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Abstract

This thesis looks at various issues in providing application-level software support for

parallel I/O. We show that the performance of the parallel I/O system varies greatly

as a function of data distributions. We present runtime I/O primitives for parallel

languages which allow the user to obtain a consistent performance over a wide range

of data distributions.

In order to design these primitives, we study various parameters used in the de-

sign of a parallel �le system. We evaluate the performance of Touchstone Delta

Concurrent File System and study the e�ect of parameters like number of processors,

number of disks, �le size on the system performance. We compute the I/O costs

for common data distributions. We propose an alternative strategy -two phase data

access strategy- to optimize the I/O costs connected with data distributions. We

implement runtime primitives using the two-phase access strategy and show that us-

ing these primitives not only I/O access rates are improved but also user can obtain

complex data distributions like block-block and block-cyclic.



Acknowledgments

I like to thank my advisor, Dr. Alok Choudhary for his invaluable guidance and

encouragement during the course of this research; my thesis committee members,

Professors Gary Craig, Geo�rey Fox and Salim Hariri for their suggestions. I want

to thank Juan Migel del Rosario for useful technical discussions especially regarding

two-phase data access strategy. I also want to thank Rajiv Raje for reading the entire

thesis and giving many useful suggestions. Finally I like to thank Rajiv Thakur for

suggestions and assistance.

Access to Touchstone Delta was provided by Center for Research in Parallel Com-

puting and Concurrent Supercomputing Consortium. This work was sponsored by

DARPA under contract # DABT63-91-C-0028 and NSF MIP-9110810. The con-

tent of the information does not necessarily re
ect the position or the policy of the

Government and no o�cial endorsement should be inferred.

This thesis is dedicated to my family.

i



Contents

Acknowledgments i

1 Introduction 1

1.1 Thesis Objective : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.2 Thesis Outline : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2 Design Issues in Parallel I/O Systems 6

2.1 Design of the Disk Systems : : : : : : : : : : : : : : : : : : : : : : : : 7

2.2 Data Distribution Protocols : : : : : : : : : : : : : : : : : : : : : : : 10

2.3 Processor-Disk Interconnection : : : : : : : : : : : : : : : : : : : : : 12

2.4 Parallel File Access Policies : : : : : : : : : : : : : : : : : : : : : : : 13

2.5 Disk Caching and Prefetch Policies : : : : : : : : : : : : : : : : : : : 16

2.6 OS Interface between the Processing Nodes and the File System : : : 18

2.6.1 Existing Parallel File System Interfaces : : : : : : : : : : : : 22

3 Case Study of a Parallel I/O System 24

3.1 The Touchstone Delta System : : : : : : : : : : : : : : : : : : : : : : 25

3.2 Concurrent File System : : : : : : : : : : : : : : : : : : : : : : : : : 25

3.2.1 CFS File Structure : : : : : : : : : : : : : : : : : : : : : : : : 27

ii



3.2.2 The File System Interface : : : : : : : : : : : : : : : : : : : : 27

3.2.3 The I/O Modes : : : : : : : : : : : : : : : : : : : : : : : : : 28

3.2.4 The I/O Network : : : : : : : : : : : : : : : : : : : : : : : : 30

3.3 CFS Evaluation Methodology : : : : : : : : : : : : : : : : : : : : : : 31

3.4 CFS Performance Evaluation : : : : : : : : : : : : : : : : : : : : : : 33

3.4.1 Single Compute Node : : : : : : : : : : : : : : : : : : : : : : 33

3.4.2 Multiple Compute Nodes : : : : : : : : : : : : : : : : : : : : : 37

3.5 Parallel File System: An Extension of Concurrent File System : : : : 47

3.6 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

4 Cost Analysis of Data Mappings 50

4.1 An I/O Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

4.1.1 Background : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

4.1.2 An I/O Model for a Multiprocessor : : : : : : : : : : : : : : : 52

4.2 Analysis of the I/O costs : : : : : : : : : : : : : : : : : : : : : : : : : 57

4.2.1 Analysis of Array Decompositions : : : : : : : : : : : : : : : : 58

4.2.2 Analysis of Common Data Distributions : : : : : : : : : : : : 61

4.2.3 Experimental Results : : : : : : : : : : : : : : : : : : : : : : : 65

4.3 Two Stage Data Mapping : : : : : : : : : : : : : : : : : : : : : : : : 68

5 Runtime I/O Support For Parallel Languages 73

5.1 Languages Supporting Data Distribution : : : : : : : : : : : : : : : : 74

5.1.1 Vienna Fortran : : : : : : : : : : : : : : : : : : : : : : : : : : 75

5.1.2 High Performance Fortran : : : : : : : : : : : : : : : : : : : : 75

5.2 Runtime Primitives for Parallel I/O : : : : : : : : : : : : : : : : : : : 77

5.2.1 Approach : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

5.2.2 General Description : : : : : : : : : : : : : : : : : : : : : : : : 79

iii



5.2.3 Syntax of the Runtime Primitives : : : : : : : : : : : : : : : : 84

5.2.4 A Sample Program : : : : : : : : : : : : : : : : : : : : : : : : 89

5.2.5 Experimental Results : : : : : : : : : : : : : : : : : : : : : : : 90

6 Conclusions and Future Work 96

6.1 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

6.2 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98

Biographical Data 114

iv



List of Tables

1 De�nitions of Various Terms Used in the Thesis : : : : : : : : : : : : 32

2 File Read Time is (ms)-Single Compute Node : : : : : : : : : : : : : 35

3 Multinode (4*4) Burst Mode Throughput as a Function of Disk Vol-

umes (Mode 0) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

4 Throughput of Accessing 1 MB File in Mode 0 (Burst Mode,64 Disks) 40

5 Throughput Rates of Accessing 2 MB File in Mode 0(Burst Mode) : : 40

6 Read Throughput in Mbytes/sec (Burst Mode) : : : : : : : : : : : : 46

7 Write Throughput in Mbytes/sec (Burst Mode) : : : : : : : : : : : : 46

8 Number of I/O Requests as a Function of Data Distributions : : : : : 58

9 Array Distribution (Column Block) Throughput in MBytes/sec (ND

= 64) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

10 Array Distribution (Column Cyclic) Throughput in Kbytes/sec (ND =

64) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67

11 Array Distribution (Row Block) For Modes 2 and 3 (ND = 64) : : : 67

12 The File Descriptor Array (FDA): Fortran Version : : : : : : : : : : : 80

13 The Array Description Table (ADT) : : : : : : : : : : : : : : : : : : 81

14 The P INFO Array for a Two-Dimensional Logical Grid : : : : : : : 82

15 Performance of pread for 16 Processors (5K*5K Array) : : : : : : : : 92

16 Performance of pread for 16 Processors (10K*10K Array) : : : : : : 92

v



17 Performance of pread for 64 Processors (5K*5K Array) : : : : : : : : 93

18 Performance of pread for 64 Processors (10K*10K Array) : : : : : : 93

19 Block-Block Distribution over 16 Processors using pread (time in msec) 94

20 Block-Block Distribution over 64 Processors Using pread (time in msec) 95

vi



List of Figures

1 Intel Touchstone Delta System : : : : : : : : : : : : : : : : : : : : : : 26

2 File block distribution across the disks : : : : : : : : : : : : : : : : : 27

3 Single Compute Node - 32 I/O Nodes (64 Disks): Read Rates in KB/sec 34

4 Read Rates for Single Compute Node-Burst Mode : : : : : : : : : : : 36

5 Write Rates for Single Compute Node-Burst Mode : : : : : : : : : : : 37

6 Read Rates For Multiple Compute Nodes - Mode 0 : : : : : : : : : : 38

7 Read for Grid Size 4*4 : : : : : : : : : : : : : : : : : : : : : : : : : : 41

8 Reading a 16M File using 4K Bu�er for 64 Disk Volumes : : : : : : : 43

9 Multicompute Nodes Read (Mode 3 and 16 Mbytes File) : : : : : : : 43

10 Multicompute Nodes Read (Mode 2 and 16 Mbytes File) : : : : : : : 44

11 Multicompute Nodes File Read (Mode 1 and 16 Mbytes File) : : : : : 45

12 A Processing Element : : : : : : : : : : : : : : : : : : : : : : : : : : 51

13 A Mesh Connected Multiprocessor : : : : : : : : : : : : : : : : : : : 52

14 Data Mapping between the Processors and the Disks : : : : : : : : : 59

15 Block-Block Decomposition over 16 Processors : : : : : : : : : : : : : 70

16 Pairwise Exchange Algorithm : : : : : : : : : : : : : : : : : : : : : : 72

17 Array Mapping Using Vienna Fortran : : : : : : : : : : : : : : : : : : 75

18 Data Distributions in Fortran 90D/ HPF : : : : : : : : : : : : : : : : 76

19 pread Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

vii



20 pwrite Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

21 A Sample Program For Performing Parallel I/O : : : : : : : : : : : : 91

viii



Chapter 1

Introduction

In the last few years, the processor speeds have increased tremendously, and with

multiprocessor organizations, the processing power of computer systems has been

increasing at a rapid pace. It is believed that massively parallel machines will provide

tera
ops of computing power in near future.

Some of the commercially available parallel computers include Intel Paragon [Int92],

nCUBE-2 [nCU92], KSR-1 [KSR92] and CM-5 [Thi91]. They are the computational

instruments of choice in the scienti�c community and can be found in one form or

another in almost every major academic and research institution. Several prototypes

are also being developed at various industrial and academic institutions. Examples

of such machines are DASH [DJK+92], Alewife [ACD+91], J Machine [DCF+86]

and Tera [ACC+90]. These machines are aimed at achieving the tera
op goal set

by the High Performance Computing and Communication Initiative of the Federal

Government [Cho93].

One of the areas that has often been neglected in parallel systems, both at the

software and hardware levels, is the I/O system. Currently, there exists a huge

di�erence between the processing power and the I/O system's performance. As a

1



CHAPTER 1. INTRODUCTION 2

result of this disparity, the problem solving speed is determined by how fast the I/O

can be done.

If the I/O is done in a serial fashion, even if the problem is solved considerably

faster, the speed of the solution depends on the rate of the serial I/O. Kung showed

that for certain types of applications increasing memory size alone is not su�cient,

and I/O bandwidth must be increased proportionately to balance the computing

system. This is called the I/O problem [Kun86]. Amdahl's rule of thumb for a

balanced computer shows that a system should have 1 MBytes of main memory and

1 Mbit/sec I/O bandwidth per 1 MIPS of CPU performance [Amd67]. Akella and

Siewiorek state that the I/O requirements are nearer to 1 MBytes/sec for 1 MIP CPU

and 1 MBytes memory [Ake91]. A simple extrapolation will show that for tera
ops

machines the required bandwidth will range from tens of GBytes to at least several

hundred GBytes per second.

There are a variety of applications that require a signi�cant amount of I/O. These

include image processing, weather forecasting and databases [Sha93]. Another impor-

tant application that requires su�cient I/O support is multimedia. The multimedia

applications require accesses to large image and video data requiring a tremendous

bandwidth and storage capacity. Similarly, data visualization is another �eld which

requires a lot of I/O operations [Dem92]. A real-time data visualization package

requires a large amount of data to be transferred between the disks and the CPU.

Parallel I/O systems, are therefore, required for providing the large I/O band-

width. A lot of work needs to be done both in software and hardware aspects of

parallel I/O. The compilers and operating systems are less developed as compared to

the development in the hardware. MIMD languages such as Vienna Fortran [CMZ92],

Fortran D [FHK+90], High Performance Fortran (HPF) [For93] provide data de-

composition as compiler directives. The distributed data needs to accessed from the
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�le system. This is a I/O sensitive job since each processor needs to access the disks,

thus resulting in a large number of disk requests. Hence to optimize the I/O per-

formance at the application level, an appropriate support from the compilers and

runtime system is needed.

1.1 Thesis Objective

Our objective is to evaluate and design application-level software support for parallel

I/O systems. We concentrate on I/O problems associated with data distributions in

the multiprocessor environments. We develop a runtime software environment which

allows the user to control the data mapping on both the processors and disks and

at the same time relieves the user from worrying about data distribution costs by

providing runtime distribution primitives. To meet these objectives, we �rst survey

various design issues in parallel I/O systems. We then investigate the performance

of Touchstone Delta Concurrent File System. We study various system parameters

and evaluate their e�ects on the overall performance of the �le system. We analyze

the performance of the applications which require parallel data access from the disks.

We choose array decompositions as our computational domain and compute the I/O

costs for various patterns of data decompositions. We show that the performance of

the parallel �le system can vary greatly as a function of data distribution. Further,

certain data distributions are not supported by parallel �le systems. Motivated by

these problems, we propose an alternative strategy - two-phase access strategy - which

guarantees consistent performance over a wide spectrum of data decompositions. To

facilitate the programmer to perform e�cient data distributions from the application

level, we develop runtime support to perform e�cient collective I/O. We design library

routines that use system parameters such as number of disks, data distribution on
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the processors and disks, number of processors, number of disks, etc., to determine

e�cient strategy for performing I/O, and then redistribute the data as required by

the target data distribution on the processors.

1.2 Thesis Outline

Chapter 2 presents a survey of various issues in the design of a parallel I/O system. It

reviews both the hardware as well as software approaches in the design strategy. We

study design of the disk systems and present prominent data distribution protocols.

We evaluate the processor-disk interconnection. Various parallel �le access strategies

are presented and corresponding disk caching and prefetching policies required for

such data access patterns are introduced. Finally we review the operating system

interface between the processors and the disks.

In chapter 3, we choose the Touchstone Delta Concurrent File System (CFS) as

a case study. We study the interaction between the processors and the �le system

by studying various parameters. We analyze the e�ects of data request size, number

of participating processors and disks, �le sizes and �le access patterns. Based on

our results, we present values of various parameters required for obtaining the peak

performance.

Chapter 4 presents a simple I/O model for the multiprocessors associated with

parallel �le systems. We analyze the e�ects of I/O performance on the overall program

bandwidth. Using this model, we will analyze and compute data distribution costs

in these environments. We again use the Touchstone Delta CFS for our analysis.

We show that the data distribution costs vary according to the distribution pattern

and depend on the data mapping over processors and disks. Moreover, there exists a

mapping which is optimal for both processor and the disk distributions. Using these
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facts, we present an alternative strategy - two-phase data access strategy - for optimal

data distribution.

Chapter 5 studies data distribution from the application level. We review various

languages which support parallel I/O operations for data distribution. In order to

allow a user to obtain optimal data distribution performance and exploit the under-

lying hardware support, we develop runtime primitives to perform e�cient collective

I/O. These library routines optimize the two-phase data access strategy to perform

the I/O and then redistribute the data. These routines are linked at compile time

and can be used with either Fortran or C MIMD/data parallel dialect. These runtime

routines could be ported to various parallel �le systems, thus providing common I/O

interface for parallel programs.

Finally, chapter 6 summarizes signi�cant conclusions of experiments performed in

previous chapters. We also present important contributions of this thesis and discuss

some future work.



Chapter 2

Design Issues in Parallel I/O

Systems

In this chapter, we study various issues involved in designing a parallel I/O system.

The aim of this study is to explore various design factors and to understand the e�ect

of these factors on the performance of the parallel I/O system.

The disk access overhead is one of the most prominent of the factors a�ecting the

performance of I/O system. We will brie
y review in section 1 the recent studies

done in improving the disk access time. The various ways of disk interleaving will be

studied in detail. Various data distribution protocols will be analyzed in section 2.

Section 3 describes various approaches used in interconnecting the disks with the

processing nodes. The next section deals with the parallel �le access strategies. This

section describes various data access patterns found in parallel I/O systems. This

leads us to the topic of disk prefetching and caching. Section 5 overviews various

issues in this �eld. Finally, we describe the �le system interface between the processing

nodes and the �le system in section 6. In the same section we discuss the requirements

of the interface and survey some of the available �le system interfaces.

6



CHAPTER 2. DESIGN ISSUES IN PARALLEL I/O SYSTEMS 7

2.1 Design of the Disk Systems

The low value of the I/O bandwidth is mainly attributed to the costs involved in

the accessing of data from the disks. The data access rates are mainly limited by

the speeds of physical motion of the heads and it is unlikely that these speeds will

improve dramatically in the near future [PGK88]. The cost associated with each

disk request has three main components, namely, seek time, latency time and read

time. Seek time is the time required to position the access mechanism to the cylinder

containing the data. The time required for rotating the correct data or track area

under the reading head is called the latency time. Data Transfer time is the time

required to transfer the data between the disk and a memory bu�er. Hence the total

data access time can be reduced by using techniques to reduce the above mentioned

costs.

As the computational power of the machines increases, the corresponding memory

requirement increases [Kun86]. One can have a single large capacity disk or one

can design an array of inexpensive disks [KOPS88]. Both alternatives have some

de�ciencies. The single denser disk is error-prone [Mat77] and the array of disks

cause reliability problems [Kim85].

The popularity of personal computers have decreased the cost of the hard disks.

This has allowed the increase in the bandwidth of the disk system by replacing a small

number of large disks with a very large number of small inexpensive disks. There exist

several alternative ways to con�gure a number of disks to achieve high performance.

We will consider disk striping, data interleaving and combinations of both [RB89a].

The RAID project developed at UC Berkeley [KOPS88, CGK+88, KGP89, KOP+89,

CGKP90, CK91] incorporates an array of small inexpensive disks. The problem of re-

liability is solved by using extra disks to store redundant information. This approach
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is called low level parallelism by Ghosh et al. [Joy93]. The RAID system breaks the

disk array into di�erent reliability groups, with each group having extra \check" disks

to store the redundant information. The extra disks helps in reducing the mean time

to repair (MTTR). The main advantages of the RAID system are cost-e�ectiveness,

reliability, less power consumption and scalability. The RAID system is beginning

to replace the conventional disk system in most of the advanced parallel machines

including Paragon XP/S [Int92].

The most important advantage of disk arrays is the increase in the bandwidth

that can be achieved in operating all the disks in parallel. The data can be declus-

tered over a number of disks, thus permitting parallel access. Studies by Linvy et al.

[LKB87] and Salem et al. [GMS88] show that a system with data declustering is bet-

ter than a system without data declustering. Livny et al. show that when the block

of I/O transfer is a track, a declustered system outperforms a normal system. The

data declustering can be done in three possible ways: independent drives [KOPS88],

synchronous arrays [Kim86b, Kim86a] and asynchronous arrays [Mic91]. The sim-

plest alternative is the independent drives approach. In this approach, the drives are

plugged into one or more servers using o�-the-shelf controllers. This declustering sys-

tem stores each �le on only one disk. Reddy et al. describe such an approach as an

example of the traditional system [RB90b, RB89a, RB89b, RB89d, Red92b, Red92a].

The job of operating them in such a system is left to the operating system or the

user level software. This approach is suitable for application domains requiring a

large number of independent requests. However, this method of disk interleaving

may not work equally well for a single application. For example, if the �les are not

uniformly distributed, a large number of requests will arrive at a single disk, causing

load imbalance.

The remaining two approaches deal with di�erent ways of controlling the disk



CHAPTER 2. DESIGN ISSUES IN PARALLEL I/O SYSTEMS 9

heads in the interleaved disk array system. Both approaches distribute the data over

the disk array such that succeeding portion of the data are in di�erent disks. Synchro-

nized disk interleaving allows a group of interleaved disks to operate synchronously.

Byte interleaving stores adjacent bytes of a data block at the same place on each disk.

Thus it becomes possible to synchronize the rotation of all disk units. This scheme

of disk interleaving allows simpli�ed control and multiple disk units can be treated

as a single unit. Thus the disk array system presents a Single device image, greatly

simplifying control problems that are inherent in multidisk systems. The addition of

new disk units to the array does not a�ect the e�ciency of the overall system. Hence

this disk array architecture is well suited for scalable systems. Synchronous inter-

leaving provides performance improvement, parallelism through interleaving, uniform

distribution of I/O requests over the disks and improved reliability with minimum

redundancy. The synchronous interleaving can be used for many applications that

reference large address spaces and require large blocks of data. A few applications are

database, AI and scienti�c applications requiring large data transfers such as nuclear

simulations.

Kim et. al propose an alternative system of disk interleaving. Synchronous disk

interleaving stores adjacent blocks of data on separate disks at a predetermined po-

sition. However, these subblocks could be placed on adjacent disks independently of

each other. This is called asynchronous disk interleaving. This approach treats disks

to be independent of each other. Since, the data is stored at di�erent positions on

each disk, the seek and rotational delay involved in the data transfer will be di�erent

for each disk. Thus the access delay of a request for a data block in an n-disk sys-

tem is the maximum of n access delays. The asynchronous system provides a queue

for each individual disk. The reduced data transfer time in an asynchronous system

will reduce the number of requests in the queue. The asynchronous system provides



CHAPTER 2. DESIGN ISSUES IN PARALLEL I/O SYSTEMS 10

much more scalability than the synchronous system. Asynchronous interleaving can

be used to group several independent synchronously independent disks. Each group

can be considered as a single disk and may form another level of disk interleaving.

Data declustering is incorporated in most of the new generation parallel machines

including Intel iPSC series [RBA88, RB89c, RB90a], Ncube-2 [Jua92a], Intel Touch-

stone Delta [Int91b], Paragon XP/S [Int91a] and CM-5 [TMC91].

2.2 Data Distribution Protocols

Disk declustering allows multiple accesses to the disk system leading to an improve-

ment in the I/O bandwidth. The main advantage of the disk interleaving is that the

data can be distributed over the speci�ed number of disks in the disk array. The time

required to access the distributed data depends on the data distribution protocols

used in the disk system.

For a given �le size and the number of disks, the data could be distributed over

the disk system in many ways [Fal91]. All these strategies distribute the data into

blocks and distribute the blocks(buckets) over the disks using a speci�c distribution

protocol. The data distribution protocols can be classi�ed in three main groups,

1. The Random Data Allocation Methods.

These methods distribute the blocks with the help of a random number

generator. Generalized method of the random data allocation is the parti-

tion data allocation or PDA. These methods result in highly probabilistic

data distribution patterns. Hence these methods are not generally favored

because of the extra work required for �nding the blocks of the distributed

�le.
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2. Modulo Allocation Methods.(MAM)

This method distributes the data across the processors using the generic

modulo function. For a disk system having j disks, the ith block of the �le

lies in the (i mod j)th disk. Such kind of modular mapping leads to an

e�cient round-robin distribution.

3. Minimum Spanning Tree and Shortest Spanning Path Declustering.

Fang et al. proposed Minimal Spanning Tree (MST) and Shortest Span-

ning Path (SSP) declustering methods [Fan86]. The main idea behind

this to distribute a set of data into groups such that the these groups

share some speci�c attribute. These groups are then distributed over the

disks. These methods are generally used only for distributions involving

relations, hence these are useful for database operations. We will not ex-

amine these methods further since these are not of any practical interest.

Out of these three methods, the most important is the Modulo Allocation Method.

MAM distributes the data over the disks in the most optimal way. The most impor-

tant parameter in the MAM declustering is the Granularity of Blocks, which is the

size of the primitive blocks into which the given set of data is distributed. The choice

of the granularity of blocks is made by the speci�cations of the operating systems.

The granularity determines the degree of declustering, i.e. the number of partitions

of a given set of data. Larger is the granularity, smaller is the degree of declustering.

Traditional computers use various degrees of granularities. For example, CM-5 uses

512 bytes as a basic block size, [Thi91] whereas the intel �le systems use 4096 bytes

as their basic block size [Int91b, Int90].

The data distribution protocol, along with the corresponding disk interleaving

strategy de�ne the data mapping on the disks. Hence both these parameters are
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important in the design of parallel I/O system.

2.3 Processor-Disk Interconnection

This section reviews various issues in disk control and processor-disk interconnection.

One way to control an interleaved disk array is to provide a single controller

doing all the �le system and networking services. An excellent example of this is the

microvax controller provided for the CM-2 data vault [TMC87]. Another approach

is to provide individual controllers for the sets of disks. This approach is followed

in the parallel �le systems provided by the Intel i860 [Int90], the Intel Touchstone

Delta [Int91b] and the nCUBE-2 [nCU92] system. This is an example of the high

level parallelism [Joy93]. The Intel Touchstone Delta provides a separate I/O node

per two disks. These nodes provide all the operating system services for the parallel

I/O execution. The processing nodes access the disks through these I/O nodes.

The choice of the interconnection network decides the e�ect of the position of

the I/O nodes on the I/O throughput. If the processing and the I/O nodes are

connected by a high bandwidth network, then the position of the I/O nodes does not

a�ect the I/O performance. If there is little overlap between the I/O access and the

interprocess communication, then there is negligible degradation in using the common

network. For example, the Intel Touchstone Delta uses the same network both for the

interprocess communication and the I/O transactions. The CM-5 uses the fat-tree

data network for its I/O messages.

As an alternative, Ghosh et al. propose using an independent network for the I/O

services [Joy93, Joy91]. The network serves multiple I/O nodes operating under a

distributed operating system. The data tra�c in this I/O network is controlled by

a pipelined circuit-switched routing technique called worm-hole routing. The extra
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network makes the I/O bandwidth relatively independent of the data locality and the

�le allocation policy. This approach provides a balanced and scalable high bandwidth

I/O network. However, provision of an extra network will make the disk control and

the processor-disk interconnection more complex.

However, advances in the hardware and in the routing algorithms has made com-

munication network equally suitable for the I/O purposes. Hence most of the ad-

vanced parallel machines use the same interconnection network for both communica-

tion and I/O.

2.4 Parallel File Access Policies

The data distribution over the disks allows the computing processors to access the

data from the disks simultaneously. This permits the processors to read and write

�les in a parallel fashion. The various types of parallel access strategies decide the

type of workload on the parallel I/O subsystem. In this section, we will review various

data access strategies and their impact on the design of the parallel I/O subsystem.

A �le is a collection of logically related data items. The �le is composed of records

which may or may not be of equal sizes. The records in the �le are generally addressed

by a �le pointer. This pointer is used for various �le related operations such as �le

rewind, �le seeking etc.

From a parallel programming point of view, there exist two di�erent views of a

�le. One is the global View, that is logical view of the �le as an unit, where as the

local view explains the �le structure as viewed from the individual processor's point

of view. Global view classi�es �les as either SEQUENTIAL or DIRECT, whereas the

local view classi�es the �les according to the parallel �le access.

When the �le is opened in parallel, it is more appropriate to call it as a parallel
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�le. Parallel �les can be classi�ed into standard parallel �les and special parallel

�les [Cro88, Cro89], [Kot92]. Standard parallel �les are present independent of the

execution of the parallel program. Examples of such �les are system �les such as

.login �les which are required by each processor independent of the program. The

special �les are created by the program and accessed by the processors only during

the execution of the program. Such �les include the data input and output �les.

The workload on the parallel �le system depends on the type of �le accesses.

There are many ways a parallel �le can be accessed in a concurrent fashion. From

a global view, these access patterns can be classi�ed as SEQUENTIAL accesses or

DIRECT accesses. Each group is again classi�ed according to the local point of view.

Let us �rst consider possible SEQUENTIAL access patterns.

1. Global Sequential All (GSA):

In this pattern all the processors read the array from the start to the end

sequentially. This process is mainly used for reading the standard system

�les.

2. Global Sequential Subset (GSS):

In many cases, only part of the participating processors perform the I/O.

This pattern is produced when the some of the participating processors

read the entire �le in a sequential manner.

3. Global Sequential Partitioned (GSP):

This sequential pattern distributes the �le across the processors, so the

global view is that the entire �le is read. The �le is distributed into con-

tiguous blocks, one for each processor. The processors read the contiguous

partitioned data.

4. Global Sequential Interleaved (GSI):
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This access pattern distributes the �le into non-contiguous blocks sepa-

rated by a constant stride. From the processor point of view, this is a

round-robin access pattern. All the processors participate in this type of

access.

5. Global Sequential Scheduled Access (GSSA):

The GSSA allows an asynchronous data access. Each processor can inde-

pendently access the records of the �le. The sequence in which the records

are read is decided by the order in which the processor requests arrive.

The amount of data read by each request must be same, thus the amount

of data read by each processor remains the same.

6. Global Sequential Overlapped (GSO):

This is also an asynchronous data access pattern. But this access pattern

allows the size of data request to be di�erent, hence some requests might

access overlapped data sets.

7. Global Sequential Partitioned Subset (GSPS):

This is a modi�cation of the GSP. In this form, some processors can remain

idle. Thus the amount of data read by each processor is much greater than

in the case of GSP.

DIRECT access �les can also be classi�ed from a global point of view.

1. Global Direct Random (GDR):

The direct access pattern allows the processors to access the data from any

position. The GDR allows the processors to access the data in any order

and from any position. This is the most general case of data access.

2. Global Direct Partitioned (GDP):
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In this access pattern, the processors read(write) data in a pre-determined

order. But they use the DIRECT access pattern, reading(writing) the data

in any arbitrary order.

There can be many more types of access patterns possible, but they are basically

modi�cations of the basic �le access patterns described here. The �le access patterns

are very important in designing the parallel I/O system, since it decides the memory

access strategy used in the parallel machine. The �le accessing pattern has a profound

e�ect on deciding the caching policies in multiprocessor systems.

2.5 Disk Caching and Prefetch Policies

The provision of a multiple disk system helps improve the I/O bandwidth of a multi-

processor system. The e�ective I/O bandwidth can be further improved by providing

e�ective caching and prefetching policies.

The choice of a caching policy depends on the workload model. The lack of real

parallel I/O workload has led designers to use arti�cial workloads for the designing

caching policies. We have to consider �le access patterns other than the disk access

patterns. The disk access patterns refer to analyzing the accesses to the physical

blocks of the data residing on disks. This approach is complicated because the data

is striped over the disk array and is accessed by multiple nodes. Instead of studying

individual disk accessing, we study the �le access patterns.

The applications access distinct data from a �le (records). This record access is

translated into the corresponding block access by the �le system. The blocks are

either read(written) on the target disks according to the application speci�cations.

The �le access patterns have been studied extensively. Survey of IBM systems

and Cray systems conclude that most �les are accessed sequentially [Pow77, Ber78].
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Even in parallel computers, the most used access is the sequential access.

Disk caching is heavily used in uniprocessors for improving the disk I/O perfor-

mance. The hit ratio of the cache can be improved by reading the blocks into the

cache before they are requested. This is called prefetching of data blocks. The most

common technique used for caching is the one-block lookahead or OBL. This strategy

prefetches the (i+1)th block when the i'th block is prefetched [Smi78].

However in the parallel �le systems, the prefetching strategy depends upon many

factors [Dav90, EK89, KE92, KE91, Kot91]. These include what to fetch, when to

fetch, which disk to fetch from, which processor should make the decision of prefetch-

ing and where the data should be stored. The common prefetching strategy used for

the uniprocessors may not work here because of di�erent �le access patterns. When

there are a large number of processors accessing the data from several blocks, it may

be bene�cial to prefetch the blocks that can be accessed in near future. Thus the

many-block lookahead (MBA) might be a good replacement for (OBA).

Kotz et al. have performed experiments on the parallel �le system testbed, the

RAPID Transit System [Dav90]. According to their results, the prefetching con-

tributes to the decrease in the execution time. The improvement ranged from 15 per-

cent to 70 percent. Similar work was carried out by French et al. [FPD91a, FPD91b].

They studied the e�ect of prefetching and caching on the performance of an Intel

iPSC-860 hypercube. They have found 217% gain for prefetching and 57% gain for

caching.

The read access times can be improved by providing prefetching mechanisms.

Similar improvement in write throughput can be obtained by providing suitable write-

back strategies [KE93]. Also in the write(read) operation the choice of replacement

policy is important. The replacement policy depends on the locality of access. In

addition to special and temporal localities, Kotz et al. de�ne another form of locality
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called interprocess locality. In the interprocess locality, the data block will be used

in near future by another process. Analogous to one-block lookahead in prefetching,

the sequential locality results in toss-immediately replacement policy [Sto81]. In the

parallel access environment a slight modi�cation of the toss-immediately policy will

be more useful. The parallel toss-immediately policy retains more than one MRU

blocks resulting in a e�cient cache performance.

The write-behind policy can improve the write performance by allowing the process

to continue while the data is written to the disk. This policy is used in the Touchstone

Delta Concurrent File System [Dav92]. A slight variation of this policy writes the

data to the disks after a slight delay resulting in delayed write-back. Another strategy

is to write to the disk when the write-bu�er is full. This write full strategy is more

useful for sequential access patterns. This policy writes the old, not used blocks after

a certain delay. Thus write-full policy becomes write-back for non-sequential patterns

[KE93]. Kotz et al. have shown that write-full strategy is the best write strategy for

scienti�c workloads.

A lot of work is still needed for analyzing both read and write cache performance

under various �le system parameters. Some important issues to be considered include

cache coherence protocols, prefetching policies and parallel replacement strategies.

2.6 OS Interface between the Processing Nodes

and the File System

Parallel �le systems allow parallel access to the data distributed over multiple disks.

Conventional (UNIX-like) interfaces cannot fully satisfy various conditions required

for allowing access from a parallel program. This section tries to emphasize pertinent

points in the design of the parallel I/O interface.
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The traditional UNIX system interface treats the �le as a single stream of bytes.

The �le is opened either by create or open. The �les are accessed sequentially using

a �le pointer. System calls lseek, read, write and close use this �le pointer. File

information is stored in the global inode structures. All �le accesses are sequential

and at one instant only one process can access the given �le.

A parallel interface must also take into account various other factors such as the

workload models (explained in section 2.4), parallel system calls, distributed data

management and parallel request scheduling. The main aim of a parallel �le system

interface is to provide the user a transparent service and allow him to utilize the

parallel I/O system to the fullest extent. We describe below some important issues

that a�ect the design of a parallel �le system interface.

1. Uniform directory structure.

The �les should have simple and uniform hierarchical structure. It should

not be dependent on the actual storage pattern of the �le data and on

the pattern of �le access (sequential or parallel). A user should visualize a

uni�ed �le system consisting of both the sequential and parallel �les. This

would mean that the same call can access both the sequential as well as

the parallel �les. This makes the �le system implementation completely

transparent to the user.

2. Ability to execute multiple �le accesses.

The main task before the parallel �le system interface is to serve multiple

�le access requests concurrently. These include �le open, �le close and �le

pointer operations such as lseek. For a �le to be accessed concurrently,

there should be a provision for multiple �le pointers. One can have a �le

pointer per process or all the processors can share the �le pointer. This
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choice depends on the �le access pattern. When all the processors need to

read the same data in di�erent order (GSA), independent �le pointers are

suitable. For a distributed data access (read/write)(GSP/GSI/GSSA),

processors require a common �le pointer. The resulting �le structure

depends on how the processor synchronization issue is handled. Other

system calls such as lseek involve �le pointer manipulations. When the

�les are distributed over the disks and opened in the interleaved fashion

(GSP/GSI/GSSA), the lseek operation becomes quite complicated. Hence

the �le system should take care of irregular �le pointer operations.

The multiple �le operations should be executed in an optimal way, so as

to reduce the number of requests to the �le system controller. Also the

�le system should support operations on extremely large �les (larger than

1 GBytes).

3. Availability of e�cient read/write system calls.

The most important factor in the design of the operating system interface

is to provide for read/write system calls for multiple �le access requests.

The data to be read/written will be distributed over a number of disks.

The design of the read/write system calls decide the time required to access

the required amount of data from the disks. The larger is the amount of

data read per request, the smaller is the total time required for reading

the total data.

To facilitate a large access capacity, parallel �le systems normally use

bu�ered read-write. Bu�er-reads read requested block of bytes in a se-

rial fashion. Position of data block in �le depends on �le pointer position.

The �le pointer will be controlled by the operating system and will vary

depending on the �le distribution pattern. Hence, it is necessary to know
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�le distribution pattern before data read and write.

4. Provision of a transparent data management scheme.

Traditional �le systems use various data structures to e�ectively track the

positions of the stored data. The data book-keeping becomes very impor-

tant in parallel �le systems because multiple processes access distributed

data concurrently.

Distributed data management stores the �le information such as the �le

size, the mode of �le access and the number of disks on which the �le is

stored. The �le information is stored in the usual inode form which is

accessed by the I/O controller. This bookkeeping hides the actual data

storage from the user. The user just decides the total number of disks on

which the �le is stored. All the internal �le details are maintained by the

data management scheme.

I/O controller is an important part of the distributed data management

scheme. The I/O controller receives the requests from the users (I/O re-

quests) and translates them into the corresponding disk requests. The I/O

controller acts as a gateway to the disks. The I/O controller implemen-

tation is �le system dependent. There may be a single I/O controller for

the entire disk system or each subset of disks will have a separate I/O

controller. The I/O controller maintains a transparent �le structure and

allows the user to write simple read/write routines.

5. Portable with standard �le systems.

A parallel �le system treats �le data in a di�erent way than the traditional

�le systems. The �le system provides speci�c data structures and data

management policies for supporting multiple accesses of the distributed
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data. There are separate �le system calls for serving the multiple �le

requests.

However, the parallel �le system should be able to run the traditional �le

system calls. The user should be able to run the normal operations on

the �le (for example, tar,compress etc). Also the �le system should accept

common �le system veri�cation calls such as df or du. Finally to make

the parallel �le system fully portable with the standard �le systems, the

internal �le structure of the parallel �le system should be similar to that

standard system (hierarchical �le structure, simple consistent interface to

peripheral devices etc).

2.6.1 Existing Parallel File System Interfaces

Several new parallel processing systems now provide parallel �le systems. These �le

systems consider most of the previously discussed issues. In this section we will review

the recent trends in this �eld.

The CUBIX �le system for the CrOS system was designed on the MARK range of

hypercubes [GMG+88], [Sal86]. The CUBIX system proposed a single programming

paradigm for the hypercubes. A universal host program acts as a �le server serving

the requests from the nodes. There are two modes of �le accesses: crystalline also

called loosely synchronous and amorphous. In the crystalline case, the �les have a

single �le pointer and have two accesses- single or multi. In single access mode, each

node has to send the request at the same time resulting in a single input/output. In

the multi mode, each node can send individual requests having di�erent parameters.

In the amorphous mode each �le has di�erent �le pointer.

The nCUBE hypercube multiprocessor range also supports parallel �le system
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[DeB91, Jua92a, nCU92, DdR92, DM91, Jua92b]. The nCUBE system is designed

around the UNIX system. This system uses byte mapping for providing the routing

information for the data in the �le. In nCUBE system, the user can control the data

storage on the disks by providing the stripe size of the declustering. The nCUBE

system distributes the �les over the disks in a round robin fashion.

Intel iPSC/2 and iPSC/860 support the Concurrent File System or CFS [Int88,

Pie89], [Int89, Nit92, BR89], [FPD93, FPD91a, Int90]. The CFS provides three in-

terfaces [AS89],standard,random-sequential access and coordinated interleaving. This

is carried out using distinct �le access modes. User has the ability to control the disk

storage of the �le data. Similar �le system is used for the Intel Touchstone Delta

[Int91b, Raj93]. The Intel Paragon XP/S will use a distributed operating system

based on the OSF/1 [Int92]. Both the �le systems support multiple �le accesses

using various �le access modes.

Other commercial computers providing parallel �le interfaces include the Kendall

Square Research KSR1 [KSR92] and the CM-5 [TMC91]. The KSR1 uses shared

memory address space for �le mapping and provides a RAID architecture for the disk

system. The CM-5 uses the data vault with a microvax as a I/O controller. The CM-

5 system software provides �le access modes for random-sequential and coordinated

access.

Several researchers have proposed prototype parallel �le interfaces. Kotz explains

a parallel �le interface that provides multiple �le operations [Kot92]. Similar parallel

�le operations have been de�ned in the Bridge �le system [DSE88, DS92]. Witkowski

et. al describe a parallel I/O interface for hypercubes [And90]. PARAM - a trans-

puter based parallel machine developed in India also provides a parallel �le system

[USP91].



Chapter 3

Case Study of a Parallel I/O

System

Chapter 2 reviewed various issues in designing a parallel �le system. To understand

the e�ects of these issues in a greater depth, we perform an experimental analy-

sis of Touchstone Delta Concurrent File System (CFS). The chapter focuses on �le

read/write rates for various con�gurations of I/O and compute nodes. The study

attempts to show the e�ect of �le access modes, bu�er sizes and volume restrictions

on the system performance.

This chapter is organized as follows: section 1 describes Touchstone Delta system.

The Concurrent File System or CFS is introduced in section 2. Section 3 explains

the evaluation methodology used in the experiments. Detailed explanation of various

experiments along with the results is presented in section 4. Section 5 introduces

Parallel File System for Paragon. Finally we conclude in section 6.

24
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3.1 The Touchstone Delta System

The Touchstone Delta system was developed by the Intel Corporation as a part of

the Touchstone program [Int91b]. The Intel Touchstone Delta system is a message

passing multicomputer consisting of processing nodes that communicate across the

two dimensional mesh interconnection network.

The system supports various types of processing nodes (numeric, mass storage,

gateway and service). Numeric nodes form the computational core of the system.

The Delta system uses Intel i860 processors as the core of computational nodes. In

addition the Delta has 32 Intel 80386 processors as the core of I/O nodes. Each I/O

node has 8Megabytes memory which serves as I/O cache. There are other processor

nodes such as service nodes and ethernet nodes. The Delta is arranged as a mesh of

16*32 compute nodes and has 16 I/O node on each side(as seen in �gure 1).

3.2 Concurrent File System

The Intel Touchstone Delta Concurrent File System consists of I/O nodes connected

to disks. Each I/O node is connected to 2 disks, each with 1.4 Gigabytes of space.

I/O nodes do not run any application processes but provide disk services for all users.

A �le is uniformly distributed over all 64 disks by default in a round-robin manner.

The stripe unit is 4Kilobytes(one block) per disk. When a �le is opened for reading

or writing, data is accessed by default from 64 disks. A user, however, can restrict

the number of disks on which a �le is distributed. All read-write transactions are

carried out in an integral number of blocks, where each block size is 4 Kilobytes.
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Figure 1: Intel Touchstone Delta System
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Figure 2: File block distribution across the disks

3.2.1 CFS File Structure

The CFS provides a UNIX view of a �le to the application programs. Each CFS

�le has a header and a body. CFS �le header stores �le information such as �le

size, permission and link count. The �le header is always allocated the �rst �le

block. In case of small �les the header contains the data whereas for large �les the

header contains the pointers to the indirect blocks that store the data. When the

�le is striped across the disks, the �le header is stored on the �rst disk and all the

subsequent blocks are distributed in a round-robin fashion over the disks (�gure 2).

3.2.2 The File System Interface

Touchstone Delta CFS has four major components: CFS libraries, �le Checkers,

DiskProc and NameProc [Dav92].

CFS libraries are linked with source programs. These libraries create and send

messages to DiskProc and NameProc. In addition, the job of �le o�set maintenance

and execution of I/O modes is assigned to these libraries. CFS libraries are also

responsible for asynchronous I/O.

File checkers check the �le information and create the necessary �le structures.
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These are installed on the i860 (compute) nodes. These check the directory and

the CFS �le headers for errors. If any errors are found, �le checkers modi�es it.

Otherwise, theya creates the block map of the �le and sends it to DiskProc.

NameProc is resident on the nameserver. It provides the CFS naming services and

maintains the CFS directory �le. It translates the CFS pathnames into corresponding

�le header blocks. DiskProc is resident on all the I/O nodes. DiskProcs provide

interface between CFS libraries and I/O devices. In addition DiskProc executes the

CFS �le open calls.

When a compute node opens a �le, the operating system sends a message to

nameserver, which responds with a copy of the meta data for the �le so that the

compute node knows where each block of the �le resides. When there is a read or

a write request, the compute node translates the logical �le o�set obtained from the

nameserver into the physical block reads (writes). Subsequently, the compute node

sends the read or write requests directly to the I/O processor that owns the disk.

When a read request is presented to an I/O node, it prefetches 8 blocks of 4Kbytes

each into it's cache (if these blocks do not exist in the cache). Therefore, for each

read request each I/O node prefetches 32 KBytes of data. During writing, the I/O

node stores the data to be written in the I/O memory up to 12 blocks before actually

writing to the disk.

3.2.3 The I/O Modes

Four I/O modes are supported in the CFS. These are described below.

� Mode 0: In this mode, each node process has its own �le pointer. This mode

is speci�cally useful for large �les to be shared among the nodes. Here, sharing

implies that the same data is accessed by nodes (replicated). This should be
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distinguished from sharing a �le but distributing the data, i.e, when di�erent

nodes access di�erent (and distinct) parts of a �le. This mode is useful for

accessing the �le in GSA access pattern.

� Mode 1: In this mode, compute nodes share a common �le pointer. I/O requests

are serviced on a �rst-come-�rst-serve basis. Nodes can read and write at any

point, but they use the same �le pointer. Thus GSP �le access pattern is

obtained.

� Mode 2 : Mode 2 treats reads and writes as global operations. The set of

compute nodes that open a concurrent �le must read the �le in a speci�ed

order (in the increasing order of the node-numbers). This mode performs global

synchronization in the sense that the second request by any node is blocked

until the �rst request by all nodes in the set is complete. This mode supports

synchronized common �le pointer. Using this mode, nodes can perform variable

length read-write operations. Hence, the requests are serviced in a prede�ned

order.

� Mode 3: Mode 3 is a synchronized ordered mode. The di�erence between mode

2 and mode 3 is that in mode 3, all read/write operations must be of the same

size. This mode also supports global synchronization. Hence, the requests can

be serviced in any order, but still the second request by a node is blocked until

the �rst request of all nodes is completed. Hence this mode can be used for

obtaining GSI form of �le access.

The data accessed by each processor depends upon the mode. During the write

operation, the resultant size of the �le created depends on the �le mode used. Many

scienti�c applications involve automatic distribution of the data across processors.
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Using di�erent I/O modes, it is very easy to decompose the data across the disks.

Note the distinction between mode 0 and the other 3 modes. In mode 0, reads/writes

are to the same data in a shared �le, whereas in other modes reads/writes are to

distinct data (for each node) in the shared �le.

3.2.4 The I/O Network

Touchstone Delta does not provide an independent I/O network. The compute and

I/O nodes share a common interconnection network. The same network is used for

both interprocess communication and I/O communication.

In Touchstone Delta, both interprocess communication and I/O, messages travel

in the form of packets. Touchstone Delta uses packet switched wormhole routing

as a communication protocol [Int91b, Lio93, Rik92]. Each node of the machine is

connected to the mesh using a mesh routine chip (MRC). Messages travel from MRC

to MRC until they reach the destination node.

Each message is split into packets of a �xed size (512 Bytes). On the physical

level, the packet travels through the network in form of 
its or 
ow control digits

[Lio93, Bar93]. The packet follows a XY routing protocol. The XY direction is

speci�ed in the message header. In Touchstone Delta, the message packets always

travel �rst along X direction. During the journey, each MRC decrements the X o�set.

When the X o�set becomes zero, the packet travels in the Y direction. The message

reaches the destination when both the X and the Y o�set of the message become zero.

Using the same network for interprocessor communication and I/O may cause

serious network contention. Also since the I/O nodes are physically at the edge of

the mesh, the position of the compute nodes might a�ect the I/O performance. We

will investigate these points in the experimental analysis of Touchstone Delta.
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3.3 CFS Evaluation Methodology

The overall performance of accessing data in the CFS depends on several factors

such as the number of compute nodes participating in an I/O operation, size of

access (bu�er size), number of disks, block size, I/O mode and the overall available

bandwidth from the I/O system as well as that of the interconnection network (Figure

1). In principle, it is di�cult to decouple the in
uence of some parameters on the

performance. Our study includes the following experiments:

� Single Compute Node

{ Single compute node and paged I/O

In paged I/O experiments, we study the e�ects of bu�er size, node position,

number of disks and the �le size on the throughput. These experiments

are carried out for smaller bu�er sizes and relatively small �le sizes.

{ Single compute node and burst I/O

For burst I/O experiments, the bu�er size is very large. The factors that

a�ect the burst mode throughput include the bu�er size and the number

of disks.

� Multiple Compute Nodes

{ Multiple compute nodes and paged I/O

Multiple processors access the �le system using various access modes. Dur-

ing multinode accesses, the CFS performance not only depends on the

bu�er size, number of processors and disks, but also on the �le access

modes. Hence, the paged I/O experiments are carried for all the four �le

access modes.
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Table 1: De�nitions of Various Terms Used in the Thesis

Term De�nition

F The size of the �le distributed over the disks.

Np The number of processors accessing the �le.

Fp The amount of �le data per processor.

Fp =
F

Np

.

(True only for modes 1,2 and 3.)

Nio The number of I/O requests per processor.

bio The size of the data bu�er.

Access size requested by the processor

ND Total number of disks (for Delta ND is 64).

BD Block Size ( Amount of data per block on each disk).

{ Multiple compute nodes and burst I/O

In burst I/O mode, the bu�er size is quite large compared to that in the

paged mode. For such �le accesses, the parameters that a�ect the through-

put include the number of processors and the number of disks. Further-

more, we study the performance of the CFS when data is distributed using

common data distributions found in typical scienti�c programs.

� E�ect of Common Interconnection network on I/O Performance

We will investigate the e�ects of using the common network for both interprocess

communication and I/O. We will especially study the e�ect of compute node

position on the I/O performance. The results will help in analyzing the mesh

network performance.

Table 1 presents some de�nitions that will be used throughout this thesis.
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3.4 CFS Performance Evaluation

The main objective of the CFS performance evaluation is to determine the maximum

read-write rates observed for di�erent con�gurations. Therefore, the experiments try

to saturate the I/O system with the I/O requests so as to obtain a peak performance.

Similar performance measurements have been used in the study of Intel iPSC I/O

system [FPD91a, FPD91b, FPD91c, FPD91b, Nit92].

3.4.1 Single Compute Node

The �rst part of the study aims at determining the maximum I/O rates obtained for

a single compute node. These studies are performed both for paged as well as burst

I/O modes. Paged I/O performance is important for implementing and supporting

node virtual memory to fetch or store pages on disks. Burst-mode I/O is important

for �le accesses when a node requires reading/writing large �les containing data for an

application. For both types of workload we study the maximum throughput obtained

from the I/O systems.

Paged I/O

Since there is no virtual memory support currently available on the Delta system,

virtual memory was simulated by opening a �le and reading (writing) it using �xed

size bu�ers. The bu�er size bio indicates the amount of data fetched in each I/O

request. In each experiment, the compute node opens a �le and reads (writes) it using

�xed size bu�ers. Other parameters varied for the following experiments include the

�le size, bu�er size, node position and the number of disks ND.

Figure 3 illustrates the performance of implementing paged I/O using various

bu�er sizes. As the bu�er size increases from 1K, Nio reduces and consequently
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Figure 3: Single Compute Node - 32 I/O Nodes (64 Disks): Read Rates in KB/sec

the throughput increases. For a bu�er size of about 4k, the read rate is about

340Kbytes/sec for all �le sizes. This convergence of performance occurs because the

bu�er size and the block size are both 4Kbytes, and therefore, the requested size is

same as the size of data read in one operation from the disk. Thus, each I/O request

for 4K bu�er results in reading the prefetched blocks from the node cache. Beyond

4K bu�er size, the throughput increases for small �les as a function of bu�er size

whereas it degrades slightly for larger �les. In summary, 4K bu�er size seems optimal

for most of the �les but for very small �les, larger bu�er sizes perform well. It should

be noted that the throughput is not limited by the I/O system, but is limited by how

fast a node request is generated. For the paged I/O experiments, new I/O request is

generated only when the previous one is completed. Similar results were obtained for

a write operation.

In order to determine if the position of a compute node in the network has any
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Table 2: File Read Time is (ms)-Single Compute Node

Node Position 1 MB Read 2 MB Read 4 MB Read 8 MB Read

56 2954 5836 11642 23230

11 2926 5896 11754 23195

24 3018 5836 11749 23314

319 2968 5843 11694 23205

268 2951 5936 11729 23215

567 2994 5903 11941 23264

535 3078 6096 11790 23460

517 2972 5961 11897 23383

e�ect on read and write operations, di�erent nodes at various locations in the mesh

were chosen as shown in Table 2. Three were on one side of the mesh (Node Nos.

56,11,24), two in middle of the mesh (Node Nos. 319,268), and the remaining three

on the other side of the mesh. Keeping the bu�er size �xed at 4K, �le read times

were observed for �le sizes varying from 1M to 8M. The �les were distributed over 64

disks, so each side had an equal amount of data distributed on the nearby disks (32).

The read times do not change signi�cantly as the position of the node varies. This

experiment shows that the distance that a request travels in the network does not

have any signi�cant impact on the performance when there is very little contention

in the network. This also shows that the inter-node \hop times" between the nodes

are negligible.

Burst Mode I/O

When the compute nodes require to read (write) a large amount of data (large fraction

or an entire �le) then the operation may be performed in a burst mode. In burst mode,

the bu�er size is very large, maximum being the �le size being accessed. Figures 4
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and 5 show that burst mode operation is much faster than the paged mode. Using

64 disks, 1MB �le was read in 203 ms giving a peak rate of 4.83 MBytes/sec. The

peak write rate was 1.39 MB/sec. The peak read rate obtained for paged mode was

about 400 KB/sec. This increase in the throughput, compared to that in paged mode

is observed due to the large number of I/O requests in paged I/O mode where each

request must be sent explicitly.

Generally for the single processor con�guration, both for the paged and for the

burst mode I/O, the read rates are much higher than the write rates. Also as the

number of disk volumes increases the throughput increases upto a threshold. For

large �les, the trend will be the same as the \8-Mbytes" case shown in Figure 5.
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3.4.2 Multiple Compute Nodes

The most important use of a parallel I/O system and CFS is concurrent accesses by

multiple processors. This section presents performance of the �le system by varying

di�erent parameters such as the number of disks, the access modes and the number

of processors.

Mode 0: Paged I/O

Mode 0 is useful for accessing shared �les by multiple compute nodes. Each processor

has its own �le pointer. Note that write operations are not protected in the sense

that the processors can overwrite each others data.

Figure 6 shows the read throughput for paged I/O as the function of number

of processors for various number of disks. There exists a threshold in terms of the
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number of disks beyond which a substantial performance gain can be expected. As the

number of processors is increased, the performance does not change signi�cantly when

Nd is increased from 2 to 32 disks. However for 64 disks, there is a signi�cant jump

in the performance. The throughput obtained for 64 processors is 11.2 MBytes/sec.

Whereas for 2 disks, the throughput is about 4.5 Mbytes/sec. This shows that the

\declustering" of the �le data is very e�ective.

The throughput increases as the number of processors increases. Since, each

processor reads the same data, as the number of processors increases, the total amount

of shared data accessed increases. However, the total time required to read the data

increases slowly because one node's read acts as a prefetch command for others.

Another interesting point to observe is that for a small number of processors, the

e�ect of the number of disks on the performance is negligible. That is, the performance

is limited by the bandwidth available at the computational node side rather than at
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Table 3: Multinode (4*4) Burst Mode Throughput as a Function of Disk Volumes

(Mode 0)

File size Bu�er size Disks Read (MB/s) Write (MB/s)

1M 1M 2 0.9329 0.748

1M 1M 16 5.88 3.069

1M 1M 32 11.11 3.147

1M 1M 64 11.21 3.506

4M 4M 2 0.74 0.603

4M 4M 16 3.630 2.0878

4M 4M 32 7.705 4.947

4M 4M 64 12.11 6.055

the I/O subsystem side.

Mode 0: Burst I/O

Table 3 shows the performance of burst-mode read/write throughput as a function of

number of disks (processor size = 16). The speci�ed bu�er size at the application level

is equal to the size of the �le to be read/written. As we can observe, the performance

improves as the number of disks is increased. For a given processor grid size, the

performance depends on two parameters, namely, the �le size and the number of disks.

For smaller �les (1 Mbytes/node), the performance saturates for smaller number of

disks (32 disks) and beyond which the improvements diminish. However, as the �le

size increases, the threshold number of disks for which performance improves also

increases as seen for the case of 4 MByte read/write per node.

Tables 4 and 5 presents the performance of burst mode I/O when the number of

computational nodes is varied from 16 to 512 (ND = 64). In general for burst I/O,

good performance is obtained and the saturation occurs due to bandwidth limitation

of the I/O subsystem. Reads perform better than writes. This is because reads can
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Table 4: Throughput of Accessing 1 MB File in Mode 0 (Burst Mode,64 Disks)

Mesh Size Write Rate(MB/sec) Read Rate(MB/sec)

4*4 3.506 11.21

4*8 5.421 11.75

8*8 7.027 11.672

8*16 3.314 11.766

16*16 3.244 11.813

16*32 2.839 11.992

Table 5: Throughput Rates of Accessing 2 MB File in Mode 0(Burst Mode)

Mesh Size Write Rate(MB/sec) Read Rate(MB/sec)

4*4 4.37 10.51

4*8 3.89 11.73

16*16 2.860 12.103

16*32 3.678 23.83

be performed from the I/O cache if a desired block exists in the cache due to an

access by some other processor. However, all writes must be written onto the disks.

The di�erence between paged and burst I/O performance is not signi�cant because

the system bandwidth is not limited.

Modes 1, 2 and 3 : Paged I/O

These modes are useful for accessing data when the data set is distributed over mul-

tiple nodes.

The �rst experiment was used to observe the e�ect of di�erent modes and the

number of disks. In this experiment a data �le of size 16 Mbytes was read using modes

1, 2 and 3. As Figure 7 shows, for a 4*4 processor grid the maximum throughput is
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obtained for mode 3 and with 64 disks. The peak rate in this case is 5.5 Mbytes/sec.

For mode 1, the peak speed is 5.12 Mbytes/sec. The lowest �le read throughput is

observed for mode 2.

Another important point to be noted is that as the number of disks decreases, the

read throughput decreases. As the number of disks is decreased below a threshold (in

this case 16 disks), the read rate reduces drastically. Hence, the optimal operating

point in terms of cost-performance (no. of disks versus the throughput) will be near

the knee of the curve.

In the next experiment, we use 64 disks ( maximumavailable) and vary the number

of processors. For this experiment, a 16 M �le was read using a 4K bu�er.

Figure 8 shows that as the number of processors increases the read throughput

increases. The highest read throughput was obtained for 64 processors. Modes 1

and 3 perform comparably. The maximum read rate for mode 1 was 10 Mb/sec,
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while for mode 3, it was 9.8 Mb/sec. Due to access ordering and synchronization

costs, mode 2 performs worse than the other modes for all cases. As the number

of processors increases, the amount of data read per processor decreases. Hence,

the individual processors require less time to read. In other words, the available

bandwidth at the computational node side increases resulting in an increase in the

throughput. However, as the number of processors increases, the rate of increase in

the throughput decreases indicating that the bandwidth limitation shifts to the I/O

system side.

For studying the performance of each I/O mode in some more detail, we performed

three additional experiments in which the number of processors and the number of

disks were varied. For these experiments, a 16 MB �le was opened and read by varying

number of processors. Figures 9, 10, 11 show the e�ect of varying disk volumes and

number of processors for di�erent I/O modes.

Figure 9 shows the performance of the �le system for mode 3. The peak read per-

formance is obtained for 64 disk volumes. This �gure also shows that the throughput

is proportional to the number of processors. For a 64 processor grid, a 16 MB �le

was read at 10 MB/sec. For the same grid size, if the �le is stored on 2 disk volumes,

the read rate drops to about 900 KB/sec.

Note that as the number of processor is increased, the knee of the curve is observed

at di�erent points for di�erent number of disks. Hence, as indicated earlier, the choice

of number of disks depends on how many processors will be involved in an access.

More experiments need to be performed to relate this performance to di�erent �le

sizes. Note that the knee of the curve in these experiments signi�es a point indicating

the bandwidth limitation shift from the computational nodes to the I/O system.

Figure 10 shows the results for the same experiment for mode 2. The graph

shows nearly same trends as observed for mode 3. However, for mode 2, the peak
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rate obtained was 7MB/sec for 64 processor grid. Note that the performance in mode

2 is sensitive to the order of arrival of the requests because requests must be served

in a �xed order. Therefore, we observe a less smooth curve as compared to that for

mode 3.

Figure 11 shows the performance of the multicompute nodes for the mode 1. The

peak throughput is 10 MB/sec and lowest observed throughput is 900 KB/sec. Note

that mode 1 serves requests in the order of arrival and does not require synchronization

for each processor to �nish before going to the next phase. Therefore, it performs

slightly better than mode 3 (which requires synchronization). Therefore, mode 1, is

useful for log-structured �les or for those computations in which order of accesses

does not matter. For example, if the compute nodes perform a search operation in a

�le, they can access the �le in a self-scheduling mode for which mode 1 will provide

the best performance.
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Modes 1, 2 and 3: Burst I/O

Tables 6 and 7 present a summary of results obtained for reads and writes using

burst-mode I/O for various system con�gurations. The number of processors was

varied form 32 (8*4 mesh) to 512 (16*32 mesh). Each processor accessed 1 Mbytes

of data, and therefore, the resulting �le size varied from 32 Mbytes to 512 Mbytes.

Clearly, burst mode I/O is preferable for large �le accesses. Furthermore, a consistent

performance is observed over a wide range of processor con�gurations. However,

beyond 256 processors (actually, between 128 and 256) the I/O system becomes a

bottleneck resulting in degraded, but still a comparable performance. It should be

observed that read rates were normally 2 to 3 times faster than the write rates.
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Table 6: Read Throughput in Mbytes/sec (Burst Mode)

Mesh Size Mode 1 Mode 2 Mode 3

8*4 8.447 8.159 8.144

8*8 4.817 8.310 9.602

16*8 8.715 8.6821 8.891

16*16 6.519 7.18 7.169

16*32 6.21 6.742 6.944

Table 7: Write Throughput in Mbytes/sec (Burst Mode)

Mesh Size Mode 1 Mode 2 Mode 3

8*4 4.19 4.310 3.217

8*8 3.622 4.28 3.907

16*8 2.60 3.1545 2.862

16*16 2.53 2.4255 2.479

16*32 2.40 1.9845 2.286
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3.5 Parallel File System: An Extension of Con-

current File System

Intel Paragon XP/S system uses an advanced version of the Concurrent File System,

called Parallel File System or PFS. The parallel �le system is built as an OSF/1

mountable �le system. The parallel �le system is completely compatible both with

CFS and OSF/1. PFS allows a global opening call which allows all the nodes to open

a same �le at the same time. In addition PFS provides an extra I/O mode called

mode 4, which is to be used when all the nodes access the same data. PFS also allows

variation in the stripe size of the data declustering. However there is very little

information regarding the experimental performance of PFS. A lot of experiments

need to be carried out for studying the e�ects of various parameters.

3.6 Conclusions

To summarize the results, we conclude that:

� The \declustering" of the �les improves the read and write performance of the

�le system for both single and multiple compute nodes.

� For single compute nodes, using the paged I/O mode, the read rate is higher

than the write rate. The �le access rates depend on the bu�er size used in �le

access. For the �le read, normally, as the bu�er size increases, the performance

improves to a certain point. The bu�er size which provides a reasonably good

performance for various con�gurations is 4 Kbytes which is same as the block

size and the stripe size. Currently, user has no control over the block size and

the stripe size. Further experiments are needed to study the e�ect of stripe
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sizes.

� Using the burst-mode I/O, the �le access rates improve signi�cantly. It is

observed that in general the bu�er size for burst I/O access should be as large

as possible for the best performance.

� For the single compute node case, the position of the node in the Touchstone

Delta mesh does not a�ect the �le access time. This shows that the \inter-node"

hops between the compute nodes are very small. This shows that there is no

possible overhead in using the communication network for the I/O transactions.

� For the multiple nodes case, the data accessed depends on the modes of �le

access. Mode 0 should be used for reading the shared data, whereas modes 1

to 3 should be used for data distributions. The access throughput depends on

the number of processors and it also depends on the total number of disks on

which the data is stored. The performance increases initially as the number of

processors increase then it remains steady. In general, for small processor grids,

the bandwidth is limited on the computational node size, but as the number of

processors is increased, it shifts to the I/O system. the point at which this shift

occurs depends on the number of processors as well as on the number of disks.

� For the multinode con�guration, the performance can be further improved by

using the burst mode of operation. Using a large bu�er size (2 MBytes) for

mode 0, the peak performance of 23.83 MBytes/sec is observed. For the same

mode, the peak write rate is about 7 MBytes/sec. For the remaining three �le

access mode, burst mode gives a better performance than the paged I/O mode.

� The choice between various modes (except mode 0) depends on the type of

access pattern and data organization. Mode 2 should be used only when the
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size of data access can vary and cannot be determined in advance. Mode 3

should be used if access size is known in advance. Mode 1 should be the choice

when order of access is not important because mode 1 does not improve global

synchronization.



Chapter 4

Cost Analysis of Data Mappings

Chapter 3 presented experimental performance of Touchstone Delta Concurrent File

System. In this chapter we analyze the I/O behavior of a similar system which is

connected with a parallel �le system. Section 1 presents a simple I/O model and

discusses the e�ect of I/O on the overall program performance. Section 2 analyzes

the Intel Touchstone Delta CFS, when the processors access the �les according to the

data distribution on the disks. In this section we calculate the costs associated with

I/O and disk requests and compute the overall I/O costs for various data distribution

strategies. Section 2 also presents performance results of data distribution. Finally

in section 3, we propose an alternative approach for optimal data distribution.

4.1 An I/O Model

A lot of work has gone into formulating the computational costs of the parallel ma-

chines [Amd67, Gus88, NA91]. In this section we will propose a simple model to

explain the I/O characteristics of a parallel machine which lead to the I/O Bottleneck

[Kun86].

50
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4.1.1 Background

Let us consider a computing element C. C has three main components, a processing

element, a local memory and an I/O port (�gure 12). Let us imagine a hypothetical

parallel machine composed of such computing elements. For our simple analysis, we

will not consider the interconnection pattern of the parallel machine. Let Ts be the

time required for executing a sequential program using the best serial algorithm and

Tp be the time required to execute the same program in parallel on N computing

elements using the best parallel algorithm. Initially assume that the program does

not require any I/O. Then the speedup S will be given by

S =
Ts

Tp

(1)

Let IOs be the total I/O time required for the sequential program. Similarly,

IOp be the I/O time required for the parallel program. Considering the IO costs, So

becomes the overall speedup of the parallel program.
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So =
Ts + IOs

Tp + IOp

(2)

If IOP does not match the corresponding computational time Tp, the resultant

speedup So will be less than S. In other words, the I/O cost will prevent a parallel

program to achieve a theoretical speedup. This is called the I/O bottleneck [Kun86].

4.1.2 An I/O Model for a Multiprocessor

In this section we will analyze I/O characteristics of multiprocessors like Intel Touch-

stone Delta or Paragon.

For the analysis, let us consider a mesh connected multiprocessorM (�gure 13). M

consists of Np processing elements (like C) connected to a parallel �le system having

ND disks. For simplicity, we will assume an ideal interconnection network (negligible
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contention) between the disks and the processing elements. Each processing element

can perform independent I/O with the disks. The cost of the data access depends

on the number of disks and the number of processing elements. Assuming a uniform

data distribution on the disks, we can de�ne the overall speedup as a two element

tuple S < Np; ND >.

S < Np; ND >=
Ts + IOs

Tp + IOp

(3)

S < Np; ND > de�nes the speedup of a parallel program running in parallel on

Np processors and accessing the data in parallel from ND disks.

For characterizing the parallel I/O, we formally de�ne the following parameters:

De�nition 1 Computational Bandwidth B
P
comp is the total number of computational

operations executed by Np processors in a unit time.

De�nition 2 IO Bandwidth B
D
io gives the total amount of data accessed in parallel

from ND disks in a unit time.

Consider a parallel program running on the Np nodes of the mesh. The program

accesses data from the �le system having ND disks. Let Tp be the time required to

complete the program execution. Hence Tp can be written as

Tp = Tc + Tio + Tmisc (4)

where Tc is the time required for computation on the mesh processors. Tmisc

denotes the miscellaneous time that includes the network interference and communi-

cation overhead. Tio denotes the time required for performing I/O.

Let us consider Tio. The I/O time is composed of three main factors, I/O request

time, disk request time and data access time. The I/O request time depends on
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the number of IO requests sent by the computational processors to the �le system,

whereas, the disk request time depends on the number of disks requests sent by the

�le system interface to the disks and on the size of each data request. The data

access time is nearly constant and depends largely on the hardware speci�cations of

the disks.

The number of IO requests depend on both the amount of distributed data and

the type of data mapping. Both the factors are in
uenced by �le access strategies.

The data storage policies decide the mapping of the data on the disks, which in turn

decides the disk request time.

For simplicity we neglect Tmisc. We can then assume that,

B

D
io =

1

Tio

(5)

B
P
comp =

1

Tc

(6)

The computational bandwidth or BP
comp gives the peak rate of generation of data

for performing the I/O (read/write). The I/O bandwidth BD
io is the actual rate of data

transfer between the disks and the processors. Hence, even if the data is generated

at a higher rate, the data is not transferred to(from) the �le system at the same

rate. If the program requires accessesing distinct data from disks at every step of the

computation, the total execution time will obviously depend on how fast the data is

transferred between the disks and the processors.

De�nition 1 The program is said to be stable i� for all program sizes the I/O band-

width matches the computational bandwidth.

Program size includes the size of the data set used in the program, number of

processors and number of disks.
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B

P
comp � B

D
io (7)

However the term for all program sizes brings forward another important issue,

i.e., scalability of the program with respect to the I/O system and how does the

scalability a�ects the I/O bottleneck. For analyzing the scalability,we de�ne a term

IO Speedup (Sio < Np; ND >).

Let T
0

io be the I/O time required to read a particular amount of data when Np is

p
0 and ND is d0 and T

00

io be the time required to access the same amount of data when

Np is p
00 and ND is d00.

De�nition 3 IO Speedup Sio < Np; Nd > is the ratio of the IO costs for two distinct

sets of processor-disk con�gurations.

Sio =
T

0

io

T

00

io

(8)

For analysis purposes, we de�ne two conditional parameters �p(d) and �d(p). We

use following de�nitions

1. T
p0

io : Tio with p' processors and d disks.

2. T
p00

io : Tio with p" processors and d disks (p'< p").

3. T d0

io : Tio with d' disks and p processors.

4. T d0

io : Tio with d" disks and p processors (d' < d").

�d(p) =
T

p0

io

T

p00

io

(9)
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�p(d) =
T
d0

io

T
d00

io

(10)

In other words, �d(p) is the I/O speedup (Sio) for a �xed number of disks and

variable number of processors p' and p". Correspondingly �p(d) is the I/O speedup

(Sio) for a �xed number of processors and variable number of disks d' and d".

Now we present the following propositions,

De�nition 2 The I/O system is called processor bound i� �p(d) � 1 and 0 < �d(p) <

1.

De�nition 3 The I/O system is called disk bound i� �d(p) � 1 and 0 < �p(d) < 1.

De�nition 4 To maintain the stability of the program for all program sizes, the I/O

system should be neither processor bound nor I/O bound.

Hence, for a program to be truly stable for program sizes, the computational band-

width should match I/O bandwidth and the I/O bandwidth should remain consistent

for varying number of processors or disks.

However, the experimental results on the Intel Touchstone Delta have shown that

the BD
io varies when either the processor grid size or the number of disks are varied

and B
D
io is always less than the BP

comp.

B

P
comp > B

D
io (11)

The resultant bandwidth Bp (=
1

Tp
) is always decided by the I/O system having

the smaller bandwidth B
D
io . Thus, the resulting bandwidth Bp decreases, thereby

increasing the total program execution time Tp. As a result, the speedup of the

parallel program So decreases (section 4.1.1).
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Bp = min(BP
comp; B

D
io) (12)

Thus, to improve the resultant bandwidth of the program, BD
io has to be increased.

This can be done by reducing both the I/O requests and the disk requests.

4.2 Analysis of the I/O costs

In large-scale scienti�c and engineering applications, parallelism is exploited by de-

composing the input domain (representing the physical domain model, normally rep-

resented by multi-dimensional arrays). However, for load-balancing, expressing local-

ity of access, reducing communications and other optimizations, several decomposi-

tions and data alignment strategies can be used

In order to enable a user to specify the decomposition, Fortran D [FHK+90, Fox90,

Tse93, Fox91], and subsequently High-Performance Fortran [For93], have been pro-

posed. The important feature of these extensions is the set of directives that allow

a user to decompose, distribute and align arrays in the most appropriate fashion

for the underlying computation. The data distribution directives include BLOCK,

CYCLIC and BLOCK CYCLIC distributions (along any dimension of an array). In

this section, we study the performance of the Intel Touchstone Delta CFS when the

processors access �les based on the data distributions. We will concentrate on ac-

cessing thet fortran arrays assuming that the arrays are stored in the column-major

form on the disks. We will analyze the corresponding bandwidths for each type of

data distributions and compute the number of I/O requests and the number of disks

requests for each type of distribution.
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Table 8: Number of I/O Requests as a Function of Data Distributions

1-D Distribution 2-D Distribution

Distr. No. Of Data per Distr. No. Of Data per

Type Req. Req. Type Req. Req.

Column Block P N2

P
Block-Block N �

p
P

Np
P

Column Cyclic N N Block-Cyclic N �
p
P

Np
P

Row Block N*P N
P

Cyclic-Block N2 1

Row-Cyclic N2 1 Cyclic-Cyclic N2 1

4.2.1 Analysis of Array Decompositions

This section presents the cost analysis of data access (read/write) on Touchstone

Delta in terms of I/O and disk requests.

Consider a parallel program running on a mesh having Np processors. Let a m

dimensional array to be distributed over the mesh. The array can be distributed in

BLOCK, CYCLIC and BLOCK CYCLIC form. This is the program mapping of the

array. To obtain the program mapping, the processors send I/O requests to the disks

on which the array is stored. Table 8 shows the number of I/O requests and the data

per requests when an array of size N*N is distributed over P processors.

For a m dimensional array A, let S1; S2; ::Sm be the sizes in each dimension. The

mapping function <m1 maps the m dimensional array into a one dimensional array

of size
Qi=m

i=1 Si. This is the physical mapping of the multidimensional array on the

disks. Hence any array having a certain program mapping Mp has a corresponding

disk mapping Md de�ned by the mapping function <m
1
.

Let 	 be the interface function that acts as an interface between the program

mapping and the disk mapping. Depending on the disk mapping, the interface func-

tion translates the number of I/O requests into the corresponding number of disk

requests (�gure 14). On Touchstone Delta CFS, the I/O function 	 is implemented
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Mp

PROCESSING  ELEMENTS

DISKS

M
d

INTERFACE   FUNCTION

FILE

Figure 14: Data Mapping between the Processors and the Disks

as DiskProc and NameProc (section 3.2.2) on the nameserver node.

Mp
	
 !Md (13)

Let us analyze the mapping from program domain to physical domain in a greater

detail.

In the program mapping Mp, the array is visualized as a �le distributed over the

processing elements. Let F be the total �le size of the data to be read (written) by

the processors and Fp be the total amount of data to be read per processor.

Fp =
F

Np

(14)

Depending on the program, each processor might access di�erent data. Let Fp0 be
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the amount of data actually read by each processor. Fp0 6= Fp. Hence

Fp0 = 
 � Fp (15)

where 
 is a �le distribution constant. 
 varies from processor to processor.

0 < 
 � 1. When 
 = 1, then Fp0 = Fp.

Let bio be the bu�er size used in the program. The bu�er size bio and Fp0 decide

the total number of I/O requests Nio.

Fp0 = Nio � bio (16)

In physical mapping Md, the �le system visualizes the array as a �le distributed

over a number of disks. Let ND be the total number of disks on which �le is dis-

tributed. Let us assume that it is possible to control the number of the disks from

the program. Then let � be the volume control factor. If the disk volume is restricted

then the total number of disks will be Nd, where

Nd = �ND (17)

0 < � � 1 (18)

In case of Delta, ND is 64 and Nd can vary from 1 to 64. The number of disks

requests sent from the I/O nodes depends on the number of disks on which the �le

is stored. Let BD be the size of a data block. In Touchstone Delta CFS, BD is equal

to 4KBytes. Hence for a �le of size F ,

F = ND �BD �Nb (19)
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Nb are the total number of data blocks into which the �le is declustered. Initially

the nameserver �nds the number of disks that contain the �le data. Let the number

of disks be Nd0. Thus the number of disk requests will be Nd0. Each disk request

prefetches Nc blocks of size BD. In Touchstone Delta, �le read prefetches 8 blocks.

Hence the total data prefetched is

Fcache = Nd0 �Nc �BD (20)

Hence, the total number of disk requests per processor is

Rdisks = d
Fp0

Fcache

e �Nd0 (21)

Therefore, the total time required to read the data from the disks is given by

Tio = Rio � tio +Rdisks � tdisks + Tmisc (22)

where tio is the time required for each I/O request, tdisks is the time required for

each disk request. Tmisc includes all other overheads such as mode synchronization,

interconnection network delay and the user interference. The corresponding I/O

bandwidth B
D
io is

B

D
io =

1

Tio

(23)

4.2.2 Analysis of Common Data Distributions

We will now analyze the I/O costs of some commonly used data distributions. Fol-

lowing data distributions are analyzed in this section

1. Column Block
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2. Column Cyclic

3. Row Block

4. Row Cyclic

In the following analysis, we consider a two dimensional square array A(Size,Size),

where Size is the size of the array per dimension. In addition we will use the following

parameters

1. tdisk. The time required for an individual disk request.

2. tio. The time required for individual I/O request.

1. Column Block: In this distribution, the second dimension of the array is

distributed in the block fashion. Since the array is stored column-wise

on the disks, each processor needs to read the columns allocated to that

processor. This can be done easily in one I/O request (per processor) using

the required bu�er size. The required bu�er size will be Size�Size
Np

.

There will be one I/O request per processor. Here, each processor reads

the entire data in one request. Hence, bu�er size Bio is equal to the �le

size Fp0. Thus the total disk requests will be

d
Fp0

Fcache

e �Nd0 (24)

The number of disk accesses thus depend on the amount of cache data

prefetched which in turn depends on the number of disk volumes that are

used. Here Rio will be 1 and Rdisks will depend on the number of disks.

As the number of disks used is decreased, Tdisk increases. Tmisc depends

on the mode used. For mode 2, Tmisc will be larger. The total time for

accessing the data in column block form is
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T

cb
io = tio +Rdisks � tdisks + Tmisc (25)

The corresponding bandwidth is

B

cb
io =

1

T
cb
io

(26)

2. Column Cyclic: In this distribution, the columns of the array are cyclically

distributed. First processor getting the �rst column, second processor

the next and so on. Hence each I/O request reads each column in one

bu�er. Considering a square matrix, the number of I/O requests Rio (per

processor) will be Size

NP

, where Size is the number of columns. rows. The

bu�er size Bio will be equal to Size. The number of disk accesses will be

variable as in the previous case. In this case, Tio will be much larger than

in the �rst case. In general, time required for column cyclic distribution

will be greater than that of column block, resulting in a lower bandwidth

B
cc
io .

The total time T cc
io is

T
cc
io = Rio � tio +Rdisks � tdisks + Tmisc (27)

The corresponding bandwidth is

B
cc
io =

1

T
cc
io

(28)

3. Row Block: In this type of distribution, the rows are distributed as a

block across the processors. Since the array is stored column-wise on the

disks, row block distribution involves the distribution of each column on
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the target processors. Thus the bu�er size Bio will become Size

Np

. The

number of I/O requests Rio(per processor) will be equal to the number of

columns (which is equal to Size). Hence Tio will be larger in this case as

compared to the column distributions. The number of disk accesses are

independent of the distribution because they will depend on the number

of disks used and the number of data prefetched. Since the number of I/O

requests increase, the bandwidth B
rb
io decreases.

T
rb
io = Size� tio +Rdisks � tdisks + Tmisc (29)

B
rb
io =

1

T
rb
io

(30)

4. Row Cyclic: In the row cyclic distribution, all the rows of the array are

distributed over the processors. Thus �rst processor gets �rst row, sec-

ond processor second row and so on. This operation becomes very time-

consuming in this case, because the arrays are physically mapped column-

wise.Hence each processor reads only one array data in each I/O request.

The number of I/O requests (per processor) will be much larger and they

will be Size�Size
Np

. Hence this distribution will require the largest number

of I/O requests. This results in the array distribution becoming very slow

(corresponding Brc
io will be the lowest).

Among all the distributions, the column-block distribution is the fastest

and the row-block distribution is the slowest.

B
rc
io < B

rb
io < B

cc
io < B

cb
io (31)
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Hence the program accessing the data in the row cyclic form will have the

lowest resultant bandwidth (Bp).

4.2.3 Experimental Results

This section presents the experimental results of array distributions on Touchstone

Delta. The experiments distribute a square array in di�erent patterns. CFS �le

modes 2 and 3 are used to distribute the array concurrently over the processors.

� Column Block: The column-block distribution implies that the matrix data is

distributed along its second dimension onto the processor array. This distribu-

tion also conforms with the column-major data distribution over the disk. It

requires a single application level I/O request per processor and each processor

node can read the entire distributed data in one I/O access. The time required

to distribute the data column-wise scales with the number of processors for a

portion of the con�guration space.

Table 9 contains the data for a column-block array distribution. The table shows

the size of the array, the number of processors participating in the read, the

transaction completion time, and the observed bandwidth. For small size arrays

and the number of nodes, the bandwidth of the I/O system is underutilized. As

the data size and the number of processors increase, the I/O bandwidth is more

e�ectively utilized. However, beyond a certain point, the I/O system becomes a

bottleneck due to the large number of processors performing I/O, and the need

for synchronization.

The read rate increases quickly in proportion to the processor grid size, but

plateaued at about 64 processors. Degradation in the performance was observed
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Table 9: Array Distribution (Column Block) Throughput in MBytes/sec (ND = 64)

Array Size Mesh Size Rate (Mode 2) Rate (Mode 3)

1K*1K 4 2.141 2.32

4K*4K 4 4.198 7.048

5K*5K 16 5.098 7.44

4K*4K 64 5.179 6.498

5K*5K 64 6.476 7.521

10K*10K 256 7.038 7.65

20K*20K 256 5.7 5.861

10K*10K 512 5.232 5.51

20K*20K 512 5.517 5.63

after 256 processors due to a large synchronization overhead. Performance for

the small request (1K*1K) case was poor.

� Column Cyclic: Table 10 shows the read access times for the same parameters

but with a column-cyclic data distribution on processors. Even though the

degree of parallelism in the data access remains the same, the number of I/O

requests increases (Table 8) because each processor must make an individual

request for each column. This degrades the access time and the bandwidth as

illustrated in Table 10. The degradation in the performance in consistent for

all con�gurations and it ranges between a factor of 2 to 10 as compared to that

for column-block distribution

� Row Block: Table 10 shows the performance for reading the data array when

distributed in a row-block fashion over the processor array. Since the one-

dimensional map of the �le on the CFS is in column major order, this read

operation essentially requires transposing the data while it is being read from

disks to nodes. As shown in Table 8, the number of logical request is N*P.
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Table 10: Array Distribution (Column Cyclic) Throughput in Kbytes/sec (ND = 64)

Array Size Mesh Size Rate (Mode 2) Rate (Mode 3)

1K*1K 4 160.84 229.72

2K*2K 16 1061.85 1527.3

4K*4K 16 1791.31 3057.51

5K*5K 64 1962.16 2191.63

10K*10K 256 846.92 856.43

20K*20K 512 1522.04 1581.15

Table 11: Array Distribution (Row Block) For Modes 2 and 3 (ND = 64)

Array Size Mesh Size Mode Rates Kbytes/sec

1K*1K 4 2 56.23

2K*2K 4 2 123.84

4K*4K 16 2 114.09

5K*5K 16 2 142.34

1K*1K 4 3 58.64

2K*2K 4 3 154.04

4K*4K 16 3 224.70

5K*5K 16 3 273.11
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Hence, as observed from Table 10, the performance degradation due to this

distribution is almost two orders of magnitude when compared to the perfor-

mance of the column-block distribution. We do not present performance �gures

for larger con�gurations (i.e. large array and system sizes) since the time it

took to complete these experiments exceeded practical limits. Thus, we merely

conclude that performance for this distribution was at least more than two or-

ders of magnitude worse than the �rst two con�gurations. The peak bandwidth

obtained was 0.69 Mbytes/sec. This is only 30% of the slowest case (the 1*1

Kbytes case) for the column-block decomposition of Table 9 above. Further,

the 1K*1K case for this distribution is 39 times slower than for the equivalent

column-block case.

� Row Cyclic: The row-cyclic distribution involved the largest number of I/O

requests. Also the request size was the smallest. It took approximately 15

minutes to distribute 1K*1K character array in row-cyclic order versus the 467

msec it would require in the column-block form. This shows that the direct row

distribution of an array is very slow, hence, not possible in practice.

4.3 Two Stage Data Mapping

Section 4.2.1 analysed the costs connected with accessing the array data directly

from the disks. Though this direct access mode is easy to use it has two serious

disadvantages.

1. Cost of Data Distribution

The direct access mapping strongly couples the user mapping of the arrays

with the disk mapping on the parallel �le system. As a result, the data
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distribution results show a large variation in performance. The cost of

obtaining a user mapping (say column-cyclic) of an array depends on how

it conforms with the disk mapping of the same array on the parallel �le

system. For example, in Touchstone Delta, distributing a Fortran array in

column-block form is the fastest, whereas distributing the same array in

the row-cyclic form is extremely costly.

2. Inability to Obtain Complex Two-dimensional Data Distributions.

Consider a program that needs to access a two dimensional array in Block-

Block decomposition. Suppose the program is running on Touchstone

Delta in which the data is stored on the disks in the column major form

(�gure 15). The current version of the Touchstone Delta CFS will not

allow this distribution since it does not allow any processor to read the

distinct data while the others are sitting idle. The I/O mode 0 permits

independent �le pointers (section 3.2.3), however each processor needs

to read the entire data. Hence it is not possible to obtain complex 2-

dimensional array distributions (Block-Block, Block-Cyclic).

Both these problems can be solved using a two-phase data distribution strategy.

It involves two phases: (1) Optimal I/O access (2) Redistribution of the data.

1. Optimal I/O access

Optimal I/O access involves accessing the data from the disks in the most

optimal way. The optimal form of the data access conforms with data

distribution of the disks. Hence the optimal access pattern varies depend-

ing on the data mapping on the disks. In Touchstone Delta, where the

arrays are assumed to be stored in the column-major form, the optimal

data access strategy is the column-block access.
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Figure 15: Block-Block Decomposition over 16 Processors
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2. Redistribution of the Data

The second stage of the two-phase data access involves the redistribution

of the accessed data (accessed from the disks) into the target distribution.

The redistribution cost is negligible as compared to the I/O cost. The

generalized algorithm for redistribution is given below

{ Redistribution Algorithm

(a) Acess the data from the disks in the most optimal form.

(b) Get information about the target distribution.

(c) For each processor calculate the data that needs to be commu-

nicated.

(d) Calculate the corresponding source and destination.

(e) Communicate the data over the required number of processors.

The redistribution algorithm uses the Pairwise Exchange or (PEX) algo-

rithm [Rav92b, Rav92a], [Zek92a] for data communication. The PEX

algorithm requires N-1 steps for N processor system. At each step i,

1 � i � N � 1, each processor exchanges a message with another pro-

cessor determined by taking the exclusive-or of the processor number with

i. Hence the entire communication schedule is decomposed into a sequence

of pair-wise exchanges. The Pairwise Exchange algorithm is given in �gure

16.

By using an optimal access strategy for I/O and then redistributing the data

according to the target data mapping, the two phase access strategy e�ectively de-

couples the user mapping from the disk mapping. Note that if the target data dis-

tribution is same as the conforming data distribution (for example, for Touchstone

Delta column-block), redistribution is not required.
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do j =1, nprocs-1

node = xor(mynumber,j)
if (mynumber < node)

receive(node)
send(node)

else

send(node)
receive(node)

end if
enddo

Figure 16: Pairwise Exchange Algorithm



Chapter 5

Runtime I/O Support For Parallel

Languages

In recent years, parallel computers have become very popular in the scienti�c com-

munity. One of the main reasons for their success, is the availability of e�cient and

simple parallel languages.

MIMD languages like Fortran D [Fox90, Fox91, FHK+90, Tse93], Vienna Fortran

[CMZ92, BGMZ92a, ZBC+92, BCZ92, BGMZ92b] and Fortran90D/HPF [Zek92c,

Zek92b, For93] which use data decompositions to achieve concurrency. Data de-

composition often requires the data to be accessed (read/written) from the disks in a

distributed manner. In recent past, various attempts were made to develop languages

that would support the data distributions from the I/O perspective. We present some

prominent MIMD languages which have such capabilities in section 1.

Data decomposition over the processors is often complex and I/O intensive [Jua92c,

Raj93], (section 4.2.3). In section 2, we propose an alternative approach of performing

parallel I/O from the language platform. We describe the design and implementa-

tion of runtime I/O primitives employing two-phase strategy. In the same section,

73
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we present performance results of distributioning data using the runtime primitives.

Finally we summarize in section 3.

5.1 Languages Supporting Data Distribution

We discuss parallel programs using the Single Program Multiple Data (SPMD) pro-

gramming paradigm for MIMD machines. This is the most widely used model for

large-scale scienti�c and engineering applications. In such applications, parallelism is

exploited by a decomposition of the data domain. To achieve load-balance, express

locality of access, reduce communication, and other optimizations, several decompo-

sitions and data alignment strategies are often used (e.g., block, cyclic, along rows,

columns, etc.). To enable such decompositions to be expressed in a parallel program,

several parallel programming languages or language extensions have emerged. These

languages provide intrinsics that permit the expression of mappings from the prob-

lem domain to the processing domain. These directives are important because they

allow a user to decompose, distribute and align arrays in the most appropriate fash-

ion for the underlying computation. An example of parallel languages which support

data distribution includes Vienna Fortran [BCZ92], Fortran D [FHK+90] and High

Performance Fortran or (HPF) [For93].

In order to address the I/O bottleneck problem, these languages propose to provide

some support for parallel I/O operations. We will review the Vienna Fortran and

High Performance Fortran proposals for concurrent I/O operations by presenting

some simple examples.
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PROCESSORS P(2,2)

integer A(64,64) DIST(BLOCK,BLOCK) TO P(2,2)

Figure 17: Array Mapping Using Vienna Fortran

5.1.1 Vienna Fortran

Vienna Fortran (VF) is a data-parallel language which supporting the SPMD model

of computation. Vienna Fortran provides explicit expressions for data mapping. Us-

ing these expressions, VF allows the user to con�gure the processor map and the

corresponding array distributions. Figure 17 shows an array A(64,64) distributed in

Block-Block form over 4 processors arranged in 2*2 mesh.

A detailed explanation of the Vienna Fortran can be found in [BCZ92, CMZ92].

For concurrent �le I/O, the language distinguishes between two types of �les: stan-

dard Fortran �les, and array �les for which access is only available via concurrent I/O

operations. For example, the array, A, above could be written into a �le, f, by using

the following statement

CWRITE(f, PROCESSORS='P(2,2)', DIST='(BLOCK,BLOCK) TO P') A

CREAD is used in the similar fashion. Other parallel I/O statements include

COPEN, CCLOSE, CSKIP etc.For further detail, the reader is referred to [BGMZ92b].

5.1.2 High Performance Fortran

High Performance Fortran or HPF was designed to provide language support for a

variety of machines including SIMD, MIMD, and vector machines. The HPF is syn-

tactically similar to Fortran D [FHK+90, Fox90, Fox91], however, HPF incorporates

many more features including new run-time library functions. HPF provides an excel-

lent toolset for data mapping. The mapping toolset includes compiler directives such



Figure 18: Data Distributions in Fortran 90D/ HPF

as ALIGN, REALIGN, DISTRIBUTE, REDISTRIBUTE, PROCESSOR etc. Figure

18 provides a simple illustration of some data distributions (for four processors) that

can be easily speci�ed in Fortran D, HPF or VF.

HPF has also proposed (but does not currently support) parallel I/O statements.

These statements include array mapping and �le pointer manipulation statements.

Unlike the Vienna Fortran proposal, HPF proposals include common support parallel

and sequential �les

In the HPF proposal, a FILMAP directive is used to specify a mapping for �les.

Then, ALIGN and DISTRIBUTE statements are used to map FILEMAPs onto nodes.

For example,

!HPF$ FILEMAP :: F1(2, 4, *)

!HPF$ DISTRIBUTE F1(*, BLOCK, CYCLIC(2)) ONTO D1

READs and WRITEs, or PREADs and PWRITEs are then used to access dis-

tributed �les. For further information, the reader is referred to [For93, Sni92].
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5.2 Runtime Primitives for Parallel I/O

A number of high level programming languages have recently introduced intrinsics

that support parallel I/O through a runtime library. By using these primitives, I/O

operation instructions within applications become portable across various parallel �le

systems. Further, the primitives are convenient to use; the instructions for carrying

out�gure parallel I/O operations don't involve much more than a declaration of the

data decomposition mapping and the use of open, close, read, and write routines

Yet, these language supported I/O primitives su�er from a serious drawback.

Because they use a direct access mechanism to perform the I/O, the user data distri-

bution mapping remains tightly linked to the �le mapping to disks. Thus, they are

susceptible to the same performance 
uctuations and limitations (e.g., unsupported

data distributions) that are observed of the parallel �le systems. Also since the de-

sign of the parallel �le system varies from vendor to vendor, these languages can not

e�ectively exploit various facilities provided in the underlying system.

Motivated by these facts we have implemented a runtime system for parallel I/O.

This system will provide the portability and convenience of language supported I/O

primitives. In addition, because it makes use of the two-phase access strategy (dis-

cussed in section 4.3) to carry out I/O, it e�ectively decouples user mappings from

the �le mappings of the parallel �le system, and provides consistently high perfor-

mance independent of the data decompositions used. Further, since these primitives

are linked at the compile-time as a runtime library, can be used with any MIMD

(node+message passing) program, or from a data parallel program such as one writ-

ten in HPF.

Advantages of Runtime I/O Primitives:
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1. The runtime system can be easily ported on various machines which pro-

vide parallel �le systems. This makes the runtime primitives highly portable

and easy to use.

2. By using these primitives, the more complex data distributions (Block-

Block or Block-Cyclic) are made available to the user. The only additional

information required are the global, local array information and the pro-

cessor grid information.

3. Primitives allow the user to control the data mapping over the disks. This

is a signi�cant advantage since the user can vary the number of disks to

optimize the data access time.

4. Under certain conditions, the primitives allow the programmer can change

the data distribution on the processors dynamically.

5. The data access time is signi�cantly improved and is made more consistent

since the primitives use two-phase access strategy.

5.2.1 Approach

Our I/O strategy involves a division of the parallel I/O task into two separate phases

according to the two-phase strategy (section 4.3). In the �rst phase, we perform the

parallel data access using a data distribution, stripe size, and set of reading nodes

(possibly a subset of the computational array) which conforms with the distribution

of data over the disks On Touchstone Delta, the column-block distribution is the

conformal mapping. Hence we access (read/write) the data from the disks using this

mapping. Subsequently, in phase two, we redistribute the data at run-time to match

the application's desired data distribution By employing the two-phase redistribution

strategy, the costs inherent in many of the I/O con�gurations are avoided. Selecting
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a single, "good" con�guration e�ectively reduces the bottleneck activity - I/O to the

parallel device. Further, the redistribution phase improves performance because it

can exploit the higher bandwidths made available by the higher degree of connectivity

present within the interconnection network of the computational array.

In the subsections that follows, we discuss the runtime I/O primitives. A brief

description of the purpose of each primitive is given followed by a discussion of its

functional 
ow. We provide a detailed description of the syntax of these primitives.

We explain the implementation of these primitives on Touchstone Delta by using

a simple program. We then present some performance results on the use of these

primitives with various data distributions.

5.2.2 General Description

The runtime primitives library provides a set of simple I/O routines. These include

popen, pclose, array map, proc map, pread and pwrite. Though the exact

syntax of these routines varies from C to Fortran, the basic data structures remain

the same. This section presents a brief overview of each primitives.

popen

The popen primitive concurrently opens a �le using a speci�ed number of processors

P
0 (P 0

2 P , where P is the number of processors on which the program is executing).

The choice of P 0 is important in the systems like Intel Paragon [Int92] which provide

I/O dedicated compute nodes.That is, often the number of processors involved in

generating I/O requests must be smaller than the number of processors requiring the

data to achieve better performance [Raj93].

The user passes �le information to the popen primitive which is then stored in a
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Table 12: The File Descriptor Array (FDA): Fortran Version

Unit Access Form Status No of disks No of processors

3 0 0 1 64 4

two dimensional array called File Descriptor Array(FDA) using the �le unit number

as a key. The �le information includes �le name, �le status, �le form, access pattern

and the number of disks on which the �le will be distributed. For a statement

call popen(3,'TEST','SEQUENTIAL,'UNFORMATTED','NEW',-1,-1)

number of processors is -1, the �le will be opened by default number of processors

(P).

pclose

The pclose primitive performs concurrent closing of the parallel �les. The pclose

primitive gets the unit number of the �le as an input. Using this as a key, the primitive

obtains the number of processors (P 0). Using the �le unit number, these processors

close the �le.

array map

This primitive is semantically similar to the compiler directives in HPF or VF (Figure

17). Only di�erence is that the directives provide global array information to the

compiler, whereas the using the proc map primitive, the user provides the same

information to the runtime library. A Fortran D or HPF compiler would directly

extract this information from the distribution directives.
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Table 13: The Array Description Table (ADT)

Info 1 2 3 4 5 6 7

Global Size 64 64 -1 -1 -1 -1 -1

Distribution Code 1 1 -1 -1 -1 -1 -1

Block Size -1 -1 -1 -1 -1 -1 -1

nprocs 2 2 -1 -1 -1 -1 -1

The array map primitive returns an integer called array descriptor which will

be used by pread and pwrite routines for acquiring the necessary array information.

A table called the Array Description Table or (ADT) is used to store the array

information. The user provides the global size of the array, the distribution type,

the processor distribution along each dimension and the block size (for CYCLIC

distributions).

For example, consider array A(64,64) distributed in BLOCK-BLOCK form over 4

processor arranged in 2*2 mesh. The corresponding Array Description Table is shown

in table 13. The value -1 is used to denote don't-care entries.

proc map

The proc map primitive is used for mapping the processors from the physical to the

logical domain. The proc map initializes the logical processor grid according to the

user speci�cations. The dimension of the logical processor grid can vary from 1 to 7.

The proc map routine allows two kinds of mappings, one is the system-de�ned map-

ping and the second is the user-de�ned mapping. The user has to pass the number

of processors in each dimension, the mapping mode and (or) processor mapping in-

formation. proc map initializes a global data structure called P INFO array, which

is used by pread and pwrite routines. P INFO array is a two-dimensional array
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Table 14: The P INFO Array for a Two-Dimensional Logical Grid

x-coord. 0 0 0 0

y-coord. 0 1 2 3

Proc.Number 0 1 2 3

of size N+1*P, where N is the dimension of the logical grid and P is the number

of processors. For P processors, �rst N rows store the indices in the corresponding

dimensions in the logical grid whereas the (N+1)th row provides the corresponding

physical number. For example, if 4 processors are arranged in column-major order in

a two-dimensional grid, the corresponding P INFO array structure is shown in table

14. Using the proc map primitive the programmer can change the logical processor

con�guration during the execution of the program.

pread

The pread primitive reads a distributed array from the corresponding �le. The pread

primitive reads the data from the �le using P
0 processors and distributes the data

over P processors (P 0
2 P ). The pread primitive uses the unit number as a key to

access the �le information from the FDA. The global array information is obtained

using the array descriptor. In general, the runtime system would use a distribution for

intermediate access which performs the best, given a speci�c �le distribution. Based

on our analysis, such a distribution is the one which requires the minimum number

of I/O transactions. However, more work needs to be done to determine a more

accurate model which can provide the best distribution to use for I/O access. For our

experiments, we use column-block distribution for I/O access because we assume that

the �les are stored in the column-major fashion on the disk arrays. The two-phase

access is used by pread to read the data from the �le using P
0 processors. Then
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1. Read the input parameters.

2. Get the global array information using ADT.
3. Obtain the logical mapping of the processors

(P ) participating in array distribution from proc map.

4. Use the unit number to acquire information

on the �le such as the number of disks, number of processors (P 0).
5. If the target data distribution is same as the conformal access distribution

also P 0 = P then read the data using the conforming distribution

and go to 10

6. If the two-phase data access is used, then read the data using

the conforming distribution. The reading is performed by P 0 processors
7. From the global array distribution, calculate the

data that needs to be communicated.
8. Compute the communication schedule for data redistribution.
9. Distribute the data over P processors to obtain the

target data distribution.
10. Stop

Figure 19: pread Algorithm

the data is redistributed over the P processors to obtain the target data distribution.

Figure 19 shows the pread algorithm.

pwrite

The pwrite primitive is used to write a distributed array using P 0 processors to the

�le that was opened (created) by popen. The pwrite uses the array descriptor to get

the array information, the unit number to get the �le information and proc map to

obtain the logical grid information. The runtime primitive will choose a distribution

for intermediate access which performs the best for a speci�c �le distribution. The

chosen distribution will require minimum number of I/O transactions. Since we as-

sume that the array is stored in the column-major form, for Touchstone Delta, the

column-block distribution is the conformal distribution. If the processor distribution
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1. Read the input parameters.

2. Get the global array information using ADT.
3. Obtain proc map to obtain the logical mapping of the processors

(P ) participating in array distribution.

4. Use the unit number to acquire information

on the �le such as number of disks, number of processors (P 0).
5. If the target data distribution is same as the conformal access distribution

and P 0 = P then write the data using the same access distribution

and go to 11.

6. If the two-phase data access is used, then redistribute

the data over P 0 processors using 7,8,9.
7. From the global array information, calculate the

data that needs to be communicated.
8. Compute the communication schedule for data distribution.
9. Distribute the data over P 0 processors in conforming access fashion.

10. Write the data on the disks using the conforming access distribution.
11. Stop.

Figure 20: pwrite Algorithm

and the conformal distribution don't match, data is �rst distributed from P to P 0 pro-

cessors. After the distribution, data is written by P 0 processors using the conforming

distribution. Figure 5.2.2 shows the pwrite algorithm.

5.2.3 Syntax of the Runtime Primitives

This section presents detailed description of the syntax of the runtime primitives

designed Fortran MIMD or data-parallel dialects. These primitives will be used as

subroutine calls in the source program.

popen

The prototype for the popen primitive is shown below.
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call popen(unit, �le, access, form, status, no of disks, no of processors)

where the arguments are de�ned as follows:

� unit : The unit number associated with the �le.

� �le : The path name of the �le to be opened.

� access : The type of the �le access desired, either DIRECT or SEQUENTIAL.

� form : The popen primitive currently only supports only UNFORMATTED

form of data.

� status : The creation status of the �le; this must be either NEW or OLD.

� no of disks : The number of disks on which the �le is (or is to be) stored. If the

�le is NEW, the �le will be written onto the speci�ed number of disks. If the

�le is OLD, the no of disks parameter will take as its value the number of disks

on which the OLD �le is stored. If the programmer provides a no of disks value

that is greater than the number of disks available in the system, the parameter

will take the total number of disks as its value. The programmer can also select

the default number of disks by specifying a -1 for the no of disks.

� no of processors : The number of processors actually reading or writing the data

to the �le. These processors represent a subset of the total number of processors

on which the program is being executed. The default value for this parameter is

just the total number of processors on which the program is running. Selection

of the default value is again signi�ed by specifying a -1 for the no of processors.

The no of processors primitive allows the user to allocate a certain number of

processors as dedicated I/O processors. This is useful in the machines like Intel

Paragon XP/S which has dedicated processors for I/O [Int92].
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Parameter selections are speci�ed with the following assignment codes :

access = 0 for SEQUENTIAL, access = 1 for DIRECT.

form = 0 for UNFORMATTED, form = 1 for FORMATTED.

status = 1 for NEW, status = 0 for OLD.

no of disks = -1 for default, no of disks = number of disks.

no of processors = -1 for default, no of processors = number of processors.

For example, the statement

call popen(3, `TEST', 'SEQUENTIAL', 'UNFORMATTED', 'NEW', -1, -1)

causes the primitive to open a new unformatted parallel �le called TEST which

will be accessed with a sequentially pattern. The �le will be opened by all the

processors which are running this program, and it will be stored over all the disks in

the �le system. This �le will be assigned the unit 3. Assuming the source program is

executing on 4 processors, the corresponding FDA is given in 12.

array map

The prototype of the array map primitive is shown below.

ad = array map(array name, size info, distr info, block size, proc info)

The primitive returns an integer called array descriptor.

The parameters are de�ned as follows:

� array name : The array name is the name of the array which is to be distributed

over the processors.

� size info : size info is a one-dimensional array which provides the global size of

the array in each dimension.

� distr info : A one-dimensional array giving information about the type of dis-

tribution to be used for each dimension. Hence the distr info array will be an
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array of size 7.

� proc info : An array which speci�es the number of processors in each dimension

of the distributed array. The size of the proc info array will be 7, one entry

specifying the number of processors in that dimension. The array provides only

the number of processors per dimension but does not provide any logical map

of the processors. The physical to logical mapping information is provided in

the proc map primitive.

� block size : This is only required for the BLOCK-CYCLIC distribution. It

speci�es the size of each block.

Consider the same array A of size (64,64) which is distributed in a BLOCK-

BLOCK fashion over 4 processors. Hence the array map statement would have the

entries:

size info = [64,64,-1,-1,-1,-1,-1]

distr info = [1,1,-1,-1,-1,-1,-1]

block size = [-1,-1,-1,-1,-1,-1,-1]

proc info = [2,2,-1,-1,-1,-1,-1]

proc map

proc map has the following syntax

call proc map(proc info,map mode,user map)

where the arguments are

� proc info: This is the same array that is passed in the array map primitive.

The proc info supplies the actual number of processors per the physical grid

dimension, which is same as the number of processors on which the program is

executing. This is the same array that is passed as a parameter to array map.
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� map mode The map mode provides the actual mapping mode. The user can

choose the system de�ned mapping or user de�ned mapping. If map mode is

-1, then user decides the processor mapping. If the mam mode is 0,1 or 2 the

system mapping will be selected. The system-de�ned mappings will vary from

machine to machine.

� user map If the user chooses to provide the mapping information by himself (

map mode = -1), the user provides the user map array. Using the user map

array, corresponding entries in the P INFO array are �lled.

pread

pread has the following syntax

call pread (array name, size1, size2, array descriptor, unit, io bu�er, io size)

where the arguments are

� array name : Name of the array into which the read data is to be placed.

� array descriptor : Pointer into the ADT which is returned by the array map

call, and which corresponds to the distribution that the user wishes to have the

runtime system apply during the read.

� size1,size2 : This parameters provide the size of the array which is passed to

the pread and pwrite primitive.

� unit : The unit number associated with the �le to be read. Must have been

returned by a popen call.

� io bu�er : This parameter speci�es the local bu�er used for storing the data.
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� io size : Speci�es the size of the local io bu�er that is to be allocated for the

I/O transaction.

For example, the following statement reads the data from the �le associated with

unit 3, into the array A having the descriptor ad. The size of the io bu�er TEMP is

given by io size call.

call pread(A,64,16,ad,3,TEMP,1024)

pwrite

The pwrite primitive is similar to that of pread. It has the following syntax

call pwrite (array name, size1, size2, array descriptor, unit, io bu�er, io size)

5.2.4 A Sample Program

This section provides a sample Touchstone Delta Fortran program using the I/O

primitives (Figure 21). The programmer wants to read and write an array in the

column-cyclic fashion. The two dimensional array A(64,64) is distributed over 4

processors. Thus the size of the local array is A(64,16). The ADT and the FDA are

initiated as the arrays A INFO and F INFO respectively. The �le TEST is opened by

4 processors using the popen primitive. The �le TEST will be distributed over the

default number of disks (number of disks = -1) The programmer then initializes the

processor grid using the proc map primitive. The user passes 0 as the map-mode,

thus initiating the system mapping. In this case, the user supplied map (using the

mymap array) will be ignored. The array map primitive will be used to obtain the

global array information. The array map returns the array-descriptor \ad" which is

used in the pread and pwrite primitives. The pread primitive will read the array A

from the �le associated with the unit 3 using the conformal access distribution. (e.g.



CHAPTER 5. RUNTIME I/O SUPPORT FOR PARALLEL LANGUAGES 90

for Touchstone Delta column-block distribution). Since the resultant distribution is

column-cyclic, the data will be redistributed over 4 processors to obtain the resultant

column-cyclic distribution. Note the convenience o�ered to the programmer by the

primitive because the user no longer needs to worry about pointer manipulations, �le

distribution, bu�ering etc. After computation, the array A will be written into the �le

associated with the unit 3 using pwrite. pread and pwrite primitives will use the

TEMP bu�er for performing the burst-mode I/O. Also the I/O transactions will be

carried out using the �le access mode 3. Since the processor distribution is not same

as the conformal distribution, pwrite will redistribute the data from column-cyclic

to corresponding conformal distribution (column-block) and then write the array to

the �le using the column-block distribution (conformal distribution for Touchstone

Delta).

5.2.5 Experimental Results

In this section we present performance results for the runtime primitives when used

in conjunction with a variety of data distributions. The tables below contain optimal

access, Redistribute, Total access, and Direct Access times for the four 1-dimensional

distributions considered in this paper. The pread primitive was used to read a 5K*5K

and 10K*10K square array.

For a given array size, the optimal access time represents the minimum of the read

times of the four distributions; the optimal access time is derived from the distribution

that most closely conforms to the disk storage distribution for the given �le. The

Redistribution time is the time it takes to redistribute data from the conforming

distribution to the one desired by the application. The total access time is the sum

of the optimal access and Redistribution times; it denotes the time it takes for the

data to be read using the optimal Read access and then be redistributed (two-phase
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PROGRAM EXAMPLE

integer size info(7),distr info(7),block size(7),proc info(7)
integer A(64,16),ad,array map,mybu�er,TEMP(1024),mymap(1536)

COMMON /INFO/ F INFO,P INFO,A INFO

size info(1)=64 ! Global Size in �rst dimension
size info(2)=64 ! Global Size in second dimension
distr info(1)=0
distr info(2)=2 ! Column Cyclic Distribution
block size(1)=-1 ! Block-size not required

block size(2)=-1
proc info(1)=1
proc info(2)=4 !Four processors along the column

call proc map(proc info,0,mymap)
call popen(3,'TEST',0,0,0,-1,-1) !Old File

ad = array map('A',size info,distr info,block size,proc info)
iosize=1024

call pread(A,64,16,ad,3,TEMP,iosize)
C Use a temporory bu�er called TEMP of size iosize.

Computation Starts here

..................

..................

call pwrite(A,64,16,ad,3,TEMP,iobu�er)
call pclose(3)

STOP

END

Figure 21: A Sample Program For Performing Parallel I/O
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Table 15: Performance of pread for 16 Processors (5K*5K Array)

Distr. Mode Optimal Access Redistr. Total Access Direct Access Speedup

Time Time Time Time

(a) (b) (c)=(a)+(b) (d) (d)/(c)

Column Block 3357 - 3357 3357 1

Column Cyclic 3357 1805 5162 9890 1.92

Row Block 3357 673 4030 69939 17.36

Row Cyclic 3357 2603 5960 * > 604:03

Table 16: Performance of pread for 16 Processors (10K*10K Array)

Distr. Mode Optimal Access Redistr. Total access Direct Access Speedup

Time Time Time Time

(a) (b) (c)=(a)+(b) (d) (d)/(c)

Column Block 10376 - 10376 10376 1

Column Cyclic 10376 7105 17481 19271 1.10

Row Block 10376 2772 13148 84683 6.44

Row Cyclic 10376 10320 20696 * > 173:95

access). The Direct access time is the time it takes to read the data with the selected

distribution using direct access. The last row of each table shows the speedup obtained

from using the two-phase access strategy over the direct access strategy. Note that

the Block-Block distribution is not supported by CFS, hence tables 19 and 20 do

not present any performance numbers for direct access.

Tables 15 and 16 show access times for 5Kx5K and 10Kx10K arrays, read and

distributed over 16 processors respectively. The Optimal access time occurs for the

Column-Block distribution. For all cases below, the `*' symbol denotes an access

(read) time on the order of hours. The following observations are made by comparing

the direct access times with run-time data redistributions. For all cases, the perfor-

mance improvement range from a factor of 2 up to several orders of magnitude. For
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Table 17: Performance of pread for 64 Processors (5K*5K Array)

Distr. Mode Optimal Access Redistr. Total Access Direct Access Speedup

Time Time Time Time

5K 5K 5K 5K 5K

(a) (b) (c)=(a)+(b) (d) (d)/(c)

Column Block 3324 - 3324 3357 1

Column Cyclic 3324 703 4027 11407 2.83

Row Block 3324 246 3570 38018 10.65

Row Cyclic 3324 768 4092 * > 879:77

Table 18: Performance of pread for 64 Processors (10K*10K Array)

Distr. Mode Optimal Access Redistr. Total Access Direct Access Speedup

Time Time Time Time

(a) (b) (c)=(a)+(b) (d) (d)/(c)

Column Block 11395 - 11395 11395 1

Column Cyclic 11395 2478 13873 63400 4.57

Row Block 11395 1028 11623 78767 6.78

Row Cyclic 11395 3092 14487 * > 248:50
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Table 19: Block-Block Distribution over 16 Processors using pread (time in msec)

Size Optimal Access Time Redistr. Time Total Access Time

1K*1K 467 112 579

2K*2K 717 416 1133

4K*4K 2328 1253 3181

example, in table 15 the amount of overhead avoided by using the redistribution

strategy (i.e., the di�erence between the Total Access Time and Direct Access Time)

ranges from 1.7 secs, to well over 60 minutes for the 5K Row-Cyclic case. More im-

portantly, the deviation in Total Access time is at most a factor of 1.9 as opposed to

the widely varying results produced by the direct access approach.

Tables 17 and 18 shows access times for 5Kx5K and 10Kx10K arrays, read and

distributed over 64 processors. The reduction in cost ranged from 7.4 secs, to over

60 minutes for the 5Kx5K Row-Cyclic case. Note that the variation in Total Access

time is again very small (at most a factor of 1.27). However, for all the four types of

distribution, the total access time is nearly consistent (of the same order). Thus using

the two-phase access we are able to get the consistent data distribution performance

which is independent of both the disk distribution and the processor distribution.

Tables 19 and 20 show access times for arrays distributed in the Block-Block

fashion over 16 and 64 processors respectively. Again, note that the access time is

consistent with the times obtained for other distributions.

The results above show that for every case, regardless of the desired data dis-

tribution, performance is improved to within a factor of 2 of the Best Access Time

performance. Further, the cost of redistribution is small compared with the Total

Read Times. This indicates an e�ective exploitation of the additional degree of con-

nectivity available within the interconnection network of the computational array.
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Table 20: Block-Block Distribution over 64 Processors Using pread (time in msec)

Size Optimal Access Time Redistr. Time Total Access Time

1K*1K 350 82 432

2K*2K 1100 186 1286

4K*4K 2462 577 3039

Further, the results also show that by using the runtime primitives, the data can be

distributed in Block-Block fashion e�ectively. It is important to note that we obtain

consistently good performance, within a factor of 2 of the best performance, for all

distributions. Hence, the user now has the freedom to choose the best data distribu-

tion on the computational nodes for his/her program without being concerned about

how the chosen distribution will a�ect the I/O performance. This allows indepen-

dent optimizations for I/O accesses as well as computational algorithm, potentially

improving the performance of both.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis highlighted the importance of I/O in the overall performance of a computer

system. The study concentrated on the solving the I/O problem for multiprocessor

organizations. We analyzed the software aspect of the I/O problem, i.e., the need to

provide scalable and e�cient software support to utilize the underlying hardware at

the maximum extent. We present some of the prominent results of our work below.

Various issues involved in the design of a parallel I/O system were reviewed. The

main intention of this review was to analyze various design factors and to study the

interaction between them. The study concentrated on both the software and hardware

aspects of the design. This study helped us to gain an understanding of the factors

that need to be considered in designing an e�cient software support for parallel I/O.

We found that the cost associated with accessing the data from the disks is mainly

responsible for the low I/O bandwidth. Disk interleaving along with data declustering

is commonly used to tackle this problem. However, these hardware advances alone

have been unable to reduce these I/O costs. Appropriate software support is essential

96
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to improve the I/O bandwidth. The I/O bandwidth is improved by accessing the �les

in parallel. It was found that the choice of the �le access pattern depends on the

scienti�c workload. It was also observed that data prefetching and disk caching is

useful to bring down the I/O response time. We also found that existing parallel �le

system interfaces do not provide substantial support for parallel I/O operations.

To study the e�ects of the above discussed parameters, we performed experiments

on a existing parallel �le system. We used Touchstone Delta Concurrent File System

as our experimental test-bed. We found that data declustering dramatically improves

the performance of the I/O system. It was found that using the �le access modes (

provided to support the parallel �le access patterns) �les can be distributed easily and

e�ciently. However, we also observed that overall I/O performance depends on the

number of processors and on the number of disks. It was observed that large bu�er

sizes improve the I/O transaction time. Finally, we observed that use of a common

interconnection network for I/O and communication.

An I/O model was presented to explain the e�ect of I/O performance on the

overall bandwidth of a multiprocessor connected with a parallel �le system. Using

Touchstone Delta CFS as a case study, I/O costs were calculated for common data

distributions. Experimental results of data distributions show that the performance

is inconsistent and depends on the data mappings on the processors and disks. More-

over, it was observed that there exists a conformal mapping between the processors

and disks which gives the best performance. On Touchstone Delta CFS, for the

arrays stored in the column-major form, i.e., column-block mapping gives the best

performance assuming Fortran program data mapping. Also it was found that com-

plex data distributions (like Block-Block or Block-Cyclic) are not supported in CFS.

Based on these results, we proposed a two-phase data access strategy which performs

the data access using two stages, �rst it accesses the data in the conformal manner
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(for example, column-block on Touchstone Delta) and then it redistributes the array

over the processors to obtain the resultant distribution.

Data distribution is used by several MIMD languages to map the problem do-

main on the processor domain. Several languages use explicit parallel I/O syntax

for distributing the data. However, these languages are susceptible to performance


uctuations and limitations. Motivated by these facts and the design of the two-

phase data access strategy, we developed a runtime system for parallel I/O. This

system provides the portability and convenience of the language supported data dis-

tributions. In addition, it decouples the user mapping from the disk mapping. The

runtime system includes primitives for �le reading, �le writing, array mapping and

processor mapping. Further, since these primitives are linked at compile time, they

can be used with any MIMD or data parallel language. Experimental results show

that these primitives achieve consistent performance across a variety of data distribu-

tions, and allow the user to avail of complex data distributions such as Block-Block

and Block-Cyclic.

6.2 Future Work

This thesis emphasized on the application level software support for parallel I/O. The

scope of the runtime primitives can be expanded to include runtime characterization

of the data access patterns. Future runtime primitives will intelligently schedule I/O

requests depending on the data access patterns, number of disks on which the data

resides, etc. These primitives will have the ability to choose the number, type of

processors and �le access modes to provide an optimal I/O performance.

Further modi�cations in the primitive design are needed to support various data

distributions in languages like High Performance Fortran (HPF) or Fortran 90D. This
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will �nally lead to a common parallel I/O syntax for various languages that can be

ported to various target machines. When the parallel I/O support is provided at

the language level, we can perform various compiler optimizations. These involve

studying I/O dependencies between the statements, scheduling I/O operations to

optimize the total I/O transaction time, provide suitable I/O operations for HPF

directives like REDISTRIBUTE,ALIGN etc.
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