write

operation to the unit. The second level exports device speci�c parameters like the seek time, rotational

latency, data transfer times etc.

The Input/Output component for the iPSC/860 (SAU-0010) is compound and consists of 3 sub-units;

viz. the i/o processor, the data transfer channel and the storage system. We are currently in the process

of modeling these units. The relevant parameters however, are not available at the time of the writing of

this paper.

In the description presented in this paper, we stop the characterization at level 4 since it was possible

to parameterize the iPSC/860 unit at this level with the granularity and accuracy required. However, the

same procedure can be applied recursively to achieve a �ner granularity, i.e. considering each physical

component of the iPSC/860 as a separate unit and modeling it separately.

The system characterization methodology proposed in this section is general enough to accommodate any

size, con�guration and composition of the HHPC environment, while retaining su�cient detail to model its

performance. Further, it models the interactions between components while allowing the developer to select

appropriate models for generating the parameters for each component. The granularity of the information

exported at each interface de�nes the accuracy of the prediction at that interface. The developer thus has

the 
exibility to model key components in detail and use approximation for component not critical to the

performance. Finally, the hierarchical structure of the model re
ects the structure of the environment and

can be used to obtain and abstract view of the HHPC environment while generating system level mappings.

3.3 Application Module

The application module is responsible for abstracting the application description into a set of parameters

which de�ne its structure and performance. These parameter are then exported to the interpreter engine so

that their performance can be interpreted in terms of the parameters exported by the systems module. The

application module is composed of two components: (1) Machine Independent Abstraction Module and (2)

Machine Speci�c Filter. The machine independent abstraction module is responsible for characterizing the

application into an abstraction graph according to application abstraction model de�ned below. This graph

is then passed through the machine speci�c �lter where it is augmented to incorporate machine speci�c

information based on the mapping inputs provided. The application module is designed to be general

enough to handle any structured application description. In what follows, we �rst de�ne the application

abstraction model and then illustrate how it can be used to characterize an HHPC application.
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Host Program 
  N = 2
  DO I = 0,N−1
    Spawn Node I
  ENDDO
  Recv RESULTS
END

Node Program 
  ME = MYNODE()
  CALC.....
  SyncSend (ME+1) MOD 2
  SyncRecv (ME−1+2) MOD 2
  IF ME EQ 0
    Send RESULTS
  ENDIF
END

Application Description

Figure 9: Application Abstraction Process

3.3.1 Application Abstraction Model

The application abstraction model recursively characterizes an application description into well de�ned

Application Abstraction Units (AAU). AAU's represent the fundamental unit of abstraction of the appli-

cation description. An AAU can be of two types: A Simple AAU that cannot be further decomposed. It

exports a set of well de�ned parameters which abstract the portion of the application description associ-

ated with it. A Compound AAU can be further decomposed, using similar techniques, into a set of simple

or compound AAU's. The various classes of simple and compound AAU's are described in detail in the

following sub-section. The AAU's are then combined to abstract the control structure of the application to

produce the Application Abstraction Graph (AAG). The AAG is simple directed graph de�ned as follows:

De�nition 2 An Application Abstraction Graph (AAG) is a simple directed graph such that

AAG = [fAAUg; ']

where : 8AAU 2 fAAUg; AAU 2 fSimple;Compoundg

and : Simple� fStart; End; Seq; Spawn;Comm;Sync; SyncOperg;

Compound� fIterD; IterSync; IterND;CondtD;CondtSync; Callg

where ' is an ordering relation de�ned such that AAUi ' AAUj; AAUi;AAUj 2 fAAUg implies AAUi precedes AAUj in

execution.

The communication/synchronization structure of the application is then superimposed onto the AAG

by augmenting the graph with a set of edges de�ned by the following communication/synchronization

relations:

8 AAUi; AAUj 2 fAAUg;
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1: AAUi , AAUj

iff AAUi; AAUj 2 fComm;SyncSeqg

and AAUi & AAUj are of the same type;

and AAUi & AAUj communicate with synchronization:

2: AAUi ) AAUj

iff AAUi; AAUj 2 fCommg

and AAUi & AAUj communicate without synchronization:

3: AAUi *) AAUj

iff AAUi; AAUj 2 fSync; SyncSeqg

and AAUi & AAUj are of the same type;

and AAUi & AAUj synchronize:

The structure generated after augmentation is called the Synchronized Application Abstraction Graph

(SAAG). Note that a compound AAU can be recursively decomposed into an AAG and an associated

SAAG and that the compound AAU abstracts all sub-AAG's associated with it.

The SAAG is then passed through the machine dependent �lter which uses the input mapping informa-

tion to de�ne a Mapping Abstraction Function (�) from the SAAG to the SAG so as to assign:

1. Every AAUi 2 SAAG to an SAUj 2 SAG on which it is to be interpreted.

2. Every communication/synchronization edge (de�ned by relations,;);&*)) in SAAG to an ordered

set fsaug (fsaug � fSAUg) which represents the actual route followed by the particular commu-

nication/synchronization for the speci�ed mapping (e.g a communication from an external unit to a

hypercube node has to be routed through the SRM).

The AAG and SAAG associated with a sample application description are shown in Figure 9. In what

follows we describe the steps involved in the application abstraction procedure. The di�erent classes of

AAU's and the nature of the parameters exported by them are also described.

3.3.2 Application Characterization Methodology

The application characterization methodology is responsible for generating the application abstraction

units and the abstraction graphs from the input application description using the application abstraction

model de�ned above. This methodology uses parsing techniques to extract the required information and

consists of 3 levels of parsing. The �rst level parsing generates the AAG. In addition, this level also ex-

tracts information about critical variables (de�ned in the following paragraphs), required external inputs,

and creates an augmented symbol table. During second level parsing, the communication/synchronization

structure of the application is superimposed onto the AAG to generate the SAAG. The global synchro-

nization structure required during interpretation is created during this level. The �nal level of parsing is

performed by the machine speci�c �lter and is responsible for all machine speci�c augmentation to the
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AAU Type Sample Parameters

Start (Not Applicable)

End (Not Applicable)

Seq NumFetch, NumStore, NumIntAdd, NumIntMul, NumFptMul, NumCalls, ListCalls[ ], : : :

Spawn NumChildren, Location[ ], �Children[ ] : : :

IterD NumIters, LimitType, �SeqBody, : : :

IterSync NumIters, LimitType, �SeqBody, �CommBody, �SeqBody, : : :

IterND LimitType, LimitExpr[ ], �IterBody, : : :

CondtD NumCondts, ListCondts[ ], �Bodies, : : :

CondtSync NumCondts, ListCondts[ ], �BodiesD, �BodiesSync, : : :

Comm Type, Size, Src, Dest, : : :

Sync Type, NumSyncNodes, SyncNode[ ], : : :

SyncSeq Type, NumSyncNodes, SyncNodes[ ], �SeqBody, : : :

Call Type, NumArgs, ArgList[ ], �CallBody, : : :

Table 4: Application Characterization

SAAG. This level de�nes the mapping abstraction function (�). In what follows, the three parsing levels

are described in detail.

Level 1 Parse

The �rst level parses are responsible for characterizing each statement in the application description,

clustering contiguous statements belonging to the same class and abstracting the clustered unit into an

AAU. Note that the number of statements abstracted into a single AAU is controlled by the user. This

allows the developer to dictate the granularity of abstraction and hence the granularity of the prediction.

At the �nest level, there is no clustering and performance measures are generated for each statement. The

default is to generate the largest cluster possible. An AAU can be either simple or compound as de�ned

earlier. The level 1 parse is applied recursively to compound AAU's to characterize, clusters and abstract

them and to generate associated sub-AAG. The di�erent classes of AAU's and the key parameters required

to characterize them are summarized in Table 4. These classes are described below.

Start AAU (Start) The Start AAU marks the beginning of the application and the starting point for

the interpreter engine. The global clock used by the engine is reset at this node. A structured application

description (to which this framework is targeted) can have only one Start AAU and this AAU is the root

of the associated abstraction graphs.

End AAU (END) The End AAU represents the termination of an independent 
ow of control (i.e.

a subgraph of the AAG). For example, the termination of a node program would be represented by an End

AAU. All leaf vertices of the AAG are End AAU's.
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Sequential AAU (Seq) A Sequential AAU abstracts a set of contiguous statements which contain

calls to library functions, system routines, assignments and/or arithmetic/logical operations.

Spawn AAU (Spawn) A Spawn AAU abstracts a \fork" type statement which initiates execution of

a sub-graph of the AAG (possibly on another node). All measurements associated with the new execution

are o�set by the activation time (virtual time at which interpretation of the AAU begins as will be de�ned

later) of the spawn AAU. The parameters required to abstract the Spawn AAU are listed in Table 4. In

case of the iPSC/860, the \load" system call executed by the host processor belongs to this class.

Communication AAU (Comm) A communication AAU abstracts statements in the application

description which involves explicit communication. This AAU covers synchronous/asynchronous sends

and receives and point-to-point as well broadcast/multicast communication. In case of the iPSC/860, this

includes calls to \csend/crecv", \isend/irecv", etc.

Synchronization AAU (Sync) The Synchronization AAU abstracts all statements involving explicit

synchronization. This includes locks as well as barrier type synchronization.

Synchronized Sequential AAU (SyncSeq) This AAU abstracts any Seq AAU which requires

synchronization or communication. This includes global arithmetic operations (add/mul), global logical

operations (and/or) or global comparisons (max/min), as well writes to shared variable (in the case of

AM-MIMD architectures), etc.

Iterative-Deterministic AAU (IterD) The Iterative-Deterministic AAU abstracts an iterative 
ow

control structure (of the type DO-ENDDO) in the application description which has no descendants AAU's

in it's body which are of type Spawn, Comm, Sync, or SyncSeq and whose execution order and number of

execution are known during parsing (possibly in terms of external inputs). The IterD AAU has an AAG

and SAAG associated with its body, and abstracts these sub-graphs.

Iterative-Synchronized AAU (IterSync) The Iterative-Synchronized AAU abstracts an iterative


ow control structure (of the type DO-ENDDO) in the application description whose execution order and

number of execution are known during parsing (possibly in terms of external inputs), but has at least one

descendants AAU's in it's body which is of type Spawn, Comm, Sync, or SyncSeq.

Iterative-NonDeterministic (IterND) An Iterative Non-Deterministic AAU is a compound AAU

and has one or both of the following characteristics: (1) The body of the iterative structure is dependent on

the iteration. (2) The number of iteration depends on a parameter de�ned within the body of the iterative

structure. The performance of this type of an iterative node is estimated either by un-rolling the iterative

structure or by using user de�ned heuristics to resolve the non-determency.
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Conditional-Deterministic (CondtD) The Conditional-Deterministic AAU abstracts a conditional


ow control structure (of the type IF-THEN-ELSE) in the application description which has no AAU's

in the sub-AAG' associated with its bodies, which belong to the set fSpawn,Comm,Sync,SyncSeqg. The

Conditional-Deterministic AAU is compound.

Conditional-Synchronized (CondtSync) AConditional-Synchronized AAU abstracts a conditional


ow control structure (of the type IF-THEN-ELSE) in the application description which has at least one

AAU in the sub-AAG' associated with its bodies which belong to the set fSpawn,Comm,Sync,SyncSeqg.

The Conditional-Synchronized AAU is compound.

Call AAU The Call AAU abstracts all invocations of user-de�ned functions or subroutines. This

AAU is compound and abstracts information about the nature of the call and the number of arguments

passed. It also abstracts the sub-AAG's associated with the subroutine/function body.

In addition to generating the AAG, a list of critical variables is also created during this pass. A critical

variable is de�ned as a variable whose value in
uences the 
ow of execution. This includes index variables

of an iterative AAU, or the variables used to de�ne conditions in a conditional AAU. For each critical

variable, a de�nition path is created and the AAU where it is de�ned is tagged. If a critical variable is an

external input, it is accordingly tagged. The user is then prompted for its value.

The third task of the level 1 parse is to augment the regular symbol table to store information about the

access pattern in order to model accesses to the memory hierarchy. The information stored is the number

of accesses between consecutive accesses to a particular variable.

Level 2 Parse

The parses at level 2 are responsible for abstracting the communication and synchronization structure of

the application and superimposing it on top of the AAG to generate the SAAG. This is done by adding

three classes of edges between AAU sets of type Comm, Sync and SyncSeq. These edges correspond to the

relations ,;);& *) de�ned in the abstraction model. In addition, each communication/synchronization

occurrence in the application is assigned a unique id and the associated set of Comm, Sync or SyncSeq

nodes are tagged with that id. A global synchronization structure is created which is indexed by this id

and contains contains information about the type of communication/synchronization (sync/async, pt-to-

pt/bcast/mcast, barrier, lock, etc.). The list of communicating AAU's, and other parameters associated

with the particular communication/synchronization type are also extracted and stored in this structure.

Using the SAAG and the global synchronization structure, the level 2 parses can detect error in the appli-

cation description like mismatched communication/synchronization calls, missing calls, potential deadlocks,

etc.
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Level 3 Parse

The level 3 parse is performed by the machine speci�c �lter and is responsible for generating the mapping

abstraction function �. It also augments the global synchronization structure to introduce machine speci�c

details about the communications/synchronization. For example, in the iPSC/860, a broadcast (using the

NX/2 communication library) is implemented using a logarithmic algorithm; a broadcast call is thus

replaced by the corresponding set of point-to-point messages de�ned by this algorithm. Similarly, the

number of hops required for a message from AAUi to AAUj using the particular routing algorithm (e-

cube in the iPSC/860) is calculated. Another characteristic speci�c to the iPSC/860 which is handled

by the level 3 parses is tagging all synchronous messages greater that 100 bytes in length as requiring

dynamically allocated bu�ers. This level also introduces compiler transformations/optimizations speci�c

to the machine. Overlaps between communications and computations are tagged so that they can be

accounted for during interpretation.

3.4 Interpretive Engine

The interpreter engine is responsible for the actual performance interpretation. It uses the system, applica-

tion and mapping abstractions, to predict the performance of the abstracted application. In what follows

we �rst de�ne the interpretation model and algorithm. The methodology used to interpret speci�c types

of AAU's is then described. Finally we brie
y describe how it can handle experimentation and \What-if?"

scenarios.

3.4.1 Interpretation Model

The interpretation model consists of two components: (1) An Interpretation Function (
) that interprets

the performance of an individual AAU and (2) An interpretation algorithm which recursively applies the

interpretation function to the SAAG to predict the performance of the corresponding application.

De�nition 3 The Interpretation Function (
) operates from the set f AAG g to the set < of real numbers and assigns

to each AAU 2 SAAG a subset of < which represents the performance statistics of that AAU. i.e.


(AAUi; SAG; �) : AAUi 7! fRg; where AAUi 2 fAAUg and fRg � <

where � is the mapping abstraction function.

Before we state the algorithm, the following terminology needs to be de�ned: A Chain of an SAAG

is de�ned as a set of contiguous AAU's in that SAAG. The �rst AAU is called the Head of the chain.

Evaluating an AAU consists of applying the interpretation function 
 to the AAU to obtain its performance

statistics. A Red AAU denotes an AAU that has been evaluated. An Active AAU is an AAU whose

immediate predecessors are red AAU's. An Active Chain is a chain whose head is active.

Let �AAUi denote the time (measured from the start of the application) at which AAUi became active.

�Start represents the beginning of the application execution and the reference point for all measurements
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made by the interpretation model. Let �AAUi denote the execution time of AAUi returned by the interpre-

tation function 
. The interpretation algorithm can now be de�ned as follows:

Algorithm 2 Interpret

(1) color Start AAU red;

�Start  0;

�Start 
(AAUStart; SAG; �) [evaluate AAUStart]

(2) for each active AAU

repeat until there is no active AAU

� for each AAU (AAUi) in the associated active chain

repeat until AAUi cannot be evaluated due to synchronization requirements

�AAUi  �AAUi�1 + �i�1

�i 
(AAUi; SAG; �) [evaluate AAUi]

color AAUi red

end repeat

end repeat

(3) if all leaf AAU's of the SAAG are not red

ERROR

end if

End

The above algorithm proceeds down each active chain (i.e. depth �rst) in the SAAG, and evaluates each

AAU of the active chain. It also updates a global time base (�) as it proceeds. If the current AAU cannot

be evaluated because it has to wait for synchronization (i.e. it is a Comm, Sync or SyncSeq AAU), that

AAU remains active and the algorithm moves to the next active chain. If at the end of the algorithm,

the leaf AAU's of the (topmost) SAAG are not red, an error has occurred in the implementation of the

application and has caused it to hang-up. The application of the interpretation algorithm to a sample

SAAG is shown in Figure 10. The interpretation methodology used to handle various classes of AAU's is

described below.

3.4.2 Interpretation Methodology

In this section we brie
y describe the models used to handle accesses to the memory hierarchy, commu-

nication and synchronization between computing units, external input variables, and how these models

are used to interpret the performance of each AAU type. The experimentation with di�erent run-time

situations and \What-if?" scenarios.

Handling External Inputs External inputs or unknown variables encountered in the application de-

scription are tagged during the level 1 parses. If the variables are critical, the interpreter engine prompts

the user for their values. Otherwise, an attempt is made to interpret the performance of the application

as a function of these variables and if this is not possible, the user is prompted for the values.
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Modeling Access to the Memory Hierarchy Access to the memory hierarchy of a computing element

is modeled using heuristics based on the access patterns in the application description and the physical

structure of the hierarchy. In the prototype implementation, the symbol table is augmented to store

additional information about access patterns. During the level 1 parses of the application description, the

number of unique accesses between successive accesses to a particular variable is stored. A working set

window is then de�ned based on the physical structure of the cache. The access time for a variable is then

de�ned as a weighted sum of the times required to access the two levels of the memory hierarchy. The

weights are determined on the basis of the size of the working window and the information stored in the

augmented symbol table.

A more detailed memory access model can be developed by creating a memory map of the application

from the application description. This map, along with the speci�cations of the cache can then be used to

to emulate the state of the cache at the time of each access. If the access distribution for the application

is known, a stochastic model can be used.

Modeling Communication-Computation Overlaps The amount of overlap between communication

and computation depends on the capability of the particular computing unit and is tagged by the machine

speci�c �lter during level 3 parsing. This overlap is accounted for during interpretation as a fraction

of the communication cost; i.e. if a communication takes time tcomm and foverlap is the fraction of this

time overlapped with computation, then the execution time of the Comm AAU is weighted by the factor

(1� foverlap); i.e.

tAAUComm = (1� foverlap)� tcomm

Modeling Communication/Synchronization Communication or synchronization operations in the

application are decomposed during interpretation into three components: viz. (1) call overhead, (2) trans-

mission time, and (3) waiting time. The call overhead represents the �xed overheads associated with the

operation. At the source of the operation, this overhead includes the startup cost associated with copying

and packing the message and initiating transmission. At the destination, this overhead includes the time

required to receive and unpack the message and to copy it to the user space. The transmission time is the

time required to actually transmit the message from the source to the destination (via the de�ned path).

The waiting time models the synchronization overhead and is de�ned as the part of the total execution

time of the operation which is not due to startup or actual transmission. This could be the overhead

caused by unavailable links in the communication path, by a non-ready receiver in case of rendezvous

communication or by unavailable bu�ers in case of bu�ered communication. The waiting time is computed

using the global synchronization structure. This structure is continually updated during interpretation

to keep track of the state of each communication/synchronization operation. The exact order and times

of execution of AAU's associated with each operation is maintained. If synchronization is required, this

information speci�es the number of units ready to synchronize or whether or not the barrier count has been

met. In case of asynchronous messages, it keeps track of global time at which the message is transmitted.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973



An Interpretive Framework for Application Performance Prediction

Technical Report: SCCS-479 30

The transmission time represents the time required to actually transmit the message from the source to

the destination. The model of communication/synchronization operations is illustrated in Figure 11. Note

Call Ovhd 

Wait Time 

XMission Time XMission Time 

Call Ovhd 

Global Time Proc 1 Proc 2

Proc 1 Calls Send

Proc 2 Calls Recv

Proc 1 Returns

Proc 2 Returns

Figure 11: Interpretation Model for Communication/Synchronization AAU's

that any of the above components could be null depending on the type of communication and on whether

the unit is the source or destination. A null component implies that the component does not contribute to

the execution time of the AAU. For example, in case of asynchronous communication, the sender's waiting

time and transmission time components are null since they do contribute to the execution time of the

corresponding AAU.

Interpretation of Comm, Sync & SyncSeq AAU's The interpretation of Comm, Sync or SyncSeq

AAU's depends on the type of communication/synchronization required. The di�erent cases are described

below.

(1) In case of asynchronous communication, the sender's call overhead represents the time between the

instant the call is made to the instant it returns. Transmission time at the sender's end is null. This time

however is stored in the global synchronization structure to compute the time the message is ready to be

received at the destination. The waiting time is also null for the sender.

(2) In case of bu�ered communication using static bu�ers, the sender's call overhead and transmission

time are computed as described in the model above. However, the waiting time for the sender is zero if a

bu�er is available; else it is the time until a bu�er is freed.

(3) In case of bu�ered communication using dynamically allocated bu�ers, the sender's waiting time

is the time from when a request is sent until the time the required bu�ers are allocated. The other two

components are computed as described by the model above.

For all the above cases, the three components at the receiver end are not null and are computed as

de�ned by the model described above. Similarly, for unbu�ered communication, both sender and receiver

components are computed as de�ned by the model.
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(4) In case of Sync AAU's, the call overhead and wait time components are computed according to the

model described above. The transmission time depends on the nature of synchronization. If a synchroniza-

tion signal is used, this time is null; else if a message is used, the transmission time is the time to transmit

this message.

(5) For a SyncSeq AAU, there is an additional component which represents the time to perform the Seq

operation. Further, in this type of AAU, the number of communications and their order depends on the

algorithm used.

(6) Broadcasts and multicasts are treated as multiple messages whose order and paths again, depend on

the algorithm used.

Our prototype system models asynchronous and bu�ered/unbu�ered synchronous communication on

the iPSC/860. Synchronous messages less than 100 bytes in length are automatically bu�ered. Each node

has about 1000 bu�ers of 100 bytes each. Messages larger than 100 bytes require dynamic bu�ers to be

allocated. On this system broadcasts, multicasts and SyncSeq operation use a logarithmic algorithm.

Modeling of Iterative Flow-Control Structures The execution of an iterative 
ow control structure

is broken up into three components: (1) the startup overhead associated with setting up the structure

and the additional overhead associated with the last iteration, (2) the overhead associated with each loop

iteration, (3) the execution cost of the iteration body. The two overheads components (1 & 2) are a

function of the type of iterative structures and the nature of its iteration limits and stride. The per-

iteration overhead has two parts: the overhead at the start of the iteration body and that at the end. The

abstraction of the three types of iterative AAU's are shown in Figure 12. Their interpretation is described

below.

IterD

Seq1

(a) IterD AAU (b) IterSync AAU

IterSync

SEQ1

Comm1

Seq2

Comm2

(c) IterND AAU

Seq 1

Seq i

Seq k

Iteration i

Iteration k

Iteration 1

Figure 12: Abstracted Iterative AAU's
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Interpretation of IterD AAU's The abstracted IterD AAU is shown in Figure 12(a). The body of

this AAU can be abstracted into a single Seq AAU since its execution is deterministic and the activation

times of the individual AAU's within this body is not required (no Spawn, Comm, Sync, or SyncSeq

AAU's in the body). The individual AAU's in the body are abstracted (using techniques described in this

section) into their respective interpretation functions. The interpretation function for the entire body can

the be de�ned as a combination of the individual interpretive functions. This interpretation function may

be expressed in terms of external inputs. The function is then assigned to a virtual operation which is

abstracted as a Seq AAU. Since the number of iteration for an IterD AAU is known during parsing, the

interpretation function for the entire structure can now be de�ned as the linear combination of the �xed

overhead, the per-iteration overhead and the and the execution time of the virtual operation; i.e.

�IterD = tFixedOvhd +NumIters� [tPerIterOvhd + �V irtualOper]

Interpretation of IterSync AAU's The abstracted IterSync AAU is shown in Figure 12(b). All

contiguous AAU's in the iteration body which are not of type Spawn, Comm, Sync, or SyncSeq are

abstracted into a Seq AAU as described above and are assigned a virtual interpretation function. The

interpretation function for the entire AAU is then de�ned as a recursive equation such that the the execution

time of the current iteration is a function of the execution time of the previous iteration. Similarly, the

activation and execution times of the Spawn, Comm, Sync, or SyncSeq AAU's in the iteration body can

be de�ned in terms of the execution time of the previous iteration. For example (see Figure 12(b)), let the

activation time of the IterD AAU (AAUIterD) be T; then:

�IterD(1) = T

�Comm1
(1) = �IterD(1) + overhead + �Seq1

�Comm2
(1) = �IterD(1) + overhead + �Seq1 + �Comm1

(1) + �Seq2

And for the ith iteration

�IterD(i) = �IterD(i� 1) + overhead+ �Seq1 + �Comm1
(i� 1) + �Seq2 + �Comm1

(i� 1)

�Comm1
(i) = �IterD(i) + overhead + �Seq1

�Comm2
(i) = �IterD(i) + overhead + �Seq1 + �Comm1

(i) + �Seq2

Interpretation of IterND AAU's The abstracted IterSync AAU is shown in Figure 12(c). This

type of iterative structure is interpreted by unrolling, i.e each iteration is interpreted sequentially. The

user can however de�ne heuristics to resolve the non-determency and to model this type of AAU.

Modeling of Conditional Flow-Control Structures The execution time for a conditional 
ow control

structure is broken down into three components: (1) the overhead associated with each condition tested

(i.e. every \if", \elseif", \else", etc.), (2) an additional overhead for a true condition, and (3) the time

required to execute the body associated with the true condition. The interpretation function for the

conditional AAU itself is weighted sum of the interpretation functions associated with the bodies of the
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(a) CondtD AAU

CondtD

Seq Seq Seq

(b) CondtSync AAU

CondtSync

Seq

Seq Seq
Comm

Comm

Figure 13: Abstracted Conditional AAU's

structure. The weights assigned to a particular interpretation function is the logical expression that must

be evaluated before the its body is executed. The expression evaluates to 1 if the conditions are true and

to zero otherwise. For example consider the iterative structure below:

Algorithm 3 CondtD

if C1 and C2 then

Seq1

elseif C3

Seq2

else

Seq2

end if

End

where C1, C2 and C3 are the logical condition that evaluate to 1 or 0. Let tOvhd1 be the overhead

associated with each condition and tOvhd2 be the the overhead associated with a true condition. The

associated interpretation function is de�ned as follows:


IterD = [C1C2]� [
Seq1 + 2tOvhd1 + tOvhd2]

+ [(1 �C1)(1� C2)C3]� [
Seq2 + 3tOvhd1 + tOvhd2]

+ [(1 �C1)(1� C2)(1 �C3)]� [
Seq3 + 4tOvhd1 + tOvhd2]

The abstraction of the two types of conditional AAU's are shown in Figure 13. Their interpretation is

described below.

Interpretation of CondtD AAU's The abstraction of the CondtD AAU is shown in Figure 13(a).

The abstraction of the bodies follows the same procedure as described for the IterD AAU.

Northeast Parallel Architectures Center � Syracuse University

Science and Technology Center � 111 College Place � Syracuse, NY 13244-4100

Tel: (315) 443-1722, 1723; Fax: (315) 443-1973



An Interpretive Framework for Application Performance Prediction

Technical Report: SCCS-479 34

Interpretation of CondtSync AAU's The abstraction of the CondtSync AAU is shown in Fig-

ure 13(b). The bodies of this structure which have one or more AAU's of the type Spawn, Comm, Sync or

SyncSeq, are interpreted using the recursive technique described above for the IterSync AAU. The other

bodies can be evaluated in the same way as the IterD AAU.

Interpretation of Call AAU's A call to a user-de�ned function or subroutine is handled by an in-

line expansion of that function/subroutine following the Call AAU. Normal characterization, abstraction

and interpretation techniques described in this papers are applied to the function/subroutine body. An-

other alternative available to the user is to specify the interpretation function corresponding to the func-

tion/subroutine call. The interpretation algorithm then, uses this speci�ed function during interpretation.

Interpretation of Start, End AAU's Interpretation of Start/End AAU's mainly consists of adminis-

trative operations. The Start AAU requires the virtual timer to be reset. The End AAU indicates that the

particular chain has been completely interpreted and the engine can now move to the next active chain.

Interpretation of Seq AAU's The interpretation function for the Seq AAU's is linear combination of

the number of operations of di�erent types weighted by the time required to execute these operations on

the particular SAU.

Interpretation of Spawn AAU's Interpretation of the Spawn AAU consists of activating the initiated

sub-AAG's and initializing their timer to the execution time of the Spawn AAU. Its interpretation function

returns the time required to complete the initiation.

Modeling Runtime Parameters The e�ect of run-time parameters are incorporated into the interpre-

tation model by abstracting their e�ects on the various parameters exported by the systems and application

modules. Heuristics are used to perform this abstraction. For example, the e�ect of increased network

load on a particular communication channel is modeled by decreasing the e�ective available bandwidth on

that channel. An appropriate scaling factor is then de�ned which is used to scale the parameters exported

by the C/S component associated with the communication channel.

Modeling \What-if 's ?" The interpreter engine provides the user with an interactive interface through

which the user can experiment with di�erent scenarios. These scenario include increasing communication

bandwidths of a particular channel, increasing the number of nodes in a computing unit or the processing

capacity of each node, etc. The scenarios are modeled by abstracting them into scaling factors which are

then used to scale appropriate parameters exported by the systems and applications modules.
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3.5 Output Module

The output module provides an interactive interface through which the user can access the interpreted

performance statistics. The user has the option of selecting the type of information, the level at which the

information is to be displayed. Performance statistics can be obtained at the following levels:

� AAG Level Performance information at the AAG level deals with the entire application. Statistics

available at this level include cumulative execution times, the communication time/computation time

breakup and the existing idle times.

� Sub-AAG Level Performance information at this level deals with the speci�ed part of the AAG.

Cumulative statistics for the speci�ed subgraph are displayed.

� AAU Level Performance information at this level is speci�c to a particular AAU. All statistics

relevant to that AAU are displayed.

Visualization software can be interfaced to this module to provide graphical displays of the available

information. Animation capabilities can also be incorporated. We are currently working on interfacing the

outputs produced by the prototype system, with the ParaGraph [46] visualization package which provides

the above mentioned capabilities.

4 Numerical Results

This section presents some preliminary numerical results obtained through experimentation on a prototype

performance prediction framework. The objective of this experiment was threefold:

1. To validate the system and application abstraction model and to demonstrate their feasibility and

applicability.

2. To validate the performance interpretation model proposed.

3. To demonstrate the cost-e�ectiveness of the approach in terms of both, resources required and time

taken.

To meet the �rst objective we chose an architecture which is widely used to solve scienti�c and engineering

applications. The computing system used consisted of an iPSC/860 hypercube connected to a 80386 based

host processor. The particular con�guration of the iPSC/860 consists of 16 i860 nodes. Each node has a

4 KByte instruction cache, 8 KByte data cache and 8 MBytes of main memory. The node operates at a

clock speed of 40 MHz and has a theoretical peak performance of 80 MFLOPS for single precision and 40

MFLOPS for double precision.

The application chosen was part of a standard benchmark set (The Purdue Benchmark Set [47]) and were

written using FORTRAN 77 and the NX/2 communication libraries. The implementation was tweaked to
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Figure 14: Comparison of Predicted and Measured Times (sec)) - Application: Integration using Trape-

zoidal Rule

incorporate a wide range of programming constructs. The chosen application evaluates the integral, TN ,

of f(x) using the trapezoidal rule.

TN = h � (f(a)=2+
N�1X

i=1

f(a+ ih) + f(b)=2)

The implementation uses the host-node programming model wherein the host program allocates the node

processors and loads the node programs. It then uses cyclic distribution to distribute the integration

domain among the nodes and broadcasts integration parameters. The host program receives the integral

from the nodes after completion. The node processors calculate the integral over their domains and then

perform a global sum. Node zero then sends the results to the host. The above procedure is repeated

multiple times in a loop. The number of intervals into which the integration domain was divided was an

external input. The number iteration were provided as external inputs.

The experimentation consisted of varying two variables: the external input (Problem Size) and the

number of processing nodes used. The time on the host from the instant the node program was loaded till

the �nal result was received, was measured. The experimentation was performed in two phases:
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Phase 1 This phase consisted of implementing the application and then running it for each combination

of problem size and number of processors. The implementation was instrumented to measure execution

times. Multiple runs were made for each case to account for noise in the measured timings.

Phase2 This phase consisted of abstracting the application and feeding it to the performance prediction

prototype. Then, using the interactive interpreter engine, prediction were obtained for all the desired com-

binations. A comparison between the measured and predicted times (in seconds) are plotted in Figure 14.

The results obtain show that the predicted values lie within 15% of the measured results. This meets our

second objective. The cost-e�ectiveness of the interpretive approach is obvious from the fact the entire

experiment was completed in a single run and on a Sun workstation.

5 Summary & Concluding Remarks

Evaluation tools form a critical part of any software development environment and enable the developer to

visualize the e�ects of various design choices on the performance of the application, to study the scalability

of the application with system and problem size and to investigate the e�ects of changes in system run-time

status and its con�guration on the application execution. Further, these tools must provide information

about the contribution of various factors e�ecting the performance of the application. Finally, there is

a need for a symbiotic relationship between the evaluation tools and other development tools (such as

mapping, analysis, and optimizing tools) so as to complete the feedback loop of the \develop-evaluate-

tune" cycle. Conventional evaluation tools and techniques are either tuned to speci�c systems and cannot

incorporate the heterogeneity and dynamic nature of an HHPC environment or are too general and lack

feasibility and accuracy needed in HHPC software development.

In this paper we presented the design of a performance prediction framework which uses a novel interpre-

tive approach to to provide accurate and cost-e�ective performance prediction. A comprehensive system

abstraction model was de�ned which provides a methodology to characterize any heterogeneous computing

environment. A corresponding application abstraction model is also de�ned which can be used to charac-

terize the structure of any structured application. Finally an interpretation model is de�ned which uses

the system and application abstraction to achieve performance interpretation. The application of the pro-

posed interpretation model to abstract accesses to memory hierarchy, communication and synchronization,

overlap between computation and communication, interpret the performance of programming structures

is shown. In addition, the ability of the model to handle di�erent run-time and \what-if?" scenarios is

demonstrated. Finally, interpreted performance of a standard parallel benchmark on a widely used dis-

tributed memory architecture is compared to the measured performance. The results obtained not only

validated the accuracy and feasibility of the abstraction, and interpretation model, but also demonstrated

its cost-e�ectiveness, both in terms of resources required and time taken. The key features of the approach

can be summarized as follows:
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Global Ordering The proposed performance prediction framework introduces a global ordering during

interpretation, allowing it to overcome the inherent lack of synchrony that exists in an HHPC environment.

This enables communication and synchronization overheads to be accurately modeled.

Flexibility The proposed approach enables the user to use the optimal technique (analytic, monitoring,

speci�cations, etc) to generate parameters required to characterize individual components in the environ-

ment. This not only allow it to capitalize on existing technologies but also enables test architectures and

con�guration to be evaluated before actual implementation. Further, this approach supports the current

trends towards the standardization of hardware components. Standard models for these components can

be developed and then reused as building blocks in models for various architectures.

Cost-e�ectiveness The proposed performance prediction framework does not require the actual hard-

ware to be present during evaluation. This makes it cost-e�ective, both, in terms of resources needed and

time and e�ort required for the evaluation

Utility The proposed framework provides the capability of evaluating the e�ects of di�erent runtime and

\what-if ?"scenarios. The e�ect of changes in system state like the occurrence of faults and the gradual

degradation of the system can also be evaluated. Since the approach is source driven, it can be automated

and incorporated into an intelligent compiler.

Usability The proposed framework does not require the actual hardware to be present during evaluation

and can be executed from within a friendly workstation based graphical interface. Further graphical

capabilities of the workstation can be used to display the performance measures.

Current work in on this project is progressing in two direction. The �rst direction consists of extend-

ing the prototype to a heterogeneous network-based environment, and tuning the models and heuristics

used. A model for the I/O components is also being developed. Concurrently we are also incorporating

an interpretive performance prediction tool into the High Performance Compiler being developed at the

Northeast Parallel Architectures Center, Syracuse University. This tool will assist the compiler to optimize

data-distribution.
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