
Fortran 90D/HPF Compiler for Distributed Memory MIMD Computers:

Design, Implementation, and Performance Results�

Zeki Bozkusy, Alok Choudhary, Geo�rey Fox, Tomasz Haupt, and Sanjay Ranka

Northeast Parallel Architectures Center

3-201, Center for Science and Technology

Syracuse University

Syracuse, NY 13244-4100

fzbozkus, choudhar, gcf, haupt, rankag@npac.syr.edu

April 1, 1993

Abstract

Fortran 90D/HPF is a data parallel language with special directives to enable users to specify

data alignment and distributions. This paper describes the design and implementation of a

Fortran90D/HPF compiler. Techniques for data and computation partitioning, communication

detection and generation, and the run-time support for the compiler are discussed. Finally,

initial performance results for the compiler are presented which show that the code produced

by the compiler is portable, yet e�cient. We believe that the methodology to process data

distribution, computation partitioning, communication system design and the overall compiler

design can be used by the implementors of HPF compilers.

�This work was supported in part by NSF under CCR-9110812 (Center for Research on Parallel Computation)

and DARPA under contract # DABT63-91-C-0028. The content of the information does not necessarily re
ect the

position or the policy of the Government and no o�cial endorsement should be inferred.
yCorresponding Author: Zeki Bozkus, NPAC, 111 College Place, Rm. 3-201, Syracuse University, Syracuse, NY

13244-4100

1

1 Introduction

Distributed memory multiprocessors are increasingly being used for providing high performance

for scienti�c applications. Distributed memory machines o�er signi�cant advantages over their

shared memory counterparts in terms of cost and scalability, though it is widely accepted that

they are di�cult to program given the current status of software technology. Currently, distributed

memory machines are programmed using a node language and a message passing library. This

process is tedious and error prone because the user must perform the task of data distribution and

communication for non-local data access.

There has been signi�cant research in developing parallelizing compilers. In this approach,

the compiler takes a sequential program, e.g. a Fortran 77 program as input, applies a set of

transformation rules, and produces a parallelized code for the target machine. However, a sequential

language, such as Fortran 77, obscures the parallelism of a problem in sequential loops and other

sequential constructs. This makes the potential parallelism of a program more di�cult to detect by

a parallelizing compiler. Therefore, compiling a sequential program into a parallel program is not

a natural approach. An alternative approach is to use a programming language that can naturally

represent an application without losing the application's original parallelism. Fortran 90 [1] (with

some extensions) is such a language. The extensions may include the forall statement and compiler

directives for data partitioning, such as decomposition, alignment, and distribution. Fortran 90 with

these extensions is what we call \Fortran 90D", a Fortran 90 version of the Fortran D language [2].

We developed the Fortran D language with our colleagues at Rice University. There is an analogous

version of Fortran 77 with compiler directives and other constructs, called Fortran 77D. Fortran D

allows the user to advise the compiler on the allocation of data to processor memories. Recently,the

High Performance Fortran Forum, an informal group of people from academia, industry and national

labs, led by Ken Kennedy, developed a language called HPF (High Performance Fortran) [3] based

on Fortran D. HPF essentially adds extensions to Fortran 90 similar to Fortran D directives. Hence,

Fortran 90D and HPF are very similar except a few di�erences. For this reason, we call our compiler

the Fortran 90D/HPF compiler.

From our point of view, Fortran90 is not only a language for SIMD computers [4, 5], but it

is a natural language for specifying parallelism in a class of problems called loosely synchronous

problems [6]. In Fortran 90D/HPF, parallelism is represented with parallel constructs, such as array

2

operations, where statements, forall statements, and intrinsic functions. This gives the programmer

a powerful tool to express the data parallelism natural to a problem.

This paper presents the design of a prototype compiler for Fortran 90D/HPF. The compiler

takes as input a program written in Fortran 90D/HPF. Its output is SPMD (Single Program

Multiple Data) program with appropriate data and computation partitioning and communication

calls for MIMD machines. Therefore, the user can still program using a data parallel language but

is relieved of the responsibility to perform data distribution and communication.

The goals of this paper are to present the underlying design philosophy, various design choices

and the reasons for making these choices, and to describe our experience with the implementation.

That is, in contrast to many other compiler papers which present speci�c techniques to perform

one or more functions, our goal is to describe the overall architecture of our compiler. We believe

that the presented design will provide directions to the implementors of HPF compilers.

The rest of this paper is organized as follows. The compiler architecture is described in Section

2. Data partitioning, and computation partitioning are discussed in Sections 3, and 4. Section

5 presents the communication primitives and communication generation for Fortran 90D/HPF

programs. In Section 6, we present the runtime support system including the intrinsic functions.

Some optimization techniques are given in Section 7. Section 8 summarizes our initial experience

using the current version of the compiler. It also presents a comparison of the performance with

hand written parallel code. Section 9 presents a summary of related work. Finally, summary and

conclusions are presented in Section 10.

2 Compiler System Diagram

Our Fortran90D/HPF parallel compiler exploits only the parallelism expressed in the data parallel

constructs. We do not attempt to parallelize other constructs, such as do loops and while loops,

since they are used only as naturally sequential control constructs in this language. The foundation

of our design lies in recognizing commonly occurring computation and communication patterns.

These patterns are then replaced by calls to the optimized run-time support system routines. The

run-time support system includes parallel intrinsic functions, data distribution functions, commu-

nication primitives and several other miscellaneous routines. This approach represents a signi�cant

departure from traditional approaches where a compiler needs to perform in-depth dependency

3

analyses to recognize parallelism, and embed all the synchronization and low-level communication

functions inside the generated code.

Figure 1 shows the components of the basic Fortran 90D/HPF compiler. Given a syntactically

correct Fortran90D/HPF program, the �rst step of the compilation is to generate a parse tree. The

front-end to parse Fortran 90 for the compiler was obtained from ParaSoft Corporation. In this

module, our compiler also transforms each array assignment statement and where statement into

equivalent forall statement with no loss of information [7]. In this way, the subsequent steps need

only deal with forall statements.

The partitioning module processes the data distribution directives; namely, decomposition,

distribute and align. Using these directives, it partitions data and computation among processors.

Fortran 90D/HPF
Code

Lexer & Parser

Partitioning
Dependency Analysis

Sequentialization
and Optimization

Communication Insertion
and Optimization

Code Generation

Fortran 77+MP
Code

Figure 1: Diagram of the compiler.

After partitioning, the parallel constructs in the node program are sequentialized since it will be

4

executed on a single processor. This is performed by the sequentialization module. Array operations

and forall statements in the original program are transferred into loops or nested loops. The com-

munication module detects communication requirements and inserts appropriate communication

primitives.

Finally, the code generator produces loosely synchronous [6] SPMD code. The generated code is

structured as alternating phases of local computation and global communication. Local computa-

tions consist of operations by each processor on the data in its own memory. Global communication

includes any transfer of data among processors, possibly with arithmetic or logical computation

on the data as it is transferred (e.g. reduction functions). In such a model, processes do not need

to synchronize during local computation. But, if two or more nodes interact, they are implicitly

synchronized by global communication.

3 Data Partitioning

The distributed memory system solves the memory bottleneck of vector supercomputers by having

separate memory for each processor. However, distributed memory systems demand high locality

for good performance. Therefore, the distribution of data across processors is of critical importance

to the e�ciency of a parallel program in a distributed memory system.

Fortran D provides users with explicit control over data partitioning with both data alignment

and distribution speci�cations. We brie
y overview directives of Fortran D relevant to this paper.

The complete language is described elsewhere [2]. The DECOMPOSITION directive is used to

declare the name, dimensionality, and the size of each problem domain. We call it \template" (the

name \template" has been chosen to describe \DECOMPOSITION" in HPF [3]). The ALIGN

directive speci�es �ne-grain parallelism, mapping each array element onto one or more elements

of the template. This provides the minimal requirement for reducing data movement. The DIS-

TRIBUTE directive speci�es coarse-grain parallelism, grouping template elements and mapping

them to the �nite resources of the machine. Each dimension of the template is distributed in either

a block or cyclic fashion. The selected distribution can a�ect the ability of the compiler to minimize

communication and load imbalance in the resulting program.

The Fortran 90D/HPF compiler maps arrays to physical processors by using a three stage

mapping as shown in Figure 2 which is guided by the user-speci�ed Fortran D directives.

5

Arrays Template Logical processors

M

N

p

pxq

Data mapping

ALIGN DECOMPOSE

DISTRIBUTE

functions

with arbitrary topologywith grid topology

Grid mapping

stage 1 stage 2 stage 3

f ϕ

q

µ

µ

f -1

-1 −1
ϕ

Physical processors

functions

Figure 2: Three stage array mapping

Stage 1 : The alignment of arrays to template is determined by their subscript expressions in

the ALIGN directive. The compiler computes f and f�1 function from the directive and applies f

functions for the corresponding array indices to bring them onto common template index domain.

The original indices can be calculated by f�1 if they are required. The algorithm to compile align

directive can be found in [8].

Stage 2 : Each dimension of the template is mapped onto the logical processor grid, based on

the DISTRIBUTE directive attributes. Block divides the template into contiguous chunks. Cyclic

speci�es a round-robin division of the template. The mapping functions � and ��1 to generate

relationship between global and local indices are computed.

Stage 3 : The logical processor grid is mapped onto the physical system. The mapping functions

' and '�1 can change from one system to another but the data mapping onto the logical processor

grid does not need to change. This enhances portability across a large number of architectures.

By performing the above three stage mapping, the compiler is decoupled from the speci�cs of a

given machine or con�guration. Compilation of distribution directives is discussed in detail in [8].

4 Computation Partitioning

Once the data is distributed, there are several alternatives to assign computations to processing

elements (PEs) for each instance of a forall statement. One of the most common methods is to use

the owner computes rule. In the owner computes rule, the computation is assigned to the PE owning

the lhs data element. This rule is simple to implement and performs well in a large number of cases.

Most of the current implementations of parallelizing compilers uses the owner computes rule [9, 10].

6

However, it may not be possible to apply the owner computes rule for every case without extensive

overhead. The following examples describe how our compiler performs computation partitioning.

Example 1 (canonical form) Consider the following statement, taken from the Jacobi relax-

ation program

forall (i=1:N, j=1:N)

& B(i,j) = 0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

In the above example, as in a large number of scienti�c computations, the forall statement can

be written in the canonical form. In this form, the subscript value in the lhs is identical to the forall

iteration variable. In such cases, the iterations can be easily distributed using the owner computes

rule. Furthermore, it is also simpler to detect structured communication by using this form (This

will be elaborated in Section 5.2.).

Figure 3 shows the possible data and iteration distributions for the lhsI = rhsI assignment

caused by iteration instance I . Cases 1 and 2 illustrate the order of communication and computation

arising from the owner computes rule. Essentially, all the communications to fetch the o�-processor

data required to execute an iteration instance are performed before the computation is performed.

The generated code will have the following communication and computation order.

Communications ! some global communication primitives

Computation ! local computation

Example 2 (non-canonical form) Consider the following statement, taken from an FFT

program

forall (i=1:incrm, j=1:nx/2)

& x(i+j*incrm*2+incrm) = x(i+j*incrm*2) - term2(i+j*incrm*2+incrm)

The lhs array index is not in the canonical form. In this case, the compiler equally distributes

the iteration space on the number of processors on which the lhs array is distributed. Hence, the

total number of iterations will still be the same as the number of lhs array elements being assigned.

However, this type of forall statement will result in either Case 3 or Case 4 in Figure 2. The

generated code will be in the following order.

Communications ! some global communication primitives to read off-processor values

Computation ! local computation

Communication ! a communication primitive to write the calculated values to off-processors

7

I

lhsI

I

lhs

I

I

I

lhsI

I

before

after

beforeafter

CASE 1

CASE 3

CASE 2

CASE 4

p p q

p q

p

q

r
lhsI

rhs

rhs

rhs

rhs

I

I

I

CASE 4: Communication before and after computation to fetch and store non-locals

CASE 3: Communication after computation to store non-local data lhs

CASE 2: Communication before computation to fetch non-local rhs

CASE 1: No communications

Figure 3: I shows the processor on which the computation is performed. lhsI and rhsI

show the processors on which the lhs and rhs of instance I reside.

For reasonably simple expressions, the compiler can transform such index expressions into the

canonical form by performing some symbolic expression operations [11]. However, it may not always

be possible to perform such transformations for complex expressions.

Example 3 (vector-valued index) Consider the statement

forall (i=1:N) A(U(i)) = B(V(i)) +C(i)

The iteration i causes an assignment to element A(U(i)), where U(i) may only be known at

run-time. Therefore, if iterations are statically assigned at compile time to various PEs, iteration i

is likely to be assigned to a PE other than the one owning A(U(i)). This is also illustrated in cases

3 and 4 of Figure 3. In this case, our compiler distributes the computation i with respect to the

owner of A(i).

Having presented the computation partitioning alternatives for various reference patterns of

arrays on the lhs, we now present a primitive to perform global to local transformations for loop

bounds.

set_BOUND(llb,lub,lst,glb,gub,gst,DIST,dim) ! computes local lb, ub, st from global ones

The set BOUND primitive takes a global computation range with global lower bound, upper

bound and stride. It distributes this global range statically among the group of processors speci�ed

8

by the dim parameter on the logical processor dimension. The DIST parameter gives the distribu-

tion attribute such as block or cyclic. The set BOUND primitive computes and returns the local

computation range in local lower bound, local upper bound and local stride for each processor. The

algorithm to implement this primitive can be found in [7].

The other functionality of the set BOUND primitive is to mask inactive processors by returning

appropriate local bounds. For example, such a case may arise when the global bounds do not

specify the entire range of the lhs array. If the inputs for this primitive are compile-time constants,

the compiler can calculate the local bounds at compile-time.

In summary, our computation and data distributions have two implications.

� The processor that is assigned an iteration is responsible for computing the rhs expression of

the assignment statement.

� The processor that owns an array element (lhs or rhs) must communicate the value of that

element to the processors performing the computation.

5 Communication

Our Fortran 90D/HPF compiler produces calls to collective communication routines [12] instead

of generating individual processor send and receive calls inside the compiled code. There are three

main reasons for using collective communication to support interprocessor communication in the

Fortran 90D/HPF compiler.

1. Improved performance estimation of communication costs. Our compiler takes the data dis-

tribution for the source arrays from the user as compiler directives. However, any future

compiler will require a capability to perform automatic data distribution and alignments

[13, 14, 15]. Such techniques usually require computing trade-o�s between exploitable par-

allelism and the communication costs. The costs of collective communication routines can

be determined more precisely, thereby enabling the compiler to generate better distributions

automatically.

2. Improved performance of Fortran 90D/HPF programs. To achieve good performance, inter-

processor communication must be minimized. By developing a separate library of interpro-

9

cessor communication routines, each routine can be optimized. This is particularly important

given that the routines will be used by many programs compiled through the compiler.

3. Increased portability of the Fortran 90D/HPF compiler. By separating the communication

library from the basic compiler design, portability is enhanced because to port the compiler,

only the machine speci�c low-level communication calls in the library need to be changed.

5.1 Communication Primitives

In order to perform a collective communication on array elements, the communication primitive

needs the following information 1-) send processors list, 2-) receive processors list, 3-) local index

list of the source array and, 4-) local index list of the destination array.

There are two ways of determining the above information. 1) Using a preprocessing loop to

compute the above values or, 2) based on the type of communication, the above information may

be implicitly available, and therefore, not require preprocessing. We classify our communication

primitives into unstructured and structured communication.

Our structured communication primitives are based on a logical grid con�guration of the pro-

cessors. Hence, they use grid-based communications such as shift along dimensions, broadcast

along dimensions etc. The following summarizes some of the structured communication primitives

implemented in our compiler.

� transfer: Single source to single destination message.

� multicast: broadcast along a dimension of the logical grid.

� overlap shift: shifting data into overlap areas in one or more grid dimensions. This is

particularly useful when the shift amount is known at compile time. This primitive uses that

fact to avoid intra processor copying of data and directly stores data in the overlap areas [16].

� temporary shift: This is similar to overlap shift except that the data is shifted into a

temporary array. This is useful when the shift amount is not a compile time constant. This

shift may require intra-processor copying of data.

� concatenation: This primitive concatenates a distributed array and the resultant array ends

up in all the processors participating in this primitive.

10

We have implemented two sets of unstructured communication primitives: 1) where the com-

municating processors can determine the send and receive lists based only on local information, and

hence, only require preprocessing that involves local computations [17], and 2) where to determine

the send and receive lists preprocessing itself requires communication among the processors [18].

The primitives are as follows.

� precomp read: This primitive is used to bring all non-local data to the place it is needed

before the computation is performed.

� postcomp write: This primitive is used to store remote data by sending it to the processors

that own the data after the computation is performed. Note that these two primitives requires

only local computation in the preprocessing loop.

� gather: This is similar to precomp read except that preprocessing loop itself may require

communication.

� scatter: This is similar to postcomp write except that preprocessing loop itself may require

communication.

5.2 Communication Detection

The compiler must recognize the presence of collective communication patterns in the computations

in order to generate the appropriate communication calls. Speci�cally, this involves a number of

tests on the relationship among subscripts of various arrays in a forall statement. These tests

should also include information about array alignments and distributions. We use pattern matching

techniques similar to those proposed by Chen [19] and also used by Gupta [20]. Further, we extend

the above tests to include unstructured communication.

Consider the following forall statement to illustrate the steps involved in communication detec-

tion.

FORALL (i1=l1:u1:s1, i2= ..., ...) LHS(f1,f2,...,fn) = RHS1(g1,g2,...,gm) + ...

where gi and fj , 1 � i � m, 1 � j � n, are functions of index variables or are indirection arrays.

The steps involved in determining a communication pattern are summarized in Algorithm 1.

The algorithm �rst attempts to detect structured communication if the arrays are aligned to

the same template. For each array on the RHS, the following processing is performed. Each

11

Algorithm 1 (Detecting the communication for the forall statement.)

Input: Forall statement with untagged array and array subscripts

Output: Forall statement with arrays and array subscripts tagged with communication primitives.

Method:

1. for each RHS array do

2. if (is aligned same template(LHS,RHS)) then

3. for each subscript gi of RHS do

4. �nd fj such that gi and fj are aligned with the same dimension of a template

5. if the pair (fj, gi) is in Table 1

tag the subscript gi with the corresponding structured communication primitive.

6. end do

7. end if

8. � if an untagged distributed dimension of array reference pattern is in Table 2,

tag the RHS array with the unstructured primitives to read RHS before computation.

9. end do

10. � If a distributed dimension of LHS reference pattern is in Table 2

tag the LHS array with the unstructured primitives to write LHS after computation

11. � if LHS array is not distributed

tag the distributed RHS array with concatenation primitive.

subscript of the array is coupled with the corresponding subscript on the LHS array such that both

subscripts are aligned with the same dimension of the template. For each such pair, the algorithm

attempts to �nd a structured communication pattern in that dimension according to Table 1. If a

structured communication pattern is found then the subscript on the RHS from this pair is tagged

with indicating the appropriate communication primitive.

If any distributed dimension of an array on the RHS is left untagged then the array is marked

with one of the unstructured communication primitives (the third column of Table 2) depending

on the reference pattern given in the second column of Table 2.

The algorithm tags the LHS array as postcomp write or scatter according to the reference pat-

terns given in Table 2 if one or more of the distributed dimension's subscript is in non-canonical

form, is vector-valued or is unknown at compiler time. Note that any pattern that can not be

classi�ed according to Tables 1 or 2, is marked as unknown (such subscripts involving more than

one forall index, e.g I+J) so that scatter and gather can be used to parallelize any forall statement.

12

Table 1: Structured communication primitives based on the relationship between LHS

and RHS array subscript reference patterns for block distribution. (c: compile time

constant, s, d: scalar). Similar structured primitives for cyclic distributions are de�ned

but are not presented here.

Steps (lhs,rhs) Comm. primitives

1 (i; s) multicast

2 (i; i+ c) overlap shift

3 (i; i� c) overlap shift

4 (i; i+ s) temporary shift

5 (i; i� s) temporary shift

6 (d; s) transfer

7 (i; i) no communication

Table 2: Unstructured communication primitives to read RHS data before the computa-

tion is performed and to write non-local LHS data after the computation is performed

(f : invertible function, V : indirection array).

Steps Reference pattern Comm. primitives to read RHS Comm. primitive to write LHS

1 f(i) precomp read postcomp write

2 V (i) gather scatter

3 unknown gather scatter

13

5.3 Communication Generation

Having recognized the type of communication in each dimension of an array for structured commu-

nication or each array for unstructured communication in a forall statement, the compiler needs to

perform the appropriate program transformations. We now illustrate these transformations with

the aid of some examples.

5.3.1 Structured Communication

All the examples discussed below have the following mapping directives.

C$ PROCESSORS(P,Q)

C$ DISTRIBUTE TEMPL(BLOCK,BLOCK)

C$ ALIGN A(I,J) WITH TEMPL(I,J)

C$ ALIGN B(I,J) WITH TEMPL(I,J)

Example 1 (transfer) Consider the statement

FORALL(I=1:N) A(I,8)=B(I,3)

The �rst subscript of B is marked as no communication because A and B are aligned in the

�rst dimension and have identical indices. The second dimension is marked as transfer.

1. call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

2. call set_DAD(B_DAD,.....) ! put information for B into B_DAD

3. call transfer(B, B_DAD, TMP, source=global_to_proc(8), dest=global_to_proc(3))

4. DO I=lb,ub,st

5. A(I,global_to_local(8)) = TMP(I)

6. END DO

In the above code, the set BOUND primitive (line 1) computes the local bounds for computation

assignment based on the iteration distribution (Section 4). In line 2, the primitive set DAD is

used to �ll the Distributed Array Descriptor (DAD) associated with array B so that it can be

passed to the transfer communication primitive at run-time. The DAD has su�cient information

for the communication primitives to compute all the necessary information including local bounds,

distributions, global shape etc. Note that transfer performs one-to-one send-receive communication

based on the logical grid. In this example, one column of grid processors communicate with another

column of the grid processors as shown in Figure 4 (a).

14

(a) transfer (b) multicast

Figure 4: Structured communication on logical grid processors.

Example 2 (multicast) Consider the statement

FORALL(I=1:N,J=1:M) A(I,J)=B(I,3)

The second subscript of B marked as multicast and the �rst as no communication.

1. call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

2. call set_BOUND(lb1,ub1,st1,1,M,1) ! compute local lb, ub, and st

3. call set_DAD(B_DAD,.....) ! put information for B into B_DAD

4. call multicast(B, B_DAD, TMP,source_proc=global_to_proc(3), dim=2)

5. DO I=lb,ub,st

6. DO J=lb1,ub1,st1

7. A(I,J) = TMP(I)

8. END DO

Line 4 shows a broadcast along dimension 2 of the logical processor grid by the processors

owning elements B(I; 3) where 1 � I � N (Figure 4 (b).)

Example 3 (multicast shift) Consider the statement

FORALL(I=1:N,J=1:M) A(I,J)=B(3,J+s)

The �rst subscript of array B is marked as multicast and the second subscript is marked as

temporary shift. The above communication can be implemented as two separate communication

steps: multicast along the �rst dimension of logical grid TEMPL and temporary shift along the sec-

ond dimension of the logical grid. Alternatively, the two communication patterns can be composed

together to obtain a better communication primitive such as the multicast shift primitive.

call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

call set_BOUND(lb1,ub1,st1,1,M,1) ! compute local lb, ub, and st

multicast_shift(B, B_DAD,TMP, source=global_to_proc(3),

& shift=s, multicast_dim=1, shift_dim=2)

15

DO I=lb,ub,st

DO J=lb1,ub1,st1

A(I,J)=TMP(J)

END DO

END DO

Combining two primitives eliminates the need for creating temporary storage and eliminates

some of intra processor copying, message-packing, and unpacking.

5.3.2 Unstructured Communication

In distributed memory MIMD architectures, there is typically a non-trivial communication latency

or startup cost. Hence, it is attractive to vectorize messages to reduce the number of startups. For

unstructured communication, this optimization can be achieved by performing the entire prepro-

cessing loop before communication so that the schedule routine can combine the messages to the

maximum extent. The preprocessing loop is also called the \inspector" loop [21, 22].

Example 1 (precomp read) Consider the statement

FORALL(I=1:N) A(I)=B(2*I+1)

The array B is marked as precomp read since the distributed dimension subscript is written as

f(i) = 2 � i+ 1 which is invertible as g(i) = (i� 1)=2.

1 count=1

2 call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

3 DO I=lb,ub,st

4 receive_list(count)=global_to_proc(f(i))

5 send_list(count)= global_to_proc(g(i))

6 local_list(count) = global_to_local(g(i))

7 count=count+1

8 END DO

9 isch = schedule1(receive_list, send_list, local_list, count)

10 call precomp_read(isch, tmp,B)

11 count=1

12 DO I=lb,ub,st

13 A(I) = tmp(count)

14 count= count+1

15 END DO

16

The preprocessing loop is given in lines 1-9. Note that this preprocessing loop executes con-

currently in each processor. It �lls out the receive list as well as the send list of processors. Each

processor also �lls the local indices of the array elements which are needed by that processor.

The schedule isch can also be used to carry out identical patterns of data exchanges on several

di�erent but identically distributed arrays or array sections. The same schedule can be reused

repeatedly to carry out a particular pattern of data exchange on a single distributed array. In these

cases, the cost of generating the schedules can be amortized by only executing it once. This analysis

can be performed at compile time. Hence, if the compiler recognizes that the same schedule can

be reused, it does not generate code for scheduling but it passes a pointer to the already existing

schedule. Furthermore, the preprocessing computation can be moved up as much as possible by

analyzing de�nition-use chains [23]. Reduction in communication overhead can be signi�cant if the

scheduling code can be moved out of one or more nested loops by this analysis.

In the above example, local list (line 6) is used to store the index of one-dimensional array.

However, in general, local list will store indices from a multi-dimensional Fortran array by using

the usual column-major subscript calculations to map the indices to a one-dimensional index.

The precomp read primitive performs the actual communication using the schedule. Once the

communication is performed, the data is ordered in a one dimensional array, and the computation

(lines 12-15) uses this one dimensional array.

Example 2 (gather) Consider the statement

FORALL(I=1:N) A(I)=B(V(I))

The array B is marked as requiring gather communication since the subscript is only known at

runtime. The receiving processors can know what non-local data they need from other processors,

but a processor may not know what local data it needs to send to other processors. For simplicity,

in this example, we assume that the indirection array V is replicated. If it is not replicated, the

indirection array must also be communicated to compute the receive list on each processor.

1 count=1

2 call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

3 DO I=lb,ub,st

4 receive_list(count)=global_to_proc(V(i))

6 local_list(count) = global_to_local(V(i))

7 count=count+1

8 END DO

17

9 isch = schedule2(receive_list, local_list, count)

10 call gather(isch, tmp,B)

11 count=1

12 DO I=lb,ub,st

13 A(I) = tmp(count)

14 count= count+1

15 END DO

Once the scheduling is completed, every processors knows exactly which non-local data elements

it needs to send to and receive from other processors. Recall that the task of scheduler2 is to

determine exactly which send and receive communications must be carried out by each processor.

The scheduler �rst �gures out how many messages each processor will have to send and receive

during the data exchange. Each processor computes the number of elements (receive list) and

the local index of each element it needs from all other processors. In schedule2 routine, processors

communicate to combine these lists (a fan-in type of communication). At the end of this processing,

each processor contains the send and receive list. After this point, each processor transmits a list

of required array elements (local list) to the appropriate processors. Each processor now has the

information required to set up the send and receive messages that are needed to carry out the

scheduled communication. This is done by the gather primitives.

Example 3 (scatter) Consider the statement

FORALL(I=1:N) A(U(I))=B(I)

The arrayA is marked as requiring scatter primitive since the subscript is only known at runtime.

Note that owner computes rule is not applied here. The processor performing the computation

knows the processor and the corresponding local-o�set at which the resultant element must be

written.

1 count=1

2 call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

3 DO I=lb,ub,st

4 send_list(count)=global_to_proc(U(i))

6 local_list(count) = global_to_local(U(i))

7 count=count+1

8 END DO

9 isch = schedule3(proc_to, local_to, count)

10 call scatter(isch, A, B)

18

Unlike the gather primitive, in this case each processor computes a send list containing processor

ids and local list containing the local index where the communicated data must be stored. The

schedule3 is similar to schedule2 of gather primitives except that schedule3 does not need to send

local index in a separate communication step.

The gather and scatter operations are powerful enough to provide the ability to read and

write distributed arrays with vectorized communication facility. These two primitives are available

in PARTI (Parallel Automatic Runtime Toolkit at ICASE) [21] designed to e�ciently support

irregular patterns of distributed array accesses. The PARTI and other communication primitives

and intrinsic functions form the run-time support system of our Fortran 90D compiler.

6 Run-time Support System

The Fortran 90D compiler relies on a very powerful run-time support system. The run-time support

system consists of functions which can be called from the node programs of a distributed memory

machine.

Intrinsic functions support many of the basic data parallel operations in Fortran 90. They

do not only provide a concise means of expressing operations on arrays, but also identify parallel

computation patterns that may be di�cult to detect automatically. Fortran 90 provides intrinsic

functions for operations such as shift, reduction, transpose, and transpose, and matrix multiplica-

tion. The intrinsic functions that may induce communication can be divided into �ve categories as

shown in Table 3.

Table 3: Fortran90D Intrinsic Functions

1. Structured 2. Reduction 3. Multicasting 4. Unstructured 5. Special

communication communication routines

CSHIFT DOTPRODUCT SPREAD PACK MATMUL

EOSHIFT ALL, ANY UNPACK

COUNT RESHAPE

MAXVAL, MINVAL TRANSPOSE

PRODUCT

SUM

MAXLOC, MINLOC

19

The �rst category requires data to be transferred using with less overhead structured shift

communications operations. The second category of intrinsic functions require computations based

on local data followed by use of a reduction tree on the processors involved in the execution of

the intrinsic function. The third category uses multiple broadcast trees to spread data. The

fourth category is implemented using unstructured communication patterns. The �fth category

is implemented using existing research on parallel matrix algorithms [12]. Some of the intrinsic

functions can be further optimized for the underlying hardware architecture. Our Fortran 90D/HPF

compiler has more than 500 parallel run-time support routines and the implementation details can

be found in [24].

Arrays may be redistributed across subroutine boundaries. A dummy argument which is dis-

tributed di�erently than its actual argument in the calling routine is automatically redistributed

upon entry to the subroutine by the compiler, and is automatically redistributed back to its original

distribution at subroutine exit. These operations are performed by the redistribution primitives

which transform from block to cyclic or vice versa.

When a distributed array is passed as an argument to some of the run-time support primitives,

it is also necessary to provide information such as its size, distribution among the nodes of the

distributed memory machine etc. All this information is stored into a structure which is called

distributed array descriptor (DAD) [24].

In summary, parallel intrinsic functions, communication routines, dynamic data redistribution

primitives and others are part of the run-time support system.

7 Optimizations

Several types of communication and computation optimizations can be performed to generate a more

e�cient code. In terms of computation optimization, it is expected that the scalar node compiler

performs a number of classic scalar optimizations within basic blocks. These optimizations include

common subexpression elimination, copy propagation (of constants, variables, and expressions),

constant folding, useless assignment elimination, and a number of algebraic identities and strength

reduction transformations. However, to use parallelism within the single node (e.g. using attached

vector units), our compiler propagates information to the node compiler using node directives.

Since there is no data dependency between di�erent loop iteration in the original data parallel

20

constructs such as forall statement, vectorization can be performed easily by the node compiler.

Our compiler performs several optimizations to reduce the total cost of communication. Some

of communication optimizations [19, 25, 26] are as follows.

1. Vectorized communication. Vectorization combines messages for the same source and destina-

tion into a single message to reduce communication overhead. Since we are only parallelizing

array assignments and forall statements in Fortran 90D/HPF, there is no data dependency

between di�erent loop iterations. Thus, all the required communication can be performed

before or after the execution of the loop on each of the processors involved.

2. Eliminate unnecessary communications. In many cases, communication required for two

di�erent operands can be replaced by their union. For example, the following code may

require two overlapping shifts. However, with a simple analysis, the compiler can eliminate

the shift of size 2.

FORALL(I=1:N) A(I)=B(I+2)+B(I+3)

3. Reuse of scheduling information. Unstructured communication primitives are required by

computations which require the use of a preprocessor. As discussed in Section 5.3.2, the

schedules can be reused with appropriate analysis.

4. Code movement. The compiler can utilize the information that the run-time support routines

do not have procedural side e�ects. For example, the preprocessing loop or communication

routines can be moved up as much as possible by analyzing de�nition-use chains [23]. This

may lead to moving of the scheduling code out of one or more nested loops which may reduce

the amount of communication required signi�cantly. We are incrementally incorporating

many more optimizations in the compiler.

8 Experimental Results

A prototype compiler is complete (it was demonstrated at Supercomputing'92). In this section, we

describe our experience in using the compiler.

21

8.1 Portability of the Fortran 90D/HPF Compiler

One of the principal requirements of the users of distributed memory MIMD systems is some

\guarantee" of the portability for their code. Express parallel programming environment [27]

guarantees this the portability on various platforms including, Intel iPSC/860, nCUBE/2, networks

of workstations etc. We should emphasize that we have implemented a collective communication

library which is currently built on the top of Express message passing primitives. Hence, in order

to change to any other message passing system such as PVM [28] (which also runs on several

platforms), we only need to replace the calls to the communication primitives in our communication

library (not the compiler). However, it should be noted that a penalty must be paid to achieve

portability because portable routines are normally built on top of the system routines. Therefore,

the performance also depends on how e�cient are the communication primitives on the top of which

the communication library is built.

As a test application we use Gaussian Elimination, which is a part of the FortranD/HPF

benchmark test suite [29]. Figure 5 shows the execution times obtained to run the same compiler

generated code on a 16-node Intel/860 and nCUBE/2 for various problem sizes. Due to space

limitations, we do not present performance of many other programs, and some of them can be

found in [30].

8.2 Performance Evaluation

Table 4 shows a comparison between the performance of the hand-written Fortran 77+MP code

with that of the compiler generated code. We can observe that the performance of the compiler

generated code is within 10% of the hand-written code. This is due to the fact that the compiler

generated code produces an extra communication call that can be eliminated using optimizations.

However as Figure 6 shows, the gap between the performance of the two codes increases as the

number of processors increases. This is because the extra communication step is a broadcast which

is almost O(log(P)) for a P processor hypercube system.

22

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

Time

Array size N (N*(N+1) real)

Gaussian Elimination

iPSC/860 3

3 3
3

3
3

3
3

3

nCUBE/2 +

+
+

+

+

+

+

+

+

Figure 5: Execution time of Fortran 90D compiler generated code for Gaussian Elimi-

nation on a 16-node Intel iPSC/860 and nCUBE/2 (time in seconds).

Table 4: Comparison of the execution times of the hand-written code and Fortran 90D

compiler generated code for Gaussian Elimination. Matrix size is 1023x1024 and it is

column distributed.(Intel iPSC/860, time in seconds).

Number of PEs

1 2 4 8 16

Hand Written 623.16 446.60 235.37 134.89 79.48

Fortran 90D 618.79 451.93 261.87 147.25 87.44

23

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

2 4 6 8 10 12 14 16 18

Speedup

Processors

Gaussian Elimination

Compiler generated 3

3
3

3

3

3

Hand written +

+
+

+

+

+

Figure 6: Speed-up against the sequential code (corresponds to Table 4 of the hand-

written code and Fortran 90D compiler generated code for Gaussian Elimination).

9 Summary of Related Work

The compilation technique of Fortran 77 for distributed memory systems has been addressed by

Callahan and Kennedy [10]. Currently, a Fortran 77D compiler is being developed at Rice [25, 31].

Superb [9] compiles a Fortran 77 program into a semantically equivalent parallel SUPRENUM

multiprocessor. Koelbel and Mehrotra [22, 17] present a compilation method where a great deal

of e�ort is put on run-time analysis for optimizing message passing in implementation of Kali.

Quinn et al. [32, 33] use a data parallel approach for compiling C* for hypercube machines. The

ADAPT system [34] compiles Fortran 90 for execution on MIMD distributed memory architectures.

The ADAPTOR [35] is a tool that transform data parallel programs written in Fortran with array

extension and layout directives to explicit message passing. Chen [19, 36] describes general com-

piler optimization techniques that reduce communication overhead for Fortran-90 implementation

on massivelly parallel machines. Many techniques especially for unstructured communication of

Fortran 90D compiler are adapted from Saltz et al. [37, 26, 18]. Gupta et al. [20, 38] use collective

communication on automatic data partitioning on distributed memory machines. Due to space

limitations, we do not elaborate on various other related projects.

24

10 Conclusions

In this paper, we presented design, implementation and performance results of our Fortran 90D/HPF

compiler for distributed memory machines. Speci�cally, techniques for processing distribution di-

rectives, computation partitioning, communication detection and generation were presented. We

also showed that our design is portable, yet e�cient.

We believe that the methodology presented in this paper to compile Fortran 90D/HPF can be

used by the designers and implementors for HPF language.

Acknowledgments

We are grateful to Parasoft for providing the Fortran 90 parser and Express without which the

prototype compiler could have been delayed. We would like to thank the other members of our

compiler research group I. Ahmad, R. Bordawekar, R. Ponnusamy, R. Thakur, and J. C. Wang

for their contribution in the project including the development of the run-time library functions,

testing, and help with programming. We would also like to thank K. Kennedy, C. Koelbel, C.

Tseng and S. Hiranandani of Rice University for many inspiring discussions and inputs that have

greatly in
uenced this work.

References

[1] American National Standards Institue. Fortran 90: X3j3 internal document s8.118. Summitted
as Text for ISO/IEC 1539:1991, May 1991.

[2] G. C. Fox, S. Hiranadani, K. Kenndy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran
D Language Speci�cation. Technical report, Rice and Syracuse University, 1992.

[3] High Performance Fortran Forum. High performance fortran language speci�cation version
1.0. Draft, Also available as technical report CRPC-TR92225 from the Center for Research on
Parallel Computation, Rice University., Jan. 1993.

[4] The Thinking Machine Corporation. CM Fortran User's Guide version 0.7-f, July 1990.

[5] Maspar Computer Corporation. MasPar Fortran User Guide version 1.1, Aug. 1991.

[6] G. Fox. The architecture of problems and portable parallel software systems. Technical Report
SCCS-78b, Syracuse University, 1991.

[7] Z. Bozkus et al. Compiling the FORALL statement on MIMD parallel computers. Technical
Report SCCS-389, Northeast Parallel Architectures Center, July 1992.

25

[8] Z. Bozkus et al. Compiling Distribution Directives in a Fortran 90D Compiler. Technical
Report SCCS-388, Northeast Parallel Architectures Center, July 1992.

[9] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi Automatic SIMD/MIMD Paral-
lelization. Parallel Computing, January 1988.

[10] D. Callahan and K. Kennedy. Compiling programs for Distributed Memory Multiprocessors.
The Journal of Supercomputing, pages 171{207, 1988.

[11] M. Wu and G. Fox et al. Compiling Fortran 90 programs for distributed memory MIMD
paralelel computers. Technical Report SCCS-88, Northeast Parallel Architectures Center,
May 1991.

[12] G. C. Fox, M.A. Johnson, G.A. Lyzenga, S. W. Otto, J.K. Salmon, and D. W. Walker. In
Solving Problems on Concurent Processors, volume 1-2. Prentice Hall, May 1988.

[13] K. Knobe, J. D. Lukas, and G. L. Steele. Data optimization: Allocation of arrays to reduce
communication on SIMD machines. Journal of Parallel and Distributed Computing, pages
102{118, Feb 1990.

[14] J. Li and M. Chen. The data alignment phase in compiling programs for distributed-memory
machines. Journal of Parallel and Distributed Computing, pages 213{221, Oct 1991.

[15] S. Chatterjee, J.R. Gilbert, R. Schreiber, and S.H Tseng. Automatic Array Alignment in Data-
Parallel Programs. Twentieth Annual ACM SIGACT/SIGPLAN Symposium on Principles of
Programming Languages, January 1993.

[16] M. Gerndt. Updating distributed variables in local computations. Concurrency: Practice and
Experience, September 1990.

[17] C. Koelbel and P. Mehrotra. Supporting Compiling Global Name-Space Parallel Loops for
Distributed Execution. IEEE Transactions on Parallel and Distributed Systems, October 1991.

[18] H. Berryman J. Saltz, J. Wu and S. Hiranandani. Distributed Memory Compiler Design for
Sparse Problems. Interim Report ICASE, NASA Langley Research Center, 1991.

[19] J. Li and M. Chen. Compiling Communication -E�cient Programs for Massively Parallel
Machines. IEEE Transactions on Parallel and Distributed Systems, pages 361{376, July 1991.

[20] M. Gupta and P. Banerjee. Demonstration of Automatic Data Partitioning Techniques for
Parallelizing Compilers on Multicomputers. IEEE: Transaction on Parallel and Distributed
Systems, pages 179{193, March 1992.

[21] R. Das, J. Saltz, and H. Berryman. A Manual For PARTI Runtime Primitives. NASA,ICASE
Interim Report 17, May 1991.

[22] C. Koelbel, P. Mehrotra, and J. V. Rosendale. Supporting Shared Data Structures on Dis-
tributed Memory Architectures. PPoPP, March 1990.

[23] A.V. Aho, R. Sethi, and J.D Ullman. Compilers Principles, Techniques and Tools. March
1988.

[24] I. Ahmad, R. Bordawekar, Z. Bozkus, A. Choudhary, G. Fox, K. Parasuram, R. Ponnusamy,
S. Ranka, and R. Thakur. Fortran 90D Intrinsic Functions on Distributed Memory Machines:
Implementation and Scalability. Technical Report SCCS-256, Northeast Parallel Architectures
Center, March 1992.

26

[25] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimization for Fortran D on MIMD
distributed-memory machines. Proc. Supercomputing'91, Nov 1991.

[26] R. Mirchandaney J. Saltz, K. Crowley and H. Berryman. Run-time scheduling and execution of
loops on message passing machines. Journal of Parallel and Distributed Computing, December
1991.

[27] ParaSoft Corp. Express Fortran reference guide Version 3.0, 1990.

[28] A. Beguelin, J. Dongarra, A. Geist, R. Mancheck, and V. Sunderam. A Users Guide to
PVM Parallel Virtual Machine. Technical Report ORNL/TM-11826, Oak Ridge National
Laboratory, July 1991.

[29] A. G. Mohamed, G. Fox, G. V. Laszewski, M. Parashar, T. Haupt, K. Mills, Y. Lu, N. Lin, and
N. Yeh. Application Benchmark Set for Fortran-D and High Performance Fortran. Technical
Report SCCS-327, Northeast Parallel Architectures Center, May 1992.

[30] Z. Bozkus et al. Compiling Fortran 90D/HPF for Distributed Memory MIMD Computers.
Technical Report SCCS-444, Northeast Parallel Architectures Center, 1993.

[31] S. Hiranandani, K. Kennedy, and C.W. Tseng. Compiler support for machine-indepentet Par-
allel Programming in Fortran D. Compiler and Runtime Software for Scalable Multiprocessors,
1991.

[32] Michael Quinn, Philip Hatcher, and Karen Jourdenais. Compiling C* Programs for a Hyper-
cube Multicomputer. Parallel Computing Laboratory, University of New Hampshire, PCL-87-
12, December 1987.

[33] Philip Hatcher, Anthony Lapadula, Robert Jones, Michael Quinn, and Ray Anderson. A
Production-Quality C* Compiler for Hypercube Multicomputers. Third ACM SIGPLAN sym-
posium on PPOPP, 26:73{82, July 1991.

[34] J.H Merlin. Techniques for the Automatic Parallelisation of 'Distributed Fortran 90'. Technical
Report SNARC 92-02, Southampton Novel Architecture Research Centre, 1992.

[35] T. Brandes. ADAPTOR Language Reference Manual. Technical Report ADAPTOR-3, Ger-
man National Research Center for Computer Science, 1992.

[36] M. Chen and J.J Wu. Optimizing FORTRAN-90 Programs for Data Motion on Massivelly
Parallel Systems. Technical Report YALEU/DCS/TR-882, Yale University, Dep. of Comp.
Sci., 1992.

[37] H. Berryman J. Saltz and J. Wu. Multiprocessors and run-time compilation. Concurrency:
Practice and Experience, December 1991.

[38] M. Gupta. Automatic Data Partitioning on Distributed Memory Multicomputers. Technical
Report PhD thesis, University of illinois at Urbana-Champaign, 1992.

27

