
AN OVERVIEW OF HIGH PERFORMANCE COMPUTING

FOR THE PHYSICAL SCIENCES

GEOFFREY C. FOX and PAUL D. CODDINGTON

Northeast Parallel Architectures Center, Syracuse University,

111 College Place, Syracuse NY 13244, U.S.A.

ABSTRACT

We present an overview of the state of the art and future trends in high performance
computing, and in particular data parallel computing. We describe recent progress
in de�ning a standardized, portable, high level parallel language called High Perfor-
mance Fortran, an extension of Fortran 90 designed for e�cient implementation of
data parallel applications on parallel, vector and sequential high performance com-
puters. An outline of the language is presented, and we discuss its ability to handle
di�erent applications in computational science, concentrating on the di�culties of
implementing irregular problems.

1. High Performance Computing

In Fig. 1 we present a familiar plot showing the exponential increase in

supercomputer performance as a function of time. A number of supercomputer
manufacturers are aiming to deliver Tera
op (1012 
oating point operations per sec-
ond) performance by 1995. The power of High Performance Computing (HPC) has
been used in an increasingly wide variety of applications in the physical sciences. 1

Fig. 2 shows the performance achieved as a function of time for a particular ap-
plication which requires supercomputer performance { the simulation of the forces
between quarks using quantum chromodynamics (QCD). 2, 3 It is interesting to note
that some of these supercomputers were built primarily as dedicated machines for
solving this particular problem.

Hardware trends imply that all computers, from PCs to supercomputers,
will use some kind of parallel architecture by the end of the century. Until recently
parallel computers were only marketed by small start-up companies (apart from In-
tel Supercomputer Systems Division), however recently Cray, Hewlett-Packard and
Convex, IBM, and Digital have all announced massively parallel computing initia-
tives. Software for these systems is a major challenge, and could prevent or delay
this hardware trend which suggests that parallelism will be a mainstream computer
architecture. Reliable and e�cient systems software, high level standardized paral-
lel languages and compilers, parallel algorithms, and applications software all need

to be available for the promise of parallel computing to be fully realized.
Carver Mead of Caltech in an intriguing public lecture once surveyed the

impact of a number of new technologies, and introduced the idea of \headroom"
{ how much better a new technology needs to be for it to replace an older, more



Figure 1: Peak performance in 
oating point operations per second (
ops) as a function of time for

various supercomputers.



Figure 2: Performance (in 
ops) of various supercomputers for QCD code, as a function of the time

when the code was �rst run. These are all measured preformance �gures, except for the APE 100,

CM-5, and Paragon, which are estimates.



entrenched technology. Once the new technology has enough headroom, there will
be a fairly rapid crossover from the old technology, in a kind of phase transition. For
parallel computing the headroom needs to be large (perhaps a factor of 10 to 100) to
outweigh the substantial new software investment required. The headroom will be

larger for commercial applications where codes are generally much larger, and have
a longer lifetime, than codes for academic research. Machines such as the nCUBE
and CM-2 were comparable in price/performance to conventional supercomputers,
which was enough to show that \parallel computing works", 2, 4 but not enough to
take over from conventional machines. It will be interesting to see whether the new
batch of parallel computers, such as the CM-5, Intel Paragon, IBM SP-1, Maspar
(DECmpp) MP-2, etc., have enough headroom.

Parallel computing implies not only di�erent computer architectures, but
di�erent languages, new software, new libraries, and a di�erent way of viewing

problems. It will open up computation to new �elds and new applications. To
exploit this technology we need new educational initiatives in computer science and
computational science. Education can act as the \nucleus" for the phase transition
to the new technology of parallel computing, and accelerate the use of parallel
computers in the real world.

Di�erent problems will generally run most e�ciently on di�erent computer
architectures, so a range of di�erent architectures will be available for the some
time to come, including vector supercomputers, SIMD and MIMD parallel com-

puters, and networks of RISC workstations. The user would prefer not to have to
deal with the details of the di�erent hardware, software, languages and program-
ming models for the di�erent classes of machines. So the aim of supercomputer
centers is transparent distributed computing, sometimes called \metacomputing"
{ to provide simple, transparent access to a group of machines of di�erent archi-
tectures, connected by a high speed network to each other and the outside world,
and to data storage and visualization facilities. Users should be presented with a
single system image, so they do not need to deal with di�erent systems software,
languages, software tools and libraries on each di�erent machine. They should also

be able to run an application across di�erent machines on the network.

2. Parallel Computing

Parallel computers have two di�erent models for accessing data, and two
di�erent models for accessing instructions: 2, 5

� Shared Memory { processors access a common memory space

� Distributed Memory { data is distributed over processors and accessed via
message passing between processors

� SIMD (Single Instruction Multiple Data) { processors perform the same in-
struction synchronously on di�erent data



� MIMD (Multiple Instruction Multiple Data) { processors may perform di�er-
ent instructions on di�erent data

Over the last 10 years we have learned that parallel computing works { the
majority of computationally intensive applications perform well on parallel com-
puters, by taking advantage of the simple idea of \data parallelism" (or domain
decomposition), which means obtaining concurrency by applying the particular al-
gorithm to di�erent sections of the data set concurrently. 6 Data parallel applications
are scalable to larger numbers of processors for larger amounts of data.

Another type of parallelism is \functional parallelism", where di�erent pro-

cessors (or even di�erent computers) perform di�erent functions, or di�erent parts
of the algorithm. Here the speed-ups obtained are usually more modest and this
method is often not scalable, however it is important, particularly in multidisci-
plinary applications.

Surveys of problems in computational science 11 have shown that the vast
majority (over 90%) of applications can be run e�ectively on MIMD parallel com-
puters, and approximately 50% on SIMD machines (probably less for commercial,
rather than academic, problems). Currently there are many di�erent parallel archi-
tectures, but only one { a distributed memory MIMD multicomputer { is general,

high performance architecture which is known to scale from one to very many pro-
cessors.

3. Parallel Languages

Using a parallel machine requires rewriting code written in standard sequen-
tial languages. We would like this rewrite to be as simple as possible, without
sacri�cing too much in performance. Parallelizing large codes involves substantial
e�ort, and in many cases rewriting code more than once would be impractical. A
good parallel language therefore needs to be portable and maintainable, that is, the

code should run on e�ectively all current and future machines (at least those we
can anticipate today). This means that the language should be scalable, so that
it can work e�ectively on machines using one or millions of processors. Portability
also means that programs can be run in parallel over di�erent machines across a
network (distributed computing).

There are some completely new languages speci�cally designed to deal with
parallelism, for example occam, however none are so compelling that they war-
rant adoption in precedence to adapting existing languages such as Fortran, C,
C++, Ada, Lisp, Prolog, etc. This is because users have experience with existing

languages, good sequential compilers exist and can be incorporated into parallel
compilers, and migrating existing code to parallel machines is much easier. In any
case, to be generally usable, especially for scienti�c computing, any new language
would need to implement the standard features and libraries of C and Fortran. 7, 8, 9

The purpose of software, and in particular computer languages, is to map
a problem onto a machine. 10, 4 An application in computational science starts out



with some physical problem, goes via theory to a model of the physical process, then
to an algorithm or numerical method for solving or simulating the model, which is
then expressed in a high level language which is targeted to a virtual computer,
and �nally implemented by a compiler and systems software onto a real computer.

Some information is lost in each of the above steps in translating the problem to the
machine. The goal of good software should be to make this translation as simple as
possible, and to minimize the loss of information.

A drawback of current software is that it is often designed around the ma-
chine architecture, rather than the problem architecture. Each class of problem
architectures requires di�erent general constructs from the software. It is possible
for compilers to construct an approximate computational graph from a dependency
analysis of sequential code (such as Fortran 77), and extract parallelism in this way,
however this is not usually very e�ective. In many cases the parallelism inherent in

the problem will be obscured by the use of a sequential language or even a sequen-
tial algorithm. A particular application can be parallelized e�ciently if, and only
if, the details of the problem architecture are known. Users know the structure of
their problems much better than compilers do, and can create their algorithms and
programs accordingly. If the data structures are explicit, as in Fortran 90, then the
parallelism becomes much clearer.

Currently there are two language paradigms for distributed memory parallel
computers: message passing and data parallel languages. Both of these have been

implemented as extensions to Fortran and C. Here we will concentrate on Fortran.

3.1. Fortran With Message Passing

Message passing is a natural model of programming distributed memory
MIMD computers, and is currently used in the vast majority of successful applica-
tions using MIMD machines. The basic idea is that each node (processor plus local

memory) has a program which controls, and performs calculations on, its own data
(the \owner-computes" rule). Non-local data may need to be obtained from other
nodes, which is done by communication of messages.

In its simplest form, there is one program per node of the computer. The
programs can be di�erent (although usually they are the same), however they will
generally follow di�erent threads of control, for example di�erent branches of an IF
statement. Communication can be asynchronous, but in most cases the algorithms
are loosely synchronous, 2 meaning that they are usually controlled by a time or
iteration parameter and there is synchronization after every iteration, even though

the communications during the iteration process may not be synchronous.
If parallelism is obtained from standard domain decomposition, then the

parallel program for each node can look very similar to the sequential program,
except that it computes only on local data, and has a call to a message passing
routine to obtain non-local data. Schematically, a program might look something
like the following:



CALL COMMUNICATE (required non-local data)
DO i running over local data

CALL CALCULATE (with i's data)
END DO

Note that it is more e�cient to pass all the non-local data required in the
loop as a single block before processing the local data, rather than pass each element
of non-local data as it is needed within the loop. The advantages of this style of

programming are:

� It is portable to both distributed and shared memory machines.

� It should scale to future machines, although to achieve good e�ciencies schemes

to overlap communication with itself and with calculation may be required.

� Languages are available now and are portable to many di�erent MIMD ma-
chines. Current message passing language extensions include Express, PICL,
PVM, and Linda.

� There will soon be an industry standard message passing interface. 16

� All problems can be expressed using this method.

The disadvantages are:

� The user has complete control over transfer of data, which helps in creat-
ing e�cient programs, but explicitly inserting all the communication calls is
di�cult, tedious, and error prone.

� Optimizations are not portable.

� It is only applicable to MIMD machines.

3.1. Data Parallel Fortran

The goal of the Fortran 90 standard is to \modernize Fortran, so that it may
continue its long history as a scienti�c and engineering programming language".
One of the major new features of Fortran 90 are the array operations to facilitate
vector and data parallel programming.

Data parallel languages have distributed data just as for the message passing

languages, however the data is explicitly written as a globally addressed array. As
in the Fortran 90 array syntax, the expression

DIMENSION A(100,100), B(100,100), C(100,100)
A = B + C

is equivalent to



DO i = 1, 100
DO j = 1, 100

A(i,j) = B(i,j) + C(i,j)
END DO

END DO

The �rst expression clearly allows easier exploitation of parallelism (especially as a
simple DO loop of Fortran 77 can often be \accidentally" obscured, so a compiler

can no longer see the equivalence to Fortran 90 array notation). Migration of data
is also much simpler in a data parallel language. If the data required to do a
calculation is on another processor, it will be automatically passed between nodes,
without requiring explicit message passing calls set up by the user.

Schematically, a program might look something like the following, using ei-
ther an array syntax with shifting operations to move data (as in Fortran 90), or
explicit parallel loops in a FORALL statement using standard array indices to in-
dicate where the data is to be found (FORALL is not in the Fortran 90 standard,
but is present in many other dialects of data parallel Fortran):

A = B + SHIFT (C, in x direction)

FORALL i,j
A(i,j) = B(i,j) + C(i-1,j)

The advantages of this style of programming are:

� Relatively easy to use, since message passing is implicit rather than explicit,

and parallelism can be based on simple Fortran 90 array extensions.

� Scalable and portable to both MIMD and SIMD machines.

� Should be able to handle all synchronous and loosely synchronous problems,
including ones that only run well on MIMD.

� Languages such as CM Fortran and MasPar Fortran are available now and are
similar to the Fortran 90 standard.

� An industry standard, High Performance Fortran (HPF), 13 will be adopted,
which builds on Fortran 90 and other data parallel languages.

The disadvantages are:

� Need to wait for good HPF compilers.

� Not all problems can be expressed in this way.

4. High Performance Fortran

A major hindrance to the development of parallel computing has been the

lack of portable, industry standard parallel languages. Currently, almost all parallel



computer vendors provide their own proprietary parallel languages which are not
portable even to machines of the same architecture, let alone between SIMD and
MIMD, distributed or shared memory, parallel or vector architectures.

This problem is now being addressed by the High Performance Fortran Forum

(HPFF), a group of over 40 organizations including universities, national labora-
tories, computer and software vendors, and major industrial supercomputer users.
HPFF was created in early 1992 to discuss and de�ne a set of extensions to For-
tran called High Performance Fortran. The goal was to address the problems of
writing portable code which would run e�ciently on any high performance com-
puter, including parallel computers of any architecture (SIMD or MIMD, shared or
distributed memory), vector computers, and RISC workstations. Here `e�ciently'
means `comparable to a program hand-coded by an expert in the native language
of a particular machine'.

HPF is designed to support data parallel programming. It is an extension of
Fortran 90, which provides for array calculations and is therefore a natural starting
point for a data parallel language. HPF attempts to deviate minimally from the
Fortran 90 standard, while providing extensions which will enable compilers to
provide good performance on a variety of parallel and vector architectures. It
is derived from a synthesis of ideas developed in many data parallel languages,
such as DAP Fortran, Fortran 8X, Connection Machine Fortran, MasPar Fortran,
Fortran 90, Fortran D (Rice University), Fortran 90D (Syracuse University), Vienna

Fortran, Yale extensions, and Digital's HPF. While HPF is motivated by data
parallel languages for SIMD machines, it should also be applicable to MIMD and
vector machines. 7, 14

HPF has a number of new language features:

1. New Directives

These directives suggest implementation and data distribution strategies to

the compiler. They are structured so that a standard Fortran compiler will
see them as comments and thus ignore them. The directives are consistent
with Fortran 90, so that if HPF were to be adopted as part of a future Fortran
standard, only the comment character and the directive pre�x would have to
be removed.

2. New Language Syntax

These are extensions to Fortran 90 to better express parallelism in a program.
They include the FORALL statement and some extra intrinsic functions.

3. Library Routines

HPF will provide a standard interface to a library of e�cient parallel imple-
mentations of useful routines, such as sorting and matrix calculations.

4. Extrinsic Procedures

Since HPF is a high level, machine independent language, it cannot express
certain operations very well (or at all). It therefore allows the use of extrinsic



procedures, which can be de�ned outside the language, for example by using
Fortran with message passing.

5. Language Restrictions

Some restrictions on the use of sequence and storage allocation in Fortran are
de�ned in order to be compatible with the data distribution features of HPF.

6. Parallel I/O
Language facilities for handling parallel I/O are being investigated, but have
not been included in the initial HPF language standard.

The strategy behind HPF is that the user writes in an SPMD (Single Program
Multiple Data) data parallel style, with conceptually a single thread of control
and globally accessible data. The program is annotated with assertions giving
information about desired data locality and/or distribution. The compiler then
generates code implementing data and work distribution.

� For SIMD computers the implementation is parallel code with communication

optimized by compiler placement of data.

� For MIMD computers the implementation is a multi-threaded message passing
code with local data and optimized send/receive communications.

� For vector computers the implementation is vectorized code optimized for the
vector units.

� For RISC computers the implementation is pipelined superscalar code with
compiler generated cache management.

As its name suggests, a major goal of High Performance Fortran is to have e�cient
compilers for all these machines. Obtaining parallelism solely through dependency
analysis has not proven to be e�ective in general, so for all commands in HPF the
dependencies are implied directly, enabling the compiler to generate more e�cient
code.

4.1. Data Distribution Directives

TEMPLATE directive refers to an abstract, very �ne-grain \virtual processor" space
(in the language of the Connection Machine model), which labels independent ob-
jects (e.g. sites of a lattice) or data elements.

ALIGN directive speci�es the lowest-level abstract alignment of array elements.
These two directives are used for machine independent alignment of data structures.

DIMENSION A(100), B(0:99)

!HPF$ TEMPLATE X(100)
!HPF$ ALIGN A WITH X
!HPF$ ALIGN B(I) WITH X(I+1)

PROCESSORS directive speci�es a coarse-grain processor grid, used for machine

dependent partitioning of data structures.



DISTRIBUTE directive governs the data distribution (domain decomposition), and
can be done in BLOCK or CYCLIC fashion.

!HPF$ TEMPLATE X(1024), Y(512,512)
!HPF$ PROCESSORS P(16)
!HPF$ DISTRIBUTE X(CYCLIC) ONTO P
!HPF$ DISTRIBUTE Y(BLOCK,BLOCK)

DYNAMIC and REDISTRIBUTE directives allow for dynamic data distribution.

4.2. Parallel Statements

INDEPENDENT directive asserts that the iterations in a loop may be executed in
any order or concurrently. If the assertion is false, the compiler is free to take any
action it deems necessary. There are no restrictions on the loop body, and no way
to perform explicit synchronization.

!HPF$ INDEPENDENT
DO I = 1, N

A(IX(I)) = B(I)
C(I) = F(A(IX(I)), B(IX(I)))

END DO

FORALL statement performs elemental array assignment using explicit array in-
dexing. Certain types of functions which do not have any complicating side-e�ects
(so-called PURE procedures) may be called from within a FORALL statement.

FORALL (I=1:N, J=1:N, I < J)
B(I,J) = B(J,I)
C(I,J) = D(I,K) * B(K,J)

END FORALL

4.3. Intrinsic Functions and Standard Library

A number of new intrinsic functions have been added to the Fortran 90
intrinsics such as ALL, ANY, CSHIFT, SUM, SPREAD, etc. These are mainly
inquiry functions which return information on the physical processors (e.g. NUM-
BER OF PROCESSORS) or the distribution of data (e.g. HPF DISTRIBUTION).

HPF also has a standard library, HPF LIB, with a number of new functions.
These include pre�x and su�x functions which perform a standard Fortran 90 re-
duction (e.g. SUM, ALL) on a subset of elements of an array, and sorting functions
(GRADE UP and GRADE DOWN). Much of HPF's power is buried in its library

functions. In many cases the HPF compiler need not know anything about paral-
lelization except interfaces and data layout, since the parallelization is handled by
a library routine.

4.4. Compilers and Fortran 90D

A subset of HPF has been de�ned to enable early availability of compilers.

The �rst implementation of HPF is the Fortran 90D compiler being produced by



1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18

Speedup

Processors

Gaussian Elimination

Compiler generated 3

3
3

3

3

3

Hand written +

+
+

+

+

+

Figure 3: Performance of the Fortran 90D compiler versus hand-written message passing code on

the Intel iPSC/860 for Gaussian elimination.

the Northeast Parallel Architectures Center (NPAC) at Syracuse University. The
alpha version of the compiler was demonstrated at Supercomputing 92. It supports:

� One- and two-dimensional BLOCK, CYCLIC, and BLOCK-CYCLIC data dis-

tribution

� FORALL statement

� Full run-time support for regular communications

� PARTI (ICASE) primitives for irregular communications

� A library of intrinsic functions

The beta release of the compiler is scheduled for June 1993. The compiler currently
runs on MIMD parallel computers: the nCUBE/2, Intel iPSC/860, and a network
of Sun workstations. The next target architecture is heterogeneous networks, and
in the future the compiler will be optimized for speci�c architectures and released
as a commercial product by the Portland Group. An example of the performance
of the current Fortran 90D compiler compared to a hand-coded message passing

program is shown in Fig. 3 for a Gaussian elimination problem.



5. Scienti�c Applications

The highest pro�le applications in computational science are the so-called

\Grand Challenges". 12 At the last count, there are 39 \o�cial" grand challenge
applications in the areas of chemistry, biology, biochemistry, physics, 
uid dynamics,
the environment, weather forecasting, geophysics, space science and astronomy, and
arti�cial intelligence, which are deemed to be of national importance. Most grand
challenge problems involve partial di�erential equations, particle dynamics, multi-
disciplinary integration, with some visualization and arti�cial intelligence. These
are all amenable to parallel processing, and can all be expressed in HPF.

Most of the basic problems of this kind, for example solving di�erential
equations, can be done using regular and often local algorithms. HPF can express

these types of algorithms very well, and they will generally run very e�ciently on
MIMD, SIMD and vector architectures. However in many cases, the traditional
algorithms have been superseded by modern, more e�ective algorithms, which are
often non-local (e.g. multi-grid) and/or irregular (e.g. adaptive mesh). However
the properties of non-locality and irregularity which help make these algorithms so
e�ective, also make them di�cult to implement e�ciently on a vector or parallel
supercomputer. In some cases it is also not obvious how to express this kind of
algorithm in HPF.

This is an important issue for HPF: what applications does it support, and
what extensions are needed to cover those applications not currently supported? 7, 14

A survey of approximately 400 scienti�c applications 11 gave the following classi�-
cation of problems:

Problem Class Number HPF Support

Synchronous 40% Now
Embarrassingly Parallel 14% Now
Loosely Synchronous 36% Future
Asynchronous 10% No

HPF can currently handle synchronous problems, using data parallel arrays manip-

ulated using intrinsic functions (shift, multiply, add, sum, etc.). Examples include:

� Regular grid partial di�erential equation solvers (e.g. �nite di�erence)

� Regular \crystalline" particle interactions (e.g. lattice models of high energy

physics theories such as quantum chromodynamics, spin models of magnets)

� Particle dynamics using O(N2) N-body algorithms

� Fast Fourier Transforms

� Dense matrix algorithms

� Low level image processing



The INDEPENDENT construct in HPF can be used for embarrassingly parallel
problems, such as:

� Database searching (e.g. DOWQUEST 17)

� Monte Carlo calculations summed over independent simulations

� Analysis of independent data sets (e.g. real time analysis of millions of events
from a particle collider using a MIMD farm)

� Calculation of matrix elements for computational chemistry (e.g. usingMOPAC,
GAUSSIAN)

Irregular loosely synchronous problems should be implementable in HPF, for ex-
ample by using the FORALL statement, the PARTI routines for handling irregular
communications and data distribution, 18 or library functions. These kinds of prob-
lems can usually only be implemented e�ciently on MIMD machines, and in some
cases even this is very di�cult. Examples include:

� Particle dynamics with cuto� forces and irregular spatial structure
(e.g. CHARMM, AMBER)

� Unstructured �nite element meshes (static and adaptive)

� Connected component labeling (e.g. image processing, Monte Carlo simulation
of spin models)

Problems which probably cannot be expressed in HPF in its current form include

extremely irregular problems such as:

� Multiple phase problems (e.g. particle in cell, unstructured multigrid)

� SomeO(N logN) or O(N) fast multipole methods for N-body particle dynamics

� Direct methods for sparse matrix solvers (general methods are very hard to
parallelize and give modest performance)

Asynchronous problems such as transaction analysis and event driven simulation
are outside the current (and anticipated future) scope of HPF.

Some irregular applications cannot currently be expressed in HPF, or at least
not nearly as e�ciently as in message passing languages. However the more common
irregular applications such as sparse matrix solvers will be incorporated into HPF

using software libraries, so the di�culties of the parallelism are hidden in a library
call.

Some example applications are described in the following sub-sections. These
algorithms are included in a suite of applications codes used to help validate and
evaluate the Fortran 90D compiler. 31 This is being expanded into an HPFF appli-
cation suite, which is being used as \experimental data" to test and evaluate the



HPF language design, and may eventually evolve into a test suite to certify an HPF
compiler.

5.1. Component Labeling

Connected component labeling 19 has important applications in image pro-
cessing and computer vision. 20 It is also the main computational requirement in
Monte Carlo simulations of spin models of magnetism using cluster algorithms,
in which clusters of spins are updated at once. 21 These non-local algorithms are
much more e�ective than standard Monte Carlo methods such as the Metropolis
algorithm. 22

The Metropolis algorithm is regular and local and can therefore be easily and
e�ciently parallelized using standard domain decomposition. This is easy to express
in HPF and should be handled e�ciently by an HPF compiler for any architecture.

The clusters in spin models are highly irregular in both shape and size, and
also highly non-local (there is usually one very large cluster). The cluster algorithms
are therefore very di�cult to parallelize, especially on a SIMD machine. However
parallel algorithms exist which can be expressed in data parallel Fortran. 24 These
algorithms use general irregular communication routines, and may also bene�t from
intrinsic functions such as the scan routine on the Connection Machine, which scans

data along a row or column of an array (like a parallel pre�x operation in HPF).
Much more e�cient algorithms are available on MIMD machines using message
passing, 23 but it is di�cult to see how these could be expressed in HPF.

5.2. N-Body Particle Dynamics

N-body simulations play a crucial role in theoretical astrophysics. Recently
hierarchical methods such as the Barnes-Hut algorithm 25 have been introduced
which reduce the time required for N-body simulations from O(N2) for standard
algorithms to O(N logN) or even O(N). These methods work by reducing an M-
body force calculation for a cluster of stars to a single calculation using the center
of mass of the cluster. This involves constructing an irregular, hierarchical tree-like
data structure (shown in Fig. 4), where each particle is in a single cell. Clusters of
particles may be represented by the center of mass of a coarser cell.

Using the standard O(N2) algorithm, simulations are limited to O(104) parti-

cles. Using clustering methods, much more realistic simulations of O(106) particles
are possible. These methods have been used for simulations of the evolution of
structure in the Universe following the Big Bang, and for the study of galactic
structure caused by collisions of galaxies.

Due to the irregularity of the problem and the complexity of the data struc-
ture, this problem is not well expressed in parallel (or even sequential) Fortran,
and is di�cult to parallelize. In spite of the irregular and complex nature of this
problem, John Salmon and Mike Warren have implemented a parallel Barnes-Hut
algorithm using message passing on MIMD machines which has given extremely

good performance (approximately 5 GFlops on the Intel Delta). 26 This work was
acknowledged by the 1992 Gordon Bell Prize.



Figure 4: Decomposition of particles into a hierarchical tree structure for a Barnes-Hut N-body

particle dynamics algorithm.

In spite of the apparent di�culties in expressing this kind of algorithm in
HPF, Warren and Salmon have recently reformulated the parallel Barnes-Hut al-
gorithm in a form which appears suitable for incorporation into an extended HPF
compiler as a generalization of the PARTI methods used to parallelize irregular
grids. 18

5.3. Random Surface Simulations

Quantum gravity and string theories of fundamental forces can be simulated
using models based on dynamically triangulated random surfaces. 27 For example,
the two dimensional worldsheet of a one dimensional string can be discretized as an
irregular triangular mesh. Calculations involve integrating over all possible world-
sheets, which can be approximated by a Monte Carlo sum over a large number of
di�erent meshes. These are obtained by making random changes to the positions

and connections of nodes in the mesh throughout the calculation using the standard
Metropolis algorithm, 22 resulting in a dynamically triangulated random surface. A
number of simulations of string theories have been performed using this method. 29

Random surface models can also be used to simulate systems which have
real 
uctuating surfaces, such as biological and chemical membranes, lipid bilayers,



microemulsions, and phase boundaries. 27, 28 This application has much in common
with solving PDEs using irregular, adaptive grids.

Since these problems require a Monte Carlo simulation, it is possible to use
independent parallelism, with a di�erent mesh and di�erent random numbers on

each processor, and then average the results over processors. This is supported by
HPF, and works well as long as the problem size is small enough so that it �ts into
the memory of a single processor, and the equilibration of the Monte Carlo algorithm
is relatively fast. However for large mesh sizes one or both of these constraints will
generally be violated, so a data parallel algorithm where the mesh is distributed
over processors is necessary.

The triangulated random surface can be represented as a graph. Two major
components of the parallel algorithm are graph partitioning to �nd a good domain
decomposition which balances load and minimizes communication, and graph color-

ing so that neighboring vertices and edges are not updated in parallel, which would
invalidate the Monte Carlo procedure.

Due to the dynamic and irregular nature of the problem, e�cient paralleliza-
tion is di�cult, and probably not possible on SIMD machines. A dynamic mesh
means that even if the domain decomposition is initially optimal, neighboring ver-
tices will move to other processors during the simulation, thus requiring substantial
non-local communication. So dynamic redistribution of data is required to mini-
mize communication overhead. This is available in HPF using the REDISTRIBUTE

directive.
It is interesting to note that optimization of performance by improving data

locality is not limited to distributed memory parallel machines, but is also crucial
in sequential computers. Modern RISC microprocessors are so fast that access to
external memory has a large overhead, so good performance is only obtained by
optimal use of cache memory. This is analogous to the di�erence in access times
between local memory and o�-processor memory in a distributed memory parallel
computer.

Maintaining data locality can be di�cult for irregular problems such as the

dynamically triangulated random surface, and requires the equivalent of dynamic
domain decomposition for a parallel machine. For the sequential code, this means
constantly updating a secondary data structure which holds the data for neighboring
points, rather than just accessing that data from irregular sections of the primary
array. For the sequential random surface code, optimizing the data locality in this
way gave substantial performance enhancements, up to a factor of 2 for the Intel
i860 processor, which has a small cache. 30 The program performs much better on
more modern processors with large cache memory.

6. Conclusions

Parallel computing currently o�ers the best price/performance ratio, and
this advantage will increase in the future. Along with improved systems software,
language standards, improved compilers, a new generation of computer users edu-



cated in parallel computing, and the entrance of large computer vendors such as
Digital, Hewlett-Packard and IBM into the �eld, parallel computing will in the next
few years generate enough \headroom" to become the dominant technology.

Much progress is being made on high-level parallel languages such as High

Performance Fortran, which will accelerate the transition to parallel computing.
HPF can express the majority (perhaps 90%) of computational science problems,
including many irregular problems. More than half of applications are synchronous
or embarrassingly parallel, and these problems should be mapped very e�ciently
to di�erent architectures by an HPF compiler. The challenge for compiler writers
will be to generate e�cient code for irregular problems, which may be di�cult or
impossible for vector or SIMD architectures. Even for MIMD architectures, the
expression of certain types of irregular loosely synchronous problems in HPF, and
the generation of e�cient MIMD code by an HPF compiler, are still the subject of

much research. However if this cannot be done using standard HPF, there is an
escape route whereby sections of the code may be called as EXTRINSIC functions,
which may be implemented more e�ciently using explicit message passing.

We also have a challenge for computational scientists: is your application
expressible in HPF? If not, we would like to hear from you!

One �nal point to note is that scienti�c applications are certainly important,
but are only a limited market for a computer vendor. Most commercial uses of
computers involve information processing, decision support, economic (and other

complex system) modeling, network simulation, scheduling, manufacturing, educa-
tion and entertainment. 32 Parallel computing needs to make an impact in these
areas, since it will become the dominant technology if and only if it can bene�t
industry. Industrial applications typically have much larger codes than scienti�c
applications (sometimes on the order of millions of lines), which will only be ported
to parallel computers when improved, portable and maintainable software, such as
HPF, becomes available.

7. Acknowledgements

Our work on parallel languages and HPF is supported in part by the Center
for Research on Parallel Computation with NSF cooperative agreement No. CCR-
9120008, and by DARPA under contract #DABT63-91-C-0028.

8. References

1. G.C. Fox and D. Walker, \Concurrent supercomputers in science", Caltech
Technical Report C3P-646, in Proc. of the Conference on Computers in Physics

Instruction, E.F. Redish and J.F. Risley eds., (Addison-Wesley, Reading, Mass.,
1989).

2. G.C. Fox et al., Solving Problems on Concurrent Processors, Vol. 1, (Prentice-Hall,
Englewood Cli�s, NJ, 1988).



3. M. Creutz, Quarks, Gluons and Lattices, (Cambridge University Press, Cam-
bridge, 1983); R. Kenway, Rep. Prog. Phys. 52 (1989) 1475.

4. G.C. Fox et al., Parallel Computing Works, to be published by Morgan Kaufman.

5. G.C. Fox, \Parallel Computing", Caltech Technical Report C3P-830, submit-
ted to Encyclopedia of Physical Science and Technology 1991 Yearbook, (Academic

Press, New York, 1991).

6. W.D. Hillis, The Connection Machine, (MIT Press, Cambridge, Mass., 1985);
W.D. Hillis and G. Steele, Comm. ACM 29 (1986) 1170.

7. G.C. Fox, \FortranD as a Portable Software System for Parallel Computers",
NPAC Technical Report SCCS-91, in Proc. of Supercomputing USA/ Paci�c 91

Conference, Santa Clara, CA, (June 1991).

8. G.C. Fox, \The Architecture of Problems and Portable Parallel Software Sys-
tems", NPAC Technical Report SCCS-134.

9. A. Choudhary et al., \A classi�cation of irregular loosely synchronous problems
and their support in Scalable Parallel Software Systems", NPAC Technical

Report SCCS-255, Proc. of the DARPA Software Technology Conference,
(April 1992).

10. G.C. Fox, \The Use of Physics Concepts in Computation", NPAC Technical
Report SCCS-237, in Computation: the Micro and Macro View, B.A. Huberman
ed., (World Scienti�c, River Edge, NJ, 1992).

11. G.C. Fox, \What have we learnt from using real parallel computers to solve
real problems?", Caltech Technical Report C3P-522, in Proc. of the Third Con-

ference on Hypercube Concurrent Computers and Applications, Vol. 1, ed. G.C. Fox
(ACM Press, New York, 1988); I. Angus et al., Solving Problems on Concurrent

Processors, Vol. II, (Prentice-Hall, Englewood Cli�s, NJ, 1990); P.J. Denning

and W.F. Tichy, Science 250 (1990) 1217; G.C. Fox, \Lessons from Massively
Parallel Applications on Message Passing Computers", NPAC Technical Re-
port SCCS-214, in Proc. of 37th IEEE International Computer Conference, San
Francisco, CA (February 1992).

12. \Grand Challenges: A Report by the Committee on Physical, Mathematical
and Engineering Sciences", (1991), in The FY 1992 U.S. Research and Develop-

ment Program.

13. The High Performance Fortran Forum, \High Performance Fortran Language
Speci�cation", Center for Research in Parallel Computing Technical Report

CRPC-TR92225. Available via anonymous ftp from titan.cs.rice.edu in the
directory public/HPFF/draft.

14. A. Choudhary, G. Fox, S. Ranka, and T. Haupt, \Which Applications Can
Use High Performance Fortran and FortranD { Industry Standard Parallel
Languages?", NPAC Technical Report SCCS-360, in Proceedings of the Fifth

Australian Supercomputer Conference, Melbourne, (December 1992).

15. G.C. Fox et al., \Fortran D Language Speci�cations", NPAC Technical Report



SCCS-42C (1990); A. Choudhary et al., \Compiling Fortran 77D and 90D for
MIMD Distributed Memory Machines", NPAC Technical Report SCCS-251
(1992).

16. Information on the Message Passing Interface speci�cation can be obtained by
sending the following message to netlib@ornl.gov: send index from mpi.

17. D. Waltz and C. Stan�ll, \Arti�cial intelligence related research on the Con-
nection Machine", in Proc. of the International Conference on Fifth Generation

Computer Systems, Vol. 3, (OHMSHA Ltd., Tokyo, 1988).

18. J. Saltz et al., \The PARTI parallel runtime system", Proc. of the SIAM Con-

ference on Parallel Processing for Scienti�c Computing, Los Angeles, CA (1987);
J. Saltz et al., Concurrency: Practice and Experience 3 (1991) 573.

19. E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms: The-

ory and Practice (Prentice-Hall, Englewood Cli�s, NJ, 1977); E. Horowitz
and S. Sahni, Fundamentals of Computer Algorithms, (Computer Science Press,

Rockville, Maryland, 1978).

20. A. Rosenfeld and A. C. Kak, Digital Picture Processing, (Academic Press, New
York, 1982).

21. A. D. Sokal, in Computer Simulation Studies in Condensed Matter Physics: Recent

Developments, eds. D. P. Landau et al. (Springer-Verlag, Berlin-Heidelberg,
1988); J.-S. Wang and R. H. Swendsen, Physica A 167 (1990) 565.

22. Monte Carlo Methods in Statistical Physics, Ed. K. Binder (Springer-Verlag,
Berlin, 1986); H. Gould and J. Tobochnik, An Introduction to Computer Sim-

ulation Methods, (Addison-Wesley, Reading, Mass., 1988).

23. C.F. Baillie and P.D. Coddington, Concurrency: Practice and Experience 3 (1991)
129.

24. J. Apostolakis, P. Coddington and E. Marinari, \New SIMD Algorithms for
Cluster Labeling on Parallel Computers", NPAC Technical Report SCCS-279
(1992), to be published in Int. J. Mod. Phys. C.

25. J. Barnes and P. Hut, Nature 324 (1986) 446.

26. J. Salmon, \Parallel Hierarchical N-body Methods", Center for Research

on Parallel Computation Technical Report 90-14, Caltech, December 1990;
M. Warren and J. Salmon, \Astrophysical N-body Simulations Using Hierar-
chical Tree Data Structures", in Proc. of Supercomputing '92, (IEEE Computer
Society, Los Alamitos, 1992).

27. F. David, in Two Dimensional Quantum Gravity and Random Surfaces, eds.

D.J. Gross, T. Piran, and S. Weinberg, (World Scienti�c, Singapore, 1992);
J. Ambj�rn, B. Durhuus and J. Fr�olich, Nucl. Phys. B257 (1985) 433.

28. Statistical Mechanics of Membranes and Surfaces, eds. D. Nelson, T. Piran, and
S. Weinberg, (World Scienti�c, Singapore, 1989).

29. S. Catterall, Phys. Lett. 220B (1989) 207; C. Baillie, D. Johnston and
R. Williams, Nucl. Phys. B335 (1990) 469; J. Ambj�rn et al., Phys. Lett.



275B (1992) 295; M. Bowick et al., \The Phase Diagram of Fluid Random
Surfaces with Extrinsic Curvature", NPAC Technical Report SCCS-357, to be
published in Nucl. Phys. B.

30. L. Han, \Optimization of a Dynamic Random Surface Code for RISC Pro-
cessors", to be published in Proc. of the SIAM 1993 Meeting, Philadelphia, PA
(July 1993).

31. A.G. Mohamed et al., \Application Benchmark Set for Fortran-D and High
Performance Fortran", NPAC Technical Report SCCS-327 (1992). The bench-
mark suite is available via anonymous ftp from minerva.npac.syr.edu in direc-
tory benchmark.ftp.

32. G.C. Fox, \Parallel Computing in Industry { An Initial Survey", NPAC Tech-
nical Report SCCS-302b, in Supplemental Proceedings of the Fifth Australian
Supercomputer Conference, Melbourne, (December 1992).


