
A Compilation Approach for Fortran 90D/HPF Compilers

on Distributed Memory MIMD Computers�

Zeki Bozkus, Alok Choudharyy, Geo�rey Fox, Tomasz Haupt, and Sanjay Ranka

Northeast Parallel Architectures Center

3-201, Center for Science and Technology

Syracuse University

Syracuse, NY 13244-4100

fzbozkus, choudhar, gcf, haupt, rankag@npac.syr.edu

May 3, 1993

Abstract

This paper describes a compilation approach for a Fortran 90D/HPF compiler, a source-to-

source parallel compiler for distributed memory systems. Di�erent from Fortran 77 parallelizing

compilers, a Fortran90D/HPF compiler does not parallelize sequential constructs. Only par-

allelism expressed by Fortran 90D/HPF parallel constructs is exploited. The methodoly of

parallelizing Fortran programs such as computation partitioning, communication detection and

generation, and the run-time support for the compiler are discussed. An example of Gaussian

Elimination is used to illustrate the compilation techniques with performance results.
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1 Introduction

Distributed memory multiprocessors are increasingly being used for providing high performance

for scienti�c applications. Distributed memory machines o�er signi�cant advantages over their

shared memory counterparts in terms of cost and scalability, though it is widely accepted that

they are di�cult to program given the current status of software technology. Currently, distributed

memory machines are programmed using a node language and a message passing library. This

process is tedious and error prone because the user must perform the task of data distribution and

communication for non-local data access.

There has been signi�cant research in developing parallelizing compilers. In this approach,

the compiler takes a sequential program, e.g. a Fortran 77 program as input, applies a set of

transformation rules, and produces a parallelized code for the target machine. However, a sequential

language, such as Fortran 77, obscures the parallelism of a problem in sequential loops and other

sequential constructs. This makes the potential parallelism of a program more di�cult to detect by

a parallelizing compiler. Therefore, compiling a sequential program into a parallel program is not

a natural approach. An alternative approach is to use a programming language that can naturally

represent an application without losing the application's original parallelism. Fortran 90 [1] (with

some extensions) is such a language. The extensions may include the forall statement and compiler

directives for data partitioning, such as decomposition, alignment, and distribution. Fortran 90 with

these extensions is what we call \Fortran 90D", a Fortran 90 version of the Fortran D language [2].

We developed the Fortran D language with our colleagues at Rice University. There is an analogous

version of Fortran 77 with compiler directives and other constructs, called Fortran 77D. Fortran D

allows the user to advise the compiler on the allocation of data to processor memories. Recently,the

High Performance Fortran Forum, an informal group of people from academia, industry and national

labs, led by Ken Kennedy, developed a language called HPF (High Performance Fortran) [3] based

on Fortran D. HPF essentially adds extensions to Fortran 90 similar to Fortran D directives. Hence,

Fortran 90D and HPF are very similar except a few di�erences. For this reason, we call our compiler

the Fortran 90D/HPF compiler.

From our point of view, Fortran90 is not only a language for SIMD computers [4, 5], but it

is a natural language for specifying parallelism in a class of problems called loosely synchronous

problems [6]. In Fortran 90D/HPF, parallelism is represented with parallel constructs, such as array
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operations, where statements, forall statements, and intrinsic functions. This gives the programmer

a powerful tool to express the data parallelism natural to a problem.

This paper presents the design of a prototype compiler for Fortran 90D/HPF. The compiler

takes as input a program written in Fortran 90D/HPF. Its output is SPMD (Single Program

Multiple Data) program with appropriate data and computation partitioning and communication

calls for MIMD machines. Therefore, the user can still program using a data parallel language but

is relieved of the responsibility to perform data distribution and communication.

The goals of this paper are to present the underlying design philosophy, various design choices

and the reasons for making these choices, and to describe our experience with the implementation.

That is, in contrast to many other compiler papers which present speci�c techniques to perform

one or more functions, our goal is to describe the overall architecture of our compiler. We believe

that the presented design will provide directions to the implementors of HPF compilers.

Tremendeous e�ort in the last decade has been devoted to the goal of running existing Fortran

programs on new parallel machines. Restructuring compilers for Fortran 77 programs have been

researched extensivelly for shared memory systems[7, 8]. The compilation techinique of Fortran 77

for distributed memory systems has been addressed by Callahan and Kennedy [9]. Currently, a

Fortran 77D compiler is being developed at Rice [10, 11]. Hatcher and Quinn provide a working

version of a C* compiler. This work converts C* - an extension of C that incorporates dfeatures

of a data parallel SIMD programming model- into C plus messasge passing for MIMD distributed

memory parallel computes[12]. The ADAPT system [13] compiles Fortran 90 for execution on

MIMD distributed memory architectures. The ADAPTOR [14] is a tool that transform data par-

allel programs written in Fortran with array extension and layout directives to explicit message

passing. Chen [15, 16] describes general compiler optimization techniques that reduce communi-

cation overhead for Fortran-90 implementation on massivelly parallel machines. Many techniques

especially for unstructured communication of Fortran 90D/HPF compiler are adapted from Saltz et

al. [17, 18, 19]. Gupta et al. [20, 21] use collective communication on automatic data partitioning

on distributed memory machines. uperb [22] compiles a Fortran 77 program into a semantically

equivalent parallel SUPRENUM multiprocessor. Koelbel and Mehrotra [23, 24] present a compila-

tion method where a great deal of e�ort is put on run-time analysis for optimizing message passing

in implementation of Kali.
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Figure 1: Sketch of Fortran 90D/HPF compiler.

2 Compilation Overview

Our Fortran90D/HPF parallel compiler exploits only the parallelism expressed in the data parallel

constructs. We do not attempt to parallelize other constructs, such as do loops and while loops, since

they are used only as naturally sequential control constructs in this language. The foundation of our

design lies in recognizing commonly occurring computation and communication patterns. These

patterns are then replaced by calls to the optimized run-time support system routines. The run-time

support system includes parallel intrinsic functions, data distribution functions, communication

primitives and several other miscellaneous routines (shown in Figure 1). This approach represents

a signi�cant departure from traditional approaches where a compiler needs to perform in-depth

dependency analyses to recognize parallelism, and embed all the synchronization and low-level

communication functions inside the generated code.

Given a syntactically correct Fortran90D/HPF program, the �rst step of the compilation is to

generate a parse tree. The front-end to parse Fortran 90 for the compiler was obtained fromParaSoft
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Corporation. In this module, our compiler also transforms each array assignment statement and

where statement into equivalent forall statement with no loss of information [25]. In this way, the

subsequent steps need only deal with forall statements.

The partitioning module processes the data distribution directives; namely, decomposition,

distribute and align. Using these directives, it partitions data and computation among processors.

After partitioning, the parallel constructs in the node program are sequentialized since they

would be executed on a single processor. This is performed by the sequentialization module.

Array operations and forall statements in the original program are transferred into loops or nested

loops. The communication module detects communication requirements and inserts appropriate

communication primitives.

Finally, the code generator produces loosely synchronous [6] SPMD code. The generated code is

structured as alternating phases of local computation and global communication. Local computa-

tions consist of operations by each processor on the data in its own memory. Global communication

includes any transfer of data among processors, possibly with arithmetic or logical computation

on the data as it is transferred (e.g. reduction functions). In such a model, processes do not need

to synchronize during local computation. But, if two or more nodes interact, they are implicitly

synchronized by global communication.

3 Data Partitioning

Distributed memory systems solve the memory bottleneck of vector supercomputers by having

separate memory for each processor. However, distributed memory systems demand high locality

for good performance. Therefore, the distribution of data across processors is of critical importance

to the performance of a parallel program in a distributed memory system.

Fortran D provides users with explicit control over data partitioning with both data alignment

and distribution speci�cations. We briey overview directives of Fortran D relevant to this paper.

The complete language is described elsewhere [2]. The DECOMPOSITION directive is used to

declare the name, dimensionality, and the size of each problem domain. We call it \template" (the

name \template" has been chosen to describe \DECOMPOSITION" in HPF [3]). The ALIGN

directive speci�es �ne-grain parallelism, mapping each array element onto one or more elements

of the template. This provides the minimal requirement for reducing data movement. The DIS-
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TRIBUTE directive speci�es coarse-grain parallelism, grouping template elements and mapping

them to the �nite resources of the machine. Each dimension of the template is distributed in either

a block or cyclic fashion. The selected distribution can a�ect the ability of the compiler to minimize

communication and load imbalance in the resulting program.

The DISTRIBUTE directive assigns an attribute to each dimension of the template. Each

attribute describes the mapping of the data in that dimension of the template on the logical

processor grid. The �rst version of the compiler supports the following types of distribution.

� BLOCK divides the template into contiguous chunks.

� CYCLIC speci�es a round-robin division of the template.

TheBLOCK attribute indicates that blocks of global indices are mapped to the same processor.

The block size depends on the size of the template dimension, N, and the number of processors, P,

on which that dimension is distributed (shown in the �rst column of Table 1).

Table 1: Data distribution function(refer to De�nition 1): N is the size of the global

index space. P is the number of processors. N and P are known at compile time and

N � P . I is the global index. i is the local index and p is the owner of that local index

i.
Block-distribution Cyclic-distribution

global to proc

I ! p p = I�P
N

p = I mod P

global to local

I ! i i = I �
p�N

P
i = b

I
P
c

local to global

(p; i)! I I = i+ p�N

P
I = iP + p

cardinality N
P

b
N+P�1�p

P
c

The CYCLIC attribute indicates that global indices of the template in the speci�ed dimension

should be assigned to the logical processors in a round-robin fashion. The last column of Table 1

shows the CYCLIC distribution functions. This also yields an optimal static load balance since

the �rst N mod P processors get dN
P
e elements; the rest get bN

P
c elements. In addition, these

distribution functions are e�cient and simple to compute. Although cyclic distribution functions
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Figure 2: Matrix-vector decomposition: each processor is assigned array section of A,

X, and Y.

provided a good static load balance, the locality is worse than that using block distribution because

cyclic distributions scatter data.

The following example illustrates the Fortran D directives. Consider the data partitioning

schema for matrix-vector multiplication proposed by Fox et al.[26] and shown in Figure 2. The

matrix vector multiplication can be described as

y = Ax

where y and x are vectors of length M , and A is an M �M matrix. To create the distribution

shown in the Figure 2, one can use the following directives in a Fortran 90D program.

C$ DECOMPOSITION TEMPL(M,M)

C$ ALIGN A(I,J) WITH TEMPL(I,J)

C$ ALIGN X(J) WITH TEMPL(*,J)

C$ ALIGN Y(I) WITH TEMPL(I,*)

C$ DISTRIBUTE TEMPL(BLOCK,BLOCK)

If this program is mapped onto a 4x4 physical processor system, the Fortran 90D compiler

will generate the distributions shown in Figure 2. Matrix A is distributed in both dimensions.

Hence, a single processor owns a subset of matrix rows and columns. X is column-distributed and

row-replicated. But Y is row-distributed and column-replicated.
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4 Computation Partitioning

Once the data is distributed, there are several alternatives to assign computations to processing

elements (PEs) for each instance of a forall statement. One of the most common methods is to use

the owner computes rule. In the owner computes rule, the computation is assigned to the PE owning

the lhs data element. This rule is simple to implement and performs well in a large number of cases.

Most of the current implementations of parallelizing compilers uses the owner computes rule [22, 9].

However, it may not be possible to apply the owner computes rule for every case without extensive

overhead. The following examples describe how our compiler performs computation partitioning.

Example 1 (canonical form) Consider the following statement, taken from the Jacobi relax-

ation program

forall (i=1:N, j=1:N)

& B(i,j) = 0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

In the above example, as in a large number of scienti�c computations, the forall statement can

be written in the canonical form. In this form, the subscript value in the lhs is identical to the forall

iteration variable. In such cases, the iterations can be easily distributed using the owner computes

rule. Furthermore, it is also simpler to detect structured communication by using this form ( This

will be elaborated in Section 5.2.).

Figure 3 shows the possible data and iteration distributions for the lhsI = rhsI assignment

caused by iteration instance I . Cases 1 and 2 illustrate the order of communication and computation

arising from the owner computes rule. Essentially, all the communications to fetch the o�-processor

data required to execute an iteration instance are performed before the computation is performed.

The generated code will have the following communication and computation order.

Communications ! some global communication primitives

Computation ! local computation

Example 2 (non-canonical form) Consider the following statement, taken from an FFT

program

forall (i=1:incrm, j=1:nx/2)

& x(i+j*incrm*2+incrm) = x(i+j*incrm*2) - term2(i+j*incrm*2+incrm)

The lhs array index is not in the canonical form. In this case, the compiler equally distributes

the iteration space on the number of processors on which the lhs array is distributed. Hence, the
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Figure 3: I shows the processor on which the computation is performed. lhsI and rhsI

show the processors on which the lhs and rhs of instance I reside.

total number of iterations will still be the same as the number of lhs array elements being assigned.

However, this type of forall statement will result in either Case 3 or Case 4 in Figure 2. The

generated code will be in the following order.

Communications ! some global communication primitives to read off-processor values

Computation ! local computation

Communication ! a communication primitive to write the calculated values to off-processors

For reasonably simple expressions, the compiler can transform such index expressions into the

canonical form by performing some symbolic expression operations [27]. However, it may not always

be possible to perform such transformations for complex expressions.

Example 3 (vector-valued index) Consider the statement

forall (i=1:N) A(U(i)) = B(V(i)) +C(i)

The iteration i causes an assignment to element A(U(i)), where U(i) may only be known at

run-time. Therefore, if iterations are statically assigned at compile time to various PEs, iteration i

is likely to be assigned to a PE other than the one owning A(U(i)). This is also illustrated in cases

3 and 4 of Figure 3. In this case, our compiler distributes the computation i with respect to the

owner of A(i).
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Having presented the computation partitioning alternatives for various reference patterns of

arrays on the lhs, we now present a primitive to perform global to local transformations for loop

bounds.

set_BOUND(llb,lub,lst,glb,gub,gst,DIST,dim) ! computes local lb, ub, st from global ones

The set BOUND primitive takes a global computation range with global lower bound, upper

bound and stride. It distributes this global range statically among the group of processors speci�ed

by the dim parameter on the logical processor dimension. The DIST parameter gives the distribu-

tion attribute such as block or cyclic. The set BOUND primitive computes and returns the local

computation range in local lower bound, local upper bound and local stride for each processor. The

algorithm to implement this primitive can be found in [25].

The other functionality of the set BOUND primitive is to mask inactive processors by returning

appropriate local bounds. For example, such a case may arise when the global bounds do not

specify the entire range of the lhs array. If the inputs for this primitive are compile-time constants,

the compiler can calculate the local bounds at compile-time.

In summary, our computation and data distributions have two implications.

� The processor that is assigned an iteration is responsible for computing the rhs expression of

the assignment statement.

� The processor that owns an array element (lhs or rhs) must communicate the value of that

element to the processors performing the computation.

5 Communication

Our Fortran 90D/HPF compiler produces calls to collective communication routines instead of

generating individual processor send and receive calls inside the compiled code. The idea of using

collective communication routines came from researchers involved in developing scienti�c applica-

tion programs [26]. There are three main reasons for using collective communication to support

interprocessor communication in the Fortran 90D/HPF compiler.

1. Improved performance of Fortran 90D/HPF programs. To achieve good performance, inter-

processor communication must be minimized. By developing a separate library of interpro-

10



cessor communication routines, each routine can be optimized. This is particularly important

given that the routines will be used by many programs compiled through the compiler.

2. Increased portability of the Fortran 90D/HPF compiler. By separating the communication

library from the basic compiler design, portability is enhanced because to port the compiler,

only the machine speci�c low-level communication calls in the library need to be changed.

3. Improved performance estimation of communication costs. Our compiler takes the data distri-

bution for the source arrays from the user as compiler directives. However, any future compiler

will require a capability to perform automatic data distribution and alignments [28, 29, 30].

In any case, distributions of temporary arrays must be determined by the compiler. Such

techniques usually require computing trade-o�s between exploitable parallelism and the com-

munication costs. The costs of collective communication routines can be determined more

precisely, thereby enabling the compiler to generate better distributions.

In order to perform a collective communication on array elements, the communication primitive

needs the following information 1-) send processors list, 2-) receive processors list, 3-) local index

list of the source array and, 4-) local index list of the destination array.

There are two ways of determining the above information. 1) Using a pre-processing loop to

compute the above values or, 2) based on the type of communication, the above information may

be implicitly available, and therefore, not require pre-processing. We classify our communication

primitives into structured and unstructured communication.

Our structured communication primitives are based on a logical grid con�guration of the pro-

cessors which is formed according to the shape of template and the number of available physical

processors. Hence, they use grid-based communications such as shift along dimensions, broadcast

along dimensions etc. The following summarizes some of the structured communication primitives

implemented in our compiler.

� transfer: Single source to single destination message. This may happen that one column of

grid processors communicate with another column of the grid processors.

� multicast: broadcast along a dimension of the logical grid.
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� overlap shift: shifting data into overlap areas in one or more grid dimensions. This is

particularly useful when the shift amount is known at compile time. This primitive uses that

fact to avoid intra processor copying of data and directly stores data in the overlap areas [31].

� temporary shift: This is similar to overlap shift except that the data is shifted into a

temporary array. This is useful when the shift amount is not a compile time constant. This

shift may require intra-processor copying of data.

We have implemented two sets of unstructured communication primitives: 1) where the com-

municating processors can determine the send and receive lists based only on local information, and

hence, only require pre-processing that involves local computations, [24] and 2) where to determine

the send and receive lists pre-processing itself requires communication among the processors [19].

� precomp read: This primitive is used to bring all non-local data to the place it is needed

before the computation is performed.

� postcomp write: This primitive is used to store remote data by sending it to the processors

that own the data after the computation is performed. Note that these two primitives requires

only local computation in the pre-prcessing loop.

� gather: This is similar to precomp read except that pre-processing loop itself may require

communication.

� scatter: This is similar to postcomp write except that pre-processing loop itself may require

communication.

The gather and scatter operations are powerful enough to provide the ability to read and write

distributed arrays with vectorized communication facility. These two primitives are available in

PARTI (Parallel Automatic Runtime Toolkit at ICASE) [32] designed to e�ciently support irregular

patterns of distributed array accesses. Fortran 90D/HPF compiler uses the PARTI to support these

two powerful primitives.

The compiler must recognize the presence of collective communication patterns in the com-

putations in order to generate the appropriate communication calls. Speci�cally, this involves a

number of tests on the relationship among subscripts of various arrays in a forall statement. These

tests should also include information about array alignments and distributions. We use pattern
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matching techniques similar to those proposed by Chen [15]. Further, we extend the above tests

to include unstructured communication. Table 2 shows the patterns of communication primitives

used in our compiler. The detail of communication detection algorithm can be found in [25].

Table 2: Communication primitives based on the relationship between lhs and rhs array

subscript reference pattern for block distribution. (c: compile time constant, s, d:

scalar, f : invertible function, V : an indirection array).

Steps (lhs,rhs) Comm. primitives

1 (i; s) multicast

2 (i; i+ c) overlap shift

3 (i; i� c) overlap shift

4 (i; i+ s) temporary shift

5 (i; i� s) temporary shift

6 (d; s) transfer

7 (i; i) no communication

8 (i; f(i)) precomp read

9 (f(i); i) postcomp write

10 (i; V (i)) gather

11 (V (i); i) scatter

12 (i; unknown) gather

13 (unknown; i) gather

We would like give an example about the code generation about the unstructured communication

at our compiler.(Communication generation for structured one can be found at Section 7). In

distributed memory MIMD architectures, there is typically a non-trivial communication latency

or startup cost. Hence, it is attractive to vectorize messages to reduce the number of startups.

For unstructured communication, this optimization can be achieved by performing the entire pre-

processing loop before communication so that the schedule routine can combine the messages to a

maximum extent. The pre-processing loop is also called the \inspector" loop [32, 23].

Example 1 (precomp read) Consider the statement

FORALL(I=1:N) A(I)=B(2*I+1)

The array B is marked as precomp read since the distributed dimension subscript is written as

f(i) = 2 � i+ 1 which is invertible as g(i) = (i� 1)=2.

1 count=1
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2 call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

3 DO I=lb,ub,st

4 receive_list(count)=global_to_proc(f(i))

5 send_list(count)= global_to_proc(g(i))

6 local_list(count) = global_to_local(g(i))

7 count=count+1

8 END DO

9 isch = schedule1(receive_list, send_list, local_list, count)

10 call precomp_read(isch, tmp,B)

11 count=1

12 DO I=lb,ub,st

13 A(I) = tmp(count)

14 count= count+1

15 END DO

The pre-processing loop is given in lines 1-9. Note that this pre-processing loop executes con-

currently in each processor. It �lls out the receive list as well as the send list of processors. Each

processor also �lls the local indices of the array elements which are needed by that processor.

The schedule isch can also be used to carry out identical patterns of data exchanges on several

di�erent but identically distributed arrays or array sections. The same schedule can be reused to

repeatedly carry out a particular pattern of data exchange on a single distributed array. In these

cases, the cost of generating the schedules can be amortized by only executing it once. This analysis

can be performed at compile time. Hence, if the compiler recognizes that the same schedule can

be reused, it does not generate code for scheduling but it passes a pointer to the already existing

schedule. Furthermore, the pre-processing computation can be moved up as much as possible by

analyzing de�nition-use chains [33]. Reduction in communication overhead can be signi�cant if by

this analysis the scheduling code can be moved out of one or more nested loops.

In the above example, local list (line 6) is used to store the index of one-dimensional array.

However, in general, local list will store indices from a multi-dimensional Fortran array by using

the usual column-major subscript calculations to map the indices to a one-dimensional index.

The precomp read primitive performs the actual communication using the schedule. Once the

communication is performed, the data is ordered in a one dimensional array, and the computation

(lines 12-15) uses this one dimensional array.
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6 Run-time Support System

The Fortran 90D/HPF compiler relies on a very powerful run-time support system. The run-time

support system consists of functions which can be called from the node programs of a distributed

memory machine. Intrinsic functions support many of the basic data parallel operations in Fortran

90. They do not only provide a concise means of expressing operations on arrays, but also identify

parallel computation patterns that may be di�cult to detect automatically. Fortran 90 provides

intrinsic functions for operations such as shift, reduction, transpose, and transpose, and matrix

multiplication. The intrinsic functions that may induce communication can be divided into �ve

categories as shown in Table 3.

Table 3: Fortran90D/HPF Intrinsic Functions

1. Structured 2. Reduction 3. Multicasting 4. Unstructured 5. Special

communication communication routines

CSHIFT DOTPRODUCT SPREAD PACK MATMUL

EOSHIFT ALL, ANY UNPACK

COUNT RESHAPE

MAXVAL, MINVAL TRANSPOSE

PRODUCT

SUM

MAXLOC, MINLOC

The �rst category requires data to be transferred using with less overhead structured shift

communications operations. The second category of intrinsic functions require computations based

on local data followed by use of a reduction tree on the processors involved in the execution of

the intrinsic function. The third category uses multiple broadcast trees to spread data. The

fourth category is implemented using unstructured communication patterns. The �fth category

is implemented using existing research on parallel matrix algorithms [26]. Some of the intrinsic

functions can be further optimized for the underlying hardware architecture.

Table 4 presents a sample of performance numbers for a subset of the intrinsic functions on

iPSC/860. A detailed performance study is presented in [34]. The times in the table include both

the computation and communication times for each function. For most of the functions we were able

to obtain almost linear speedups. In the case of TRANSPOSE function, going from one processor
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to two or four actually results in increase in the time due to the communication requirements.

However, for larger size multiprocessors the times decrease as expected.

Table 4: Performance of some Fortran 90D Intrinsic Functions (time is milliseconds).

Nproc ALL ANY MAXVAL PRODUCT DOT PRODUCT TRANSPOSE

(1K x 1K) (1K x 1K) (1K x 1K) (256K) (256K) (512 x 512)

1 580.6 606.2 658.8 90.1 164.8 299.0

2 291.0 303.7 330.4 50.0 83.0 575.0

4 146.2 152.6 166.1 25.1 42.2 395.0

8 73.84 77.1 84.1 13.1 22.0 213.0

16 37.9 39.4 43.4 7.2 12.1 121.0

32 19.9 20.7 23.2 4.2 7.4 69.0

Arrays may be redistributed across subroutine boundaries. A dummy argument which is dis-

tributed di�erently than its actual argument in the calling routine is automatically redistributed

upon entry to the subroutine by the compiler, and is automatically redistributed back to its original

distribution at subroutine exit. These operations are performed by the redistribution primitives

which transform from block to cyclic or vice versa.

When a distributed array is passed as an argument to some of the run-time support primitives,

it is also necessary to provide information such as its size, distribution among the nodes of the

distributed memory machine etc. All this information is stored into a structure which is called

distributed array descriptor (DAD) [34].

In summary, parallel intrinsic functions, communication routines, dynamic data redistribution

primitives and others are part of the run-time support system.

7 Example and performance Results

We use Gaussian elimination with partial pivoting as an example for translating a Fortran90D/HPF

program into a Fortran+MP program. The Fortran90D/HPF code is shown in Figure 4. Arrays

a and row are partitioned by compiler directives. The second dimension of a is block-partitioned,

while the �rst dimension is not partitioned. Array row is block-partitioned. This program illustrates

the convenience for the programmer of working in Fortran 90D/HPF. Data parallelism is concisely

represented by array operations, while the sequential computation is expressed by do loops. More
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importantly, explicit communication is not needed since the program is written for a single address

space.

Figure 5 shows how the Fortran 90D/HPF compiler translates Gaussian Elimination into For-

tran 77+MP form. It is easy to see that the generated code is structured as alternating phases of

local computation and global communication. Local computations consist of operations by each

processor on the data in its own memory. Global communication includes any transfer of data

among processors. The compiler partition the distributed arrays into small sizes and the parallel

constructs are sequentialized into a do loop.

The compiler generates the appropriate communication primitives depending on the reference

pattern of distributed array. For example, the statement

temp = ABS(a(:,k))

is transformed into a broadcast primitives since the array a is distributed in the second dimension.

All runtime routines are classi�ed according to data types. For example, R(Real) speci�es the data

type of the communication and V speci�es that it is vector communication. The primitive set DAD

is used to �ll the Distributed Array Descriptor (DAD) associated with array a so that it can be

passed to the broadcast communication primitive at run-time. The DAD has su�cient information

for the communication primitives to compute all the necessary information including local lower and

upper bounds, distributions, local and global shape etc. In this way the communication routines

also has an option to combine messages for the same source and destination into a single message

to reduce communication overhead. This is the typical characteristic of our compiler since we are

only parallelizing array assignments and forall statements in Fortran 90D/HPF, there is no data

dependency between di�erent iterations. Thus, all the required communication can be performed

before or after the execution of the loop on each of the processors involved.

The intrinsic function MAXLOC is translated into the library routine MaxLoc R M. The su�x

R speci�es the data type and M speci�es that MAXLOC intrinsic has optional mask array.

Once again the array information passed to the run-time system with the associated DAD data

structure.

Several types of communication and computation optimizations can be performed to generate

a more e�cient code. In terms of computation optimization, it is expected that the scalar node

compiler performs a number of classic scalar optimizations within basic blocks. These optimiza-
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1. integer, dimension(N) :: indx

2. integer, dimension(1) :: iTmp

3. real, dimension(N,NN) :: a

4. real, dimension(N) :: fac

5. real, dimension(NN) :: row

6. real :: maxNum

7. C$ PROCESSORS PROC(P)

8. C$ DECOMPOSITION TEMPLATE(NN)

9. C$ DISTRIBUTE TEMPLATE(BLOCK)

10. C$ ALIGN row(J) WITH TEMPLATE(J)

11. C$ ALIGN a(*,J) WITH TEMPLATE(J)

12.

13. indx = -1

14. do k = 0, N-1

15. iTmp = MAXLOC(ABS(a(:,k)), MASK = indx .EQ. -1)

16. indxRow = iTmp(1)

17. maxNum = a(indxRow,k)

18. indx(indxRow) = k

19. fac = a(:,k) / maxNum

20.

21. row = a(indxRow,:)

22. forall (i = 0:N-1, j = k:NN-1, indx(i) .EQ. -1)

23. & a(i,j) = a(i,j) - fac(i) * row(j)

24. end do

Figure 4: Fortran90D/HPF code for Gaussian elimination.
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B= NN/P

integer indx(N)

real aLoc(N,B)

real fac(N)

real rowLoc(B)

real maxNum

integer source(1)

call grid_1(P)

do i = 1, N

indx(i) = -1

end do

do k = 1, N

do i = 1, N

mask(i) = indx(i) .EQ. -1

end do

source(1)=(k-1)/B

call set_DAD_2(aLoc_DAD, 1, N, N, k-my_id()*B, k-my_id()*B, B)

call set_DAD_1(temp1_DAD, 1, N, N)

call broadcast_R_V (temp1, temp1_DAD, aLoc, aLoc_DAD, source)

call set_DAD_1(temp1_DAD, 1, N, N)

call set_DAD_1(mask_DAD, 1, N, N)

indxRow = MaxLoc_1_R_M(temp1, temp1_DAD, N, mask, mask_DAD)

source(1)=(k-1)/B

call broadcast_R_S(maxNum, aLoc (indxRow, k-my_id()*B), source)

indx(indxRow) = k

call set_DAD_2(a_DAD, 1, N, N, k-my_id()*B, k-my_id()*B, B)

call set_DAD_1(temp2_DAD, 1, N, N)

call broadcast_R_V (temp2, 1, temp2_DAD, aLoc, 2, aLoc_DAD, source)

do i = 1, N

fac (i) = temp2 (i) / maxNum

end do

do i = 1, 10

rowLoc (i) = aLoc (indxRow, i)

end do

Figure 5: Fortran 90D/HPF compiler generated Fortran77+MP code for Gaussian elimination.
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call set_BOUND(k, NN, llb, lub, 1, B)

do j = llb, lub

do i = 1, N

if (indx (i) .EQ. (-1)) THEN

aLoc (i, j) = aLoc (i, j) - fac (i) * rowLoc (j)

end if

end do

end do

end do

Figure 5: Fortran 90D/HPF compiler generated Fortran77+MP code for Gaussian elimination

(cont.)

tions include common subexpression elimination, copy propagation (of constants, variables, and

expressions), constant folding, useless assignment elimination, and a number of algebraic identities

and strength reduction transformations. However, Fortran 90D/HPF may perform several opti-

mizations to reduce the total cost of communication. The compiler can generate better code by

observing the following:

15. Tmp = ABS(a(:,k))

17. maxNum = a(indxRow,k)

19. fac = a(:,k) / maxNum

The distributed array section a(:; k) is used at lines 15,17 and 19. The array a is not changed

between line 15-19. Because the compiler performs statement level code generation for the above

three statements. Each statement causes a broadcast operation. However, the compiler can elim-

inate two of three communication calls by performing the above dependency analysis. It need

only generate one broadcast for line 15 which communicates a column of array a. The Lines 17

and 19 can use that data as well. The optimized code is shown in Figure 6. We generated this

programs by hand since the optimizations have not yet been implemented in our compiler. Cur-

rently our compiler performs statement level optimizations. It does not perform basic-block level

optimizations.
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do k = 1, N

do i = 1, N

mask(i) = indx(i) .EQ. -1

end do

source(1)=(k-1)/B

call set_DAD_2(aLoc_DAD, 1, N, N, k-my_id()*B, k-my_id()*B, B)

call set_DAD_1(temp1_DAD, 1, N, N)

call broadcast_R_V (temp1, temp1_DAD, aLoc, aLoc_DAD, source)

call set_DAD_1(temp1_DAD, 1, N, N)

call set_DAD_1(mask_DAD, 1, N, N)

indxRow = MaxLoc_1_R_M(temp1, temp1_DAD, N, mask, mask_DAD)

maxNum=temp1(indxRow)

indx(indxRow) = k

do i = 1, N

fac (i) = temp1 (i) / maxNum

end do

do i = 1, 10

rowLoc (i) = aLoc (indxRow, i)

end do

call set_BOUND(k, NN, llb, lub, 1, B)

do j = llb, lub

do i = 1, N

if (indx (i) .EQ. (-1)) THEN

aLoc (i, j) = aLoc (i, j) - fac (i) * rowLoc (j)

end if

end do

end do

end do

Figure 6: Gaussian elimination with communication elimination optimization.
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To validate the performance of our compiler on Gaussian Elimination which is a part of the

FortranD/HPF benchmark test suite [37], we tested three codes on the iPSC/860 and plotted the

results. 1-) The code in given 5. This is shown as the dotted line in Figure 7, and represent the

compiler generated code. 2-) The code in Figure 6. This appears as the dashed line in Figure 7

and represents the hand optimized code on the compiler generated code as discussed above. 3-)

The hand-written Gaussian Elimination with Fortran 77+MP. This appears as the solid line in

Figure 7. The code is written outside of the compiler group at NPAC to be unbiased.
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Figure 7: Performance of three version of Gaussian Elimination. Matrix size is

1023x1024 (time in seconds).

The programs were compiled by using Parasoft Express Fortran compiler which calls Portland

Group if77 release 4.0 compiler with all optimization turned on (-O4). We can observe that the

performance of the compiler generated code is within 10% of the hand-written code. This is due to

the fact that the compiler generated code produces an extra communication calls that can be elim-

inated using optimizations. The hand optimized code gives very near performance to hand-written

code. From this experiment we conclude that Fortran 90D/HPF compiler which is incorporated

with optimizations can compete with hand-crafted code on some signi�cant algorithms, such as

Gaussian Elimination.
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8 Conclusions

Fortran 90D/HPF are languages that incorporate parallel constructs and allow users to specify data

distributions. In this paper, we presented a design for Fortran 90D/HPF compiler for distributed

memory machines. Speci�cally, techniques for processing distribution directives, computation par-

titioning, communication generation were presented. We believe that the methodology presented

in this paper to compile Fortran 90D/HPF can be used by the designers and implementors for HPF

language.
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