
Optimization of a Dynamic Random Surface
Code for RISC Processors

Leping Han

Syracuse Center for Computational Science

and

Department of Physics

Syracuse University,

Syracuse, NY 13244, USA

1



1 Introduction

1.1 Issues about Computer Hardware and Software

With dramatic changes in technology ahead, how do we approach the problem of

high-performance architecture design and high-performance engineering and scienti�c

computing? For example, the new technology makes feasible massive parallelism.

How much additional e�ort should be invested in increasing the performance on a

single processor before we seek higher levels of performance on multiple processors?

There are no simple answer to these questions. The latter is always essential to the

�rst. We need a combination of solutions, and what we choose almost certainly will be

application dependent, since at this stage we have not constructed a general machine

that would be equally e�ective for all high performance applications yet.

In the past, we have seen many di�erent techniques used in hardware to improve

performance, such things as instruction bu�ers, cache memories, pipelined execution

and RISC computer architecture [1, 2], have appeared in many commercial machine

implementations. However, can a application well and easily utilize these hardware

capabilities? This is always a complicated story. In terms of software issues, it has

to address to both the level of compiler design and the level of user's applications

and algorithms. As computer clock speed keeps on increasing, the issue of how well

applications can utilize a computer's cycle becomes even more important, since many

numerical applications are so demanding of computational cycles and call for sophis-

ticated 
oating-point processors in the architecture [3]

1.2 Introduction to the Problem and the Program

Unstructured numerical applications [4, 5] have been one of the most computation-

ally demanding areas and have the most complicated but the richest data structures.

Naturally people like to use them to evaluate the overall performance of a computer

system in dealing irregular problems for both hardware and software aspects [4, 6].

The Monte Carlo simulation of dynamically triangulated random surfaces hap-

pens to be one of the most suitable application to be investigated for state-of-the-art

computers. It has very irregular with complicated data structures (Figure 1) and

demands very intensive 
oating point calculations. The computation is very time

consuming. For example, running on HP 9000 24 hours a day, the computation takes

about 3 months to have one statistically meaningful physical data point for a mesh

with 1152 nodes, even though our code is the fastest sequential code for dynamical

random surface simulation.

Before we go on, we need to explain a little more about the physical problem and

its meaning.

In physics, string theory, in a number of guises, has been conjectured to describe

the underlying fundamental physics of a wide variety of physical phenomena and

models. These include the strong interaction at long distances, the three-dimensional

2



Ising model and uni�ed models incorporating gravity [7]. The theories are candidates

for a TOE (Theory of Everything). In its simplest form, the bosonic string, it is a

theory of free 
uctuating surfaces (i.e. random surfaces). The functional integral

for the Euclideanized bosonic string is just the partition function for an ensemble of

random 
uctuating 
uid surfaces. Calculations involve integrating over all possible

world-sheets, i.e. all 2-d surfaces embedded in some higher dimensional space (3-d,

4-d, 26-d, ...) [8, 9, 10] (see Figure 2 and 3 random surfaces, smooth and crumple)

Much progress in numerically simulating strings has been made through the use of

Dynamically Triangulated Random Surfaces [8]. Interesting critical points are phase

transitions between a smooth phase (Figure 2) and a crumpled phase (Figure 3) of

the surface with extrinsic curvature [11, 12, 13]. By last December, we had done

the largest simulations and most accurate measurements of physically interesting

observables so far on 2-d systems, but only with 576 node mesh [13]. We are now

running on even larger meshes with 1152 and 2304 nodes. This may show more

conclusive physical results. However, critical slowing down is a major problem. The

simulation takes hundreds of thousands of sweeps of updating the mesh to yield one

statistically independent con�guration. The existence order and critical exponents of

this crumpling transition are still uncertain. That is our driving force to speed up the

code by optimizing it, looking new algorithm and using parallel computer. The study

of computational behavior of the random surface simulation in computer aspect is

also very important, since it is a real and very typical irregular problem. It provides

a basis for on-going High Performance Fortran compiler support [6].

2 The Program

2.1 The Fortran Code

The program used for the Monte Carlo simulation of string theories was written

in Fortran. The following outlines the crucial part of main program.

program main-outline

CALL mesh-set-up

CALL global-data-initialization

DO i = 1, n_measurements

DO j = 1, n_sweeps

CALL update-nodes

CALL update-links

ENDDO

CALL measurements

ENDDO

3



END

The program �rst constructs a initial mesh. Figure 4 shows a initial mesh with

torus topology. We can see that one sweep consists of two parts : update-nodes and

update-links . The subroutine update-nodes is used to update each node's position of

mesh in the three dimensional space (Figure 5). The subroutine update-links is then

used to change the connectivity of the mesh, i.e., to try to 
ip each link between

nodes in the mesh (Figure 6). The Metropolis algorithm is used to update both the

nodes and links of the surface. As the simulation proceeds, the geometrical data and

the physical observable associated with nodes and edges have to be recalculated.

The node update part loops over all nodes. In the loop it randomly picks an

attempted position for the current node and calculates the energy change in the

simulated system between the old position and the attempted position (Figure 5). The

Metropolis algorithm determines if the attempted position should really be used to

update the node's position or not. The energy calculation is based on the length of the

edges and the so called edge action, i.e. the dotproduct of two normal direction vectors

of two triangles along the common edge. This dotproduct is actually calculated

in terms of the two altitudes in the triangles along the common edge. The edge

action calculation is very expensive since the calculation not only involves the data

associated with all nearest neighbors but also the next nearest neighbors (Figure 7).

However the node update is still less irregular in the sense that the connectivity is not

changed. Therefore the data retrieving process from cache or main memory for the

calculation of node update is still relatively smooth. It probably does not experience

very frequent interruptions or jumps since hopefully most of the required data are laid

out in memory consecutively, so useful data may stay in the cache for a while before

moved out. With �xed connectivity, there are fewer branchings and fewer pointers

to cause the memory jumps than in subroutine update-links where the connectivity

is changing as each link 
ips. Therefore update-nodes produces fewer cache miss and

page fault than update-links . However, even in the case of update node, the mesh

is still irregular. Each node may have di�erent number of neighbors, and therefore a

di�erent number of edges. These complexities may cause load balance problems for

later parallel computation.

The subroutine update-links is used to randomly pick a link and attempt to 
ip

it to another diagonal as in Figure 6. The calculation of the energy change be-

tween the attempted con�guration and old con�guration is still similar to the one in

update-nodes which uses the Metropolis algorithm. However at this time, not only

the calculation is as expensive as the update-nodes case, but also the data structure

layout in the memory associated with the nodes and edges may become very irregu-

lar. To calculate observables, we may have to look for them throughout a big area

of memory since the pointers may point to di�erent places as we add links to one

node and remove links from others. The data associated with the changing edges

are scattered all over the memory and logically closely related data information are

4



moving far apart in memory as the links 
ip. Data locations are less predictable (This

will be explained more later in the paper). Therefore, as the simulation proceeds, the

data associated with the changing edge may be moved in and out from the cache

more frequently, and the data required to calculate observables may be distributed

over di�erent pages in virtual memory space. Therefore the behavior of update-links

part may appear to be more "violent" in terms of memory access and becomes more

interesting.

All of these characteristics are very good features to be used as a probe to investi-

gate the performance of application software, compiler and memory hierarchy. This is

because one code has two typical modes of behavior. By monitoring the performance

of the two parts, we may gain some insights into many computational issues.

2.2 A comparison with a C Code

At the initial stage of studying random surfaces, we used a program which was

written in C by Baillie, Johnston and Williams [14, ?], and was based on DIME

(Distributed Irregular Mesh Environment), a general software package for handling

dynamically triangulated meshes [5]. Dynamic unstructured meshes of this type are

also used for �nite element simulations, computational 
uid dynamics and many

other areas. The generality of the code meant that it used a lot of unnecessarily

complicated data structures, which increased the memory requirements and decreased

the e�ciency of the program. Since C is very rich and powerful language, it can

express complex data structure very easily, such as node, edge and the data associated

with them. Data associativity appears to be clearer to the user by using C's struct

declaration. However, just because of its expressivity and 
exibility, it also cause

some other negative e�ects : namely �rst of all, the use of dynamical space allocation

and deallocation makes a program more dynamical and run-time dependent. The

explicit pointer use makes the program more 
exible, however more complicated.

All of these and many other advantages in turn may make it harder for a compiler

to recognize the internal data structures, and thus harder for it to utilize available

compiler optimization techniques. Therefore C's compiler optimizer may not be as

e�ective as Fortran's. In Fortran, since it is harder to express all these complicated

data structures, as a programmer, we have to put more e�ort to extract the data

relationship and try to express them in term of array or array pointers, thus, the

data layout in the memory may appear to be more regular than by using individual

allocations in C. So the human e�ort will be trade o� in that the compiler optimizer

will be more e�ective. Figure 8 shows the speedup with and without the Fortran

compiler optimizer. The Fortran compiler optimizer is about twice as e�ective as

the C compiler optimizer(C result is not shown). The C compiler is getting better

since more and more people are using C in scienti�c and engineering computation

and people are putting more e�ort on it. However, we would agree it is very hard for

C compiler to completely match Fortran compiler performance since C is just far too

5




exible and versatile.

In order to improve the performance of the code, we rewrote the program from

scratch in Fortran without using DIME, in order to make it easier to parallelize by

using Fortran 90, Fortran D, or CM Fortran. The new code was simpler and more

specialized, and consequently ran signi�cantly faster than the previous C code on the

all major types of RISC processors (Figure 9)

However this new code still ran very slowly on certain machines, compared with

vendor's speci�cations (Table 1), especially on the Intel Touchstone Delta, which

uses Intel iPSC860 processors. For this code we realized only about 1 MFlop on

the iPSC860, which is theoretically an 40 MFlop processor for 32-bit operations.

The random surface program is very 
oating point intensive, with typical large scale

simulations using the equivalent of 1000 hours of a CRAY Y-MP processor [12, 13].

Even so, the results of these simulations are still not conclusive. Speeding up the

program is therefore vital to further progress on this problem.

3 Optimization and Memory Hierarchy

Our Fortran code for the random surface simulations ran very slowly on the Intel

iPSC860, and we were convinced that we could improve the speed of the code sub-

stantially for this and other modern RISC processors by some careful optimization.

In the process of optimizing the code, we pursued systematic ways to explore all

levels of optimization, namely investigating : 1. possible optimization provided by

compiler , 2. basic optimization techniques and 3. more program-speci�c optimiza-

tion. The overall aim is to minimize the number of operations and calculations and to

best utilize data locality so that maximum available memory bandwidth is utilized,

thus the processor computation cycle is not idle.

Step 3. currently has to be done by programmer to explicitly re-arrange the data

layout and data associativity so that the processor will retrieve data in cache or main

memory in an e�cient manner. Hopefully compiler in the future will extract common

characteristics from these irregular types of applications and do this step reasonably

well.

We believed that the poor performance of the program on the iPSC860 proces-

sor was probably due mainly to cache misses, since the o� chip memory access for

this processor takes many more cycles than on-chip cache access, whereas a 
oat-

ing point operation can be done in a single cycle. This is the case for most RISC

processors, and can be a problem in utilizing these processors e�ciently. Especially

iPSC860 on-chip cache is very small, data hit ratio is even more critical to iPSC860

relatively fast processor and directly related to the utilization of cache, since other

major types of processors have relatively bigger data cache and instruction cache.

We therefore attempted to understand why the program ran so slowly, and tried to

optimize the program for RISC processors such as the iPSC860, the RS/6000 and

others by investigating possible problems, in particular memory access.

6



Note that this is also an essential step in optimizing parallel programs, since we

want to distribute data over processors in such a way that the memory accessed

by any processor is as local as possible, to minimize communication costs between

processors. On a sequential machine we have a similar kind of memory hierarchy

(Figure 10), with on-chip cache memory corresponding to on-processor memory for a

parallel machine, and o�-chip cache memory corresponding to memory on a di�erent

processor, which requires extra time to access.

Generally speaking, the sequences of a program execution can be represented as

a sequence of memory accesses. The memory study has shown [1] that in the time

domain, a process has a tendency in near future to refer to the memory address which

were accessed in the recent past; and in spatial domain, the process likely refers to a

portion of the memory address physically in the neighborhood of the address which

were referred last time.

All these localities in
uence an e�cient usage of hierarchy memory and determine

the size of the block to be transferred between memory levels. The replacement

policies in many cache and memory design are based on the above two facts.

Based on the idea of memory having a hierarchy structure, and the particular

characteristics of certain RISC chips, we can outline a fairly systematic method for

optimizing the program. These methods are quite general, and can be applied to any

numerically intensive program run on a fast RISC processor. We have benchmarked

the results of these optimization techniques on the Intel iPSC860, IBM RS/6000, HP

9000, DECstation 5000(not very complete yet), and Sun SPARC 1+.

4 Optimizing Compilers and Basic Optimization

Techniques

We �rst investigate what the compiler provides. Optimization 
ags with com-

pilers provide local and global optimization, and may perform some pipelining. A

comparison of the speed of the program before and after compiler optimization for

all the di�erent machines is shown in Figure 8.

For the iPSC860, we found that the speed is increased by almost a factor of 2

just by using the NOIEEE compiler 
ag (This varies with the number of nodes).

This causes 
oat and double divides, which are otherwise extremely slow since they

are done in software, to be done using an inline divide algorithm [16]. This gives

substantial speed-up of functions such as division, square root, exponential and arccos

which are used a lot in the our program. In a similar vein, the RS/6000 Fortran

compiler has a 
ag (qrndsngl) which needs to be turned on in order to ensure strict

adherence to the IEEE arithmetic standard (i.e. IEEE standard arithmetic is not the

default for this compiler). The strings code runs about 10% slower with this 
ag set.

We use our own random number generator subroutine many times in the inner loop

of the program, and each call to this subroutine has a function call stack overhead.

7



The IBM and Intel compilers provide an inlining compiler 
ag, which allow calls to

speci�ed functions, or functions of less than a certain size, to be placed into the

code (inlined) rather than using a function call. By using the inline operation on

the random number generator we get about a 4% speed-up for the iPSC860, but

no noticeable speed-up for the RS/6000. The same results are obtained by manual

inlining. There is a trade-o� here, in that bad inline e�ects may actually decrease

the performance of the code, by increasing the code size and thus increasing overhead

due to the small size of the instruction cache. Compilers for other machines may

do automatic inlining at a certain level of compiler optimization, and one should be

careful to check that this does in fact increase and not decrease the performance of

the program.

We know that current compiler technology has not yet matured to the point of

automatically taking advantage of many of the features of modern RISC chips. Thus

the user needs to carefully reconstruct the program and fully expose the availability

of pipelining and data locality to the compiler, in order to take maximum advantage

of the data cache.

Firstly, we must try to keep the most frequently used variables in the cache, and

reuse them as much as possible while they are still there. This may require re-ordering

parts of the code (see examples below). We also tried to reduce unnecessarily large

array sizes so that all, or at least most, of the working set data is in the cache and most

of data available in fewer pages in virtual memory space. Thus after the transient

period for loading this data onto the cache, most of the memory access is to fast

cache memory. It is even better to keep data which is re-used in registers. This can

be done explicitly by the programmer in C by using the register variable type. In

Fortran we need to allocate such data to temporary locally declared variables, and

hope the compiler takes advantage of this.

case 1.

use NOT

a = b(i) c = b(i) + d

c = a + d f = sqrt(b(i))

f = sqrt(a)

case 2.

use NOT

a = b(i) a = b(i)

c = a + d c = a + d

f = sqrt(a) ...

many lines before using 'a' next

...

f = sqrt(a)

Secondly, in trying to optimize code, one usually thinks of an assignment as being

fast and a multiplication as being slow, however this is not the case with modern RISC

8



processors. On the iPSC860, for example, a load operation takes two clock cycles and

a store operation three cycles while add or multiply take just one. We should thus

eliminate redundant assignments and minimize memory access, especially external

memory access, use constants rather than variables, and try to avoid data conversion.

Thirdly, we try to minimize the number of expensive calculations, such as divi-

sion, square root, exponential and arccos, which all occur in the strings code. If a

calculation is expensive and repeatedly used in several places, it may be possible to

calculate it once and assign it to a global variable, so further calculations are reduced

to using this \look-up table". We noticed that normal direction and edge action were

calculated in the update process, and then used in subroutine measurement, since the

computation for these quantities are extremely expensive, we set up global variables

for them. Certainly it is a trade-o� in terms of program modularity. By doing this,

the subroutine measurement got speed-up more than 20%. We also tried to utilize the

concurrent add and multiply operations. An addition combined with a multiplication

is performed in about the same time as a multiplication on most RISC processors.

Fourthly, branches (IF statements) and loops (DO or FOR statements) can have

a large overhead. We should try to avoid IF statement since they slow down any

pipelining [2]. Optimizing loops is somewhat problematic. Using the DO loop is a

very good way to utilize the instruction cache, since it allows a lot of code to reside in

the generally small instruction cache space. In most processors the CPU can take care

of the loop while the 
oating point unit deals with the operations in the loop. However

there is still a substantial overhead in using a DO loop, so we should merge DO loops

as much as possible, and in cases where the loop contains very few instructions it

should be \unrolled". This means that if the number of iterations of the loop is very

small (for example, a loop over 3 dimensions), the loop should be eliminated and the

instructions written out explicitly for each iteration (each dimension). If the number

of iterations of the loop is large, say 100 iterations of a single line of code, then it

should be unrolled into a loop over say 5 iterations of 20 lines of code. The optimal

number of lines of code in the loop after such a split should be such that the loop

just �ts in the instruction cache. unrolling of loops should be done by the compiler,

but this is not always the case.

Also, since data is usually loaded into the cache a few words at a time, we should

try to keep the loop stride smaller than the length of this cache line to avoid possible

\thrashing" of the cache (continual reading and writing of data to and from cache).

This would also increase the chance of pipelining multiple read and write operations

since the working data will be in same cache line or nearby.

Another crucial point to note for multiple loops over elements of arrays of more

than one dimension is that the loops must be ordered in such a way that the inner

loop corresponds to the array index which changes fastest. In Fortran this is the �rst

index, while in C it is the last index, so optimal loop ordering will depend on the

language used.

9



5 Program-Speci�c User Optimization

After implementing the generic optimization techniques given above, we turned

to more problem-speci�c methods to speed up the code. Here we are still interested

in minimizing memory accesses, maximizing cache usage and minimizing the number

of operations. Now though we are aiming to do this by studying the speci�cs of our

particular problem, and �nding ways to change the algorithm so as to better match

the data structures and data access to the hierarchical cache memory of the processor.

The calculations of quantities associated with a node requires one to know the nearest

neighbor and the next nearest neighbor information, it takes lots of operations and

data access in the non optimized code just to �gure out the relative position between

neighbor links and points since the mesh is irregular. And even worse since there are

many conditional branched IFs and GOTOs involved, we could expect that there are

lots of memory jumps and instruction would not be e�ciently pipelined. There are

many of these types of problem in the unoptimized code. By appropriately ordering

the operations at each mesh point, and in particular the traversal of the mesh data

structure, so as to maximize data locality, we realized quite substantial gains in

performance.

Here we show a typical example. Initially, each node in the mesh has six nearest

neighbor nodes, so it has six connecting links. Each link has a pointer node of link to

point to its node and a pointer link next link to point to its neighbor links. Initially

everything is in order (Figure 11). As the mesh is changed during the simulation by


ipping the links, the associativity between nodes and links and neighboring links

changes. Links pointing to the same node may now not be located in contiguous

sections of the memory, and the link pointer may not point to the nearest neighbor

link among the links around a node (Figure 12). That is the case in the original

version of the code, for which the links around a node are not ordered after 
ipping.

However, the calculation of physical quantities associated with each link requires the

information at the nearest neighbor links around their boundary nodes. Since the

links are not ordered, to �gure out the left side link and right side link of a given link,

the original code �rst looks for the left side and right side nodes S1 and S2 (Figure

7), and then makes a comparison to see which link connects the node pair (S0,S1)

and (S0,S2).

...

s1 = node_left_to_link(this_link)

s2 = node_right_to_link(this_link)

111 temp_link = start_link_of_node(s0)

112 if (node_of_link(temp_link) .eq. s2) then

s0s1 = temp_link

goto 113

else

temp_link = link_next_link(temp_link)

10



goto 112

end if

113 continue

...

Here we have changed the algorithm to improve data locality. At the time we


ip the link, we re-order the links immediately, each link getting a pointer to its

nearest neighbor link (Figure 13). So we get its nearest neighbor links (S0S1; S0S2;

etc.) basically for free (Figure 7).

...

s0s1 = link_next_link(this_link)

s0s2 = link_last_link(this_link)

...

By implementing this and making other similar changes, we achieved the biggest

improvement in speed. It eliminates a lot of IF statements, pointer chain search-

ing operations, and several unnecessary large arrays. It also provides much useful

information for other calculations at no extra cost.

In general, it is much harder to exploit data locality in a dynamic mesh than

a �xed mesh. Because the neighbors of nodes and links and their corresponding

ordering are changing as the simulation continues, the neighboring physical memory

locations may not re
ect the neighbor of a link or a node, and vice versa (Fig. 4). The

optimization may require a run-time preprocessing strategy to predict more precisely

the data locality.

6 Performance Comparisons

We have compared the performance of this code and the e�ect of these optimiza-

tion techniques on a number of current RISC-based processors and workstations, in

particular the Intel iPSC860, IBM RS/6000, HP 9000, DECstation 5000 (data for

DECstation is not very complete), and Sun SPARC 1+.

Figure 8 shows e�ects of the compiler optimization along on these processors.

HP's, IBM's and iPSC 860's Fortran compiler optimizations yield very big improve-

ments in the performance of our program, by about a factor of from 2 to 2.5. DEC's

amd Sun's are relatively poor.

Figure 14, from chart a to chart d, show the absolute time elapsed for one call to

subroutine update-nodes and update-links respectively on di�erent processors, we put

the time for optimized and unoptimized code in the same graph.

Figure 15, chart a and chart b, show the speed-up of subroutine update-links and

subroutine update-nodes respectively. At this time, we put the data for di�erent types

of machines on one graph for easy comparison.

11



We can see that manual optimization of update-nodes does not give big the speed-

up for most processors except iPSC 860. update-nodes as explained previously deals

with a �xed connectivity mesh. The data access appears to be smoother than in

update-links . So the major optimization applied on this subroutine are basic opti-

mization technique in our paper section 4. These techniques are the main contribution

to the speed-up. Since the iPSC has a relatively small data cache, it seems that these

re-arrangement are quite crucial to speed. The speed-up is about a factor of 1.8.

The HP data shows that this has a small e�ect since the HP has a relatively large

data cache, and the mesh we used is small, so that the optimization e�ect is not

large enough to appear. However, we would expect as the size of mesh increased, the

speed-up would be noticeable.

update-links shows about a factor of 1.5 speed-up on the HP and the IBM, and

about a factor of 2.0 on iPSC860. As what we explained earlier, most of this im-

provement comes from the program-speci�c user optimization.

Finally, Figure 16 shows the overall performance of the unoptimized code and

optimized code in M
ops on di�erent processors.

7 Conclusions

From the study of optimizing this real application of irregular dynamical mesh

problem, we have learned that we need to be careful to construct the code and the data

structures so that they make most e�cient use of the memory hierarchy characteristics

and pipelining of modern RISC processors. Current compilers can provide good

optimization, but do not recognize and exploit all the information on data locality

and pipelining opportunities. Substantial gains in performance can be achieved if

the user is prepared to restructure the code to help provide the compiler with this

information, especially programs with adaptive, irregular data structures such as the

random surfaces application.

The interesting and attractive parts of the random surfaces simulation are that

one code has two major di�erent aspects : subroutine update-nodes is irregular but

static in terms of data association and data distribution; however, subroutine update-

links is dynamic as well as irregular. Both features are very useful to characterize the

behaviors of RISC processors from di�erent angles. That is why we use it as one of

important benchmark programs.

Our results show that the dynamical part of the program needs to have more

aggressive code re-arrangement or even algorithm modi�cation in order to achieve a

relatively big performance improvement. Simply using the basic general optimization

techniques does not have real e�ect on the dynamical part although it does speed up

the static part. That means the compiler needs to be more intelligent so that it can

look deeper into the program and extract more information about data association

if the compiler wants to do this level optimization. That is one issue that High

Performance Fortran will eventually address. Dynamical run-time techniques have to

12



be used to explore more precisely the behavior of data locality. we are trying to extract

more general strategies from ours and other similar type of irregular applications to

support the High Performance Fortran development. This study is a pre-investigation

for the on-going development of the High Performance Fortran compiler by Syracuse

University, Rice University and University of Maryland.

We have obtained a �rst-hand data that tells which portion of the techniques used

are most signi�cant to the future High Performance Fortran compiler development.

We have systematically shown the approaches to improve the performance on almost

all major types of RISC processors commonly used. As we understand more about

irregular data structure, we will write more e�cient parallel codes on the CM5 and

the Touch Stone Delta. We expect that these data locality techniques can be used

by data parallel compilers such as those for High Performance Fortran to allow these

languages to outperform conventional Fortran even on sequential processors. Thus

the High Performance Fortran not only achieves the parallelism but also exploits the

capacity of each individual processor, especially for very irregular problems (such as

update-links ).

8 Acknowledgments

We would like thank NPAC and CRPC computing facilities. We gratefully ac-

knowledge discussions and help from Enzo Marinari who wrote the initial Fortran

code, Mark Bowick, Paul Coddington, Geo�rey Harris and Geo�rey Fox.

References

[1] H. S. Stone High-Performance Computer Architecture (Addison-Wesley Publish-

ing)

[2] W. Stallings, \Reduced Instruction Set of Computer Architecture", Proceedings

of The IEEE, Vol 76, No.1, (Jan. 1988) 38

[3] G. C. Fox, et al., Solving Problems on Concurrent Processors, Vol. 1 (Englewood

Cli�s : Prentice-Hall, 1988)

[4] R. Das, D.J. Marvriplis, J. Saltz, S. Gupta and R. Ponnusamy, \The Design and

Implementation of a Parallel Unstructured Euler Sover Using Software Primi-

tives",ICASE Report No. 92-12

[5] R.D. Williams, in Proc. of the 3rd Hypercube Conference, Pasadena, 1988, ed.

G.C. Fox, (ACM Press, New York, 1988).

[6] \High Performance Fortran Report", Syracuse University Internal Report

13



[7] F. David, in Two Dimensional Quantum Gravity and Random Surfaces, eds. D.J.

Gross, T. Piran, and S. Weinberg, (World Scienti�c, Singapore, 1992).

[8] V. A. Kazakov, Phys. Lett. 150B, 282 (1985); F. David, Nucl. Phys. B257, 45

(1985); J. Ambj�rn, B. Durhuus and J. Fr�olich, Nucl. Phys. B257, 433 (1985).

[9] Statistical Mechanics of Membranes and Surfaces, eds. D. Nelson, T. Piran, and

S. Weinberg, (World Scienti�c, Singapore, 1989).

[10] S. Catterall, Phys. Lett. 220B, 207 (1989).

[11] V. A. Kazakov and A. A. Migdal, Nucl. Phys. B311 (1988/89) 171.

[12] J. Ambj�rn, J. Jurkiewicz, S. Varsted, A. Irb�ack and B. Petersson, Phys. Lett.

275B, 295 (1992); J. Ambj�rn, A. Irb�ack, J. Jurkiewicz and B. Petersson, \The

Theory of Dynamical Random Surfaces with Extrinsic Curvature", Niels Bohr

Institute Preprint NBI-HE-92-40.

[13] M. Bowick, P. Coddington, L. Han, G. Harris and E. Marinari, \The Phase

Diagram of Fluid Random Surfaces with Extrinsic Curvature", Syracuse preprint

SCCS-357, submitted to Nucl. Phys. B.

[14] C.F. Baillie, D.A. Johnston and R.D. Williams, Comput. Phys. Commun. 58,

105 (1990).

[15] C. Baillie, D. Johnston and R. Williams, Nucl. Phys. B335, 469 (1990).

[16] Intel i860 Microprocessor Family Programmer's Reference Manual

14


