
IMPACT OF COMPILATION

TECHNOLOGY ON

COMPUTER ARCHITECTURE

IMPACT OF

COMPILATION

TECHNOLOGY ON

COMPUTER

ARCHITECTURE

EDITED BY

David LILJA

University of Minnesota

Minneapolis, Minnesota, USA

Peter Bird

Advanced Computer Research Institute

Cedex, France

KLUWER ACADEMIC PUBLISHERS

Boston/London/Dordrecht

CONTRIBUTORS

William B. Baringer

Dept. of EECS

UC Berkeley

Barry Boes

327 Arlington Circle

Ridgeland, MS 39157

ii

1
COMPILING HPF FOR

DISTRIBUTED MEMORY MIMD

COMPUTERS

Zeki Bozkus, Alok Choudhary*, Geo�rey Fox,

Tomasz Haupt and Sanjay Ranka**

Northeast Parallel Architectures Center

Syracuse University, Syracuse, NY, 13244-4100

* Computer Engineering Dept. Syracuse University

** Computer Science Dept. Syracuse University

fzbozkus, choudhar, gcf, haupt, rankag@npac.syr.edu

ABSTRACT

This paper describes the design of a High Performance Fortran (HPF/Fortran 90D)

compiler, a source-to-source translator for distributed memory systems. HPF is a data

parallel language with compiler directives to enable users to specify data alignment

and distributions. A systematic methodology to process distribution directives of

HPF is presented. Furthermore, techniques for data and computation partitioning,

communication detection and generation, and the run-time support for the compiler

are discussed. Finally, initial performance results for the compiler are presented

which show that the code produced by the compiler is portable, yet e�cient. We

believe that the methodology to process data distribution, computation partitioning,

communication system design and the overall compiler design can be used by the

other HPF compiler implementors.

1 INTRODUCTION

Nowadays, when increasing the speed of processors become more and more

di�cult, more and more computer experts admit that the future of high per-

formance computing belongs to parallel computers. Many machines that allow

for concurrent execution are commercially available for several years. Never-

theless, this is a very rapidly developing technology, and vendors come with

1

2 Chapter 1

newer, better concepts almost every year. Hardly ever parallel computers com-

ing from di�erent vendors have a similar architecture. To exploit speci�c fea-

tures of the machine, vendors develop speci�c extensions to existing languages

(Fortran, C, ..., etc.) and/or develop vendor speci�c runtime libraries for in-

terprocessor communication. As a result, codes developed on these machines

are not portable from one platform to another. Even worse, moving to the

next version of the machine from the same vendor usually requires recoding to

obtain performance. Consequently, it is not surprising that they are not widely

used, in particular, for commercial purposes. Users who traditionally require

tremendous amount of computing power still prefer conventional supercomput-

ers, recognizing that parallel computing is still a high risk technology, which

does not protect software investment.

To overcome this de�ciency, we have designed Fortran D language [2] with our

colleagues at Rice University. Fortran D is a version of Fortran enhanced with

a rich set of data decomposition speci�cations to provide a simple machine-

indepentent programming model for most data-parallel computations. Re-

cently, the High Performance Fortran Forum, an informal group of people from

academia, industry and national labs, led by Ken Kennedy, developed a lan-

guage called HPF (High Performance Fortran) [3] based on Fortran D. Compa-

nies that have already committed to developing compilers and/or supporting

HPF include Intel, TMC, PGI, DEC, IBM, and others.

The idea behind HPF is to develop a minimal set of extensions to Fortran

(ISO/ANSI standard known informally as Fortran 90) to support data parallel

programming model, de�ned as single threaded, global name space, loosely

synchronous parallel computation. The purpose of HPF is to provide software

tools (i.e., HPF compilers) that produce performance codes for MIMD and

SIMD computers with non-uniform memory access cost. The portability of

the HPF codes means that the e�ciency of the code is preserved for di�erent

machines with comparable number of processors.

This paper presents the design of a prototype HPF compiler for distributed

memory systems. The compiler transforms codes written in HPF to SPMD

(Single Program Multiple Data) program with appropriate data and compu-

tation partitioning and communication calls for MIMD machines. Therefore,

the user can still program using a data parallel language but is relieved of the

responsibility to perform data distribution and communication.

The rest of this paper is organized as follows. Section 2 briey presents HPF

language. The compiler architecture is described in Section 3. Data parti-

tioning, and computation partitioning are discussed in Sections 4. Section 5

Compiling HPF 3

presents the communication primitives and communication generation for HPF

programs. In Section 6, we present the runtime support system including the in-

trinsic functions. Some optimization techniques are given in Section 7. Section

8 summarizes our initial experience using the current version of the compiler.

It also presents a comparison of the performance with hand written parallel

code. Section 9 presents a summary of related work. Finally, summary and

conclusions are presented in Section 10.

2 HPF LANGUAGE

The HPF extensions to the Fortran 90 standard fall into four categories: com-

piler directives, new language features, library routines and restrictions to For-

tran 90. The HPF compiler directives are structured comments that suggest

implementation strategies or assert facts about a program to the compiler.

They may a�ect the e�ciency of the computation performed, but they do not

alter the semantics. In analogy to Fortran 90 statements, there are declarative

directives, to be placed in the declaration part of a scoping unit, and executable

directives, to be placed among the executable Fortran 90 statements. The HPF

directives are designed to be consistent with Fortran 90 syntax except for the

directive pre�x !HPF$, CHPF$ or *HPF$.

The new language features are FORALL statement and construct as well as

modi�cations and additions to the library of intrinsic functions. In addition

to the intrinsic functions, HPF introduces new functions that may be used to

express parallelism, like new array reduction functions, array combining scatter

functions, array su�x and pre�x functions, array sorting functions and others.

Those functions are collected in a separate library, the HPF library. Finally,

HPF imposes some restrictions on Fortran 90 de�nition of storage and sequence

associations.

The HPF approach is based on two key observations. First, the overall e�ciency

of the program can be increased, if many operations are performed concurrently

by di�erent processors, and secondly, the e�ciency of a single processor is

likely be the highest, if the processor performs computations on data elements

stored in its local memory. Therefore, the HPF extensions provide means for

explicit expression of parallelism and data mapping. It follows that an HPF

programmer expresses parallelism explicitly, and the data distribution is tuned

accordingly to control the load balance and minimize communication. On the

other hand, given a data distribution, an HPF compiler may be able to identify

4 Chapter 1

operations that can be executed concurrently, and thus generate even more

e�cient code.

Arrays Template Logical processors

M

N

p

pxq

Data mapping

ALIGN

DISTRIBUTE

functions

with arbitrary topologywith grid topology

Grid mapping

stage 1 stage 2 stage 3

f ϕ

q

µ

µ

f -1

-1 −1
ϕ

Physical processors

functions

TEMPLATE PROCESSORS

Figure 1 Array mapping model at HPF.

HPF data alignment and distribution directives allow the programmer to advise

the compiler how to assign data object (typically array elements) to processors'

memories. The model is that there is a two-level mapping of data objects to

memory regions (as shown at Figure 1), referred to as "abstract processors":

arrays are �rst aligned relative to one another, and then this group of arrays is

distributed onto a user de�ned, rectilinear arrangement of abstract processors.

The �nal mapping, abstract to physical processors is not speci�ed by HPF and

it is language-processor dependent. The alignment itself is logically accom-

plished in two steps. First, the index space spanned by an array that serves as

an align target de�nes a natural template of the array. Then, an alignee is asso-

ciated with this template. In addition, HPF allows users to declare a template

explicitly; this is particularly convenient when aligning arrays of di�erent size

and/or di�erent shape. It is the template (either a natural or explicit one) that

is distributed onto abstract processors. This means, that all arrays' elements

aligned with an element of the template are mapped to the same processor.

This way locality of data is forced. Arrays and other data objects that are

not explicitly distributed using the compiler directives are mapped according

to an implementation dependent default distribution. One possible choice of

the default distribution is replication: each processor is given its own copy of

the data.

The data mapping can be declared using declarative directives: PROCESSORS,

ALIGN, DISTRIBUTE, and, optionally, TEMPLATE. In addition, arrays may

Compiling HPF 5

be remapped during the runtime. To this end, array must be declared us-

ing DYNAMIC directive, and the actual remapping is triggered by executable

directives REALIGN and REDISTRIBUTE.

In HPF, an array may be aligned with another in many ways. The repertoire

includes shifts, strides, or any other linear combination of a subscript (i.e., n*i

+ m), transposition of indices, and collapse or replication of array's dimensions.

Skewed or irregular alignments are, however, not allowed. The template may

be distributed in BLOCK, CYCLIC, BLOCK(n), and CYCLIC(n) fashion. In

addition, any dimension of the template may be collapsed or replicated onto

a processor grid (note, that it does not change the relative alignment of the

arrays!). The BLOCK distribution speci�es that the template should be dis-

tributed across set of abstract processors by slicing it uniformly into blocks

of contiguous elements. The BLOCK(n) distribution speci�es that groups of

exactly n elements should be mapped to successive abstract processors, and

there must be at least (array size)/n abstract processors if the directive is to be

satis�ed. The CYCLIC(n) distribution speci�es that successive array elements'

blocks of size n are to be dealt out to successive abstract processors in round-

robin fashion. Finally, CYCLIC distribution is equivalent to the CYCLIC(1)

distribution.

3 HPF COMPILER

Our HPF compiler exploits only the parallelism expressed in the data parallel

constructs. We do not attempt to parallelize other constructs, such as do loops

and while loops, since they are used only as naturally sequential control con-

structs in this language. The foundation of our design lies in recognizing com-

monly occurring computation and communication patterns. These patterns are

then replaced by calls to the optimized run-time support system routines. The

run-time support system includes parallel intrinsic functions, data distribution

functions, communication primitives and several other miscellaneous routines.

This approach represents a signi�cant departure from traditional approaches

where a compiler needs to perform in-depth dependency analyses to recognize

parallelism, and embed all the synchronization and low-level communication

functions inside the generated code.

The basic structure of our HPF compiler is organized around four majormodules{

parsing, partitioning, communication detection and insertion, and code gener-

ation. Given a syntactically correct HPF program, the �rst step of the com-

6 Chapter 1

pilation is to generate a parse tree. The front-end to parse Fortran 90 for the

compiler was obtained from ParaSoft Corporation. In this module, our com-

piler also transforms each array assignment statement and where statement

into equivalent forall statement with no loss of information [7]. In this way, the

subsequent steps need only deal with forall statements.

The partitioning module processes the data distribution directives; namely,

template, distribute and align. Using these directives, it partitions data and

computation among processors.

After partitioning, the parallel constructs in the node program are sequential-

ized since it will be executed on a single processor. This is performed by the

sequentialization module. Array operations and forall statements in the orig-

inal program are transferred into loops or nested loops. The communication

module detects communication requirements and inserts appropriate commu-

nication primitives.

Finally, the code generator produces loosely synchronous [6] SPMD code. The

generated code is structured as alternating phases of local computation and

global communication. Local computations consist of operations by each pro-

cessor on the data in its own memory. Global communication includes any

transfer of data among processors, possibly with arithmetic or logical compu-

tation on the data as it is transferred (e.g. reduction functions). In such a

model, processes do not need to synchronize during local computation. But, if

two or more nodes interact, they are implicitly synchronized by global commu-

nication.

4 PARTITIONING

The distributed memory system solves the memory bottleneck of vector super-

computers by having separate memory for each processor. However, distributed

memory systems demand high locality for good performance. Therefore, the

distribution of data and computations across processors is of critical importance

to the e�ciency of a parallel program in a distributed memory system.

Compiling HPF 7

Data Partitioning

Even thoug HPF language models two stage mapping, in our implementation

we choosen to map arrays to physical processors by using a three stage mapping

as shown in Figure 1 which is guided by the user-speci�ed HPF directives.

Stage 1 : The alignment of arrays to template is determined by their subscript

expressions (f an a�ne function) in the ALIGN directive. The compiler com-

putes f and f�1 function from the directive and applies f functions for the

corresponding array indices to bring them onto common template index do-

main. The original indices can be calculated by f�1 if they are required. The

algorithm to compile align directive can be found in [9].

Stage 2 : Each dimension of the template is mapped onto the logical proces-

sor grid, based on the DISTRIBUTE directive attributes. Block divides the

template into contiguous chunks. Cyclic speci�es a round-robin division of the

template. The mapping functions � and ��1 to generate relationship between

global and local indices are computed.

Stage 3 : The logical processor grid is mapped onto the physical system. The

mapping functions ' and '�1 can change from one system to another but the

data mapping onto the logical processor grid does not need to change. This

enhances portability across a large number of architectures.

By performing the above three stage mapping, the compiler is decoupled from

the speci�cs of a given machine or con�guration. Compilation of distribution

directives is discussed in detail in [9].

Computation Partitioning

Once the data is distributed, there are several alternatives to assign computa-

tions to processing elements (PEs) for each instance of a forall statement. One

of the most common methods is to use the owner computes rule. In the owner

computes rule, the computation is assigned to the PE owning the lhs data el-

ement. This rule is simple to implement and performs well in a large number

of cases. Most of the current implementations of parallelizing compilers uses

the owner computes rule [12, 13]. However, it may not be possible to apply the

owner computes rule for every case without extensive overhead. The following

examples describe how our compiler performs computation partitioning.

8 Chapter 1

Example 1 (canonical form) Consider the following statement, taken from
the Jacobi relaxation program

forall (i=1:N, j=1:N)

& B(i,j) = 0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

In the above example, as in a large number of scienti�c computations, the forall

statement can be written in the canonical form. In this form, the subscript value

in the lhs is identical to the forall iteration variable. In such cases, the iterations

can be easily distributed using the owner computes rule. Furthermore, it is also

simpler to detect structured communication by using this form. (This will be

elaborated in Section 5.2.)

I

lhsI

I

lhs

I

I

I

lhsI

I

before

after

beforeafter

CASE 1

CASE 3

CASE 2

CASE 4

p p q

p q

p

q

r
lhsI

rhs

rhs

rhs

rhs

I

I

I

CASE 4: Communication before and after computation to fetch and store non-locals

CASE 3: Communication after computation to store non-local data lhs

CASE 2: Communication before computation to fetch non-local rhs

CASE 1: No communications

Figure 2 I shows the processor on which the computation is performed. lhsI
and rhsI show the processors on which the lhs and rhs of instance I reside.

Figure 2 shows the possible data and iteration distributions for the lhsI = rhsI
assignment caused by iteration instance I. Cases 1 and 2 illustrate the order of

communication and computation arising from the owner computes rule. Essen-

tially, all the communications to fetch the o�-processor data required to execute

an iteration instance are performed before the computation is performed. The

generated code will have the following communication and computation order.

Compiling HPF 9

Communications ! some global communication primitives

Computation ! local computation

Example 2 (non-canonical form) Consider the following statement, taken

from an FFT program

forall (i=1:incrm, j=1:nx/2)

& x(i+j*incrm*2+incrm) = x(i+j*incrm*2) - term2(i+j*incrm*2+incrm)

The lhs array index is not in the canonical form. In this case, the compiler

equally distributes the iteration space on the number of processors on which

the lhs array is distributed. Hence, the total number of iterations will still be

the same as the number of lhs array elements being assigned. However, this

type of forall statement will result in either Case 3 or Case 4 in Figure 2. The

generated code will be in the following order.

Communications ! some global communication primitives to read

Computation ! local computation

Communication ! a communication primitive to write

For reasonably simple expressions, the compiler can transform such index ex-

pressions into the canonical form by performing some symbolic expression op-

erations [14]. However, it may not always be possible to perform such trans-

formations for complex expressions.

Having presented the computation partitioning alternatives for various refer-

ence patterns of arrays on the lhs, we now present a primitive to perform global

to local transformations for loop bounds.

set_BOUND(llb,lub,lst,glb,gub,gst,DIST,dim) ! computes local lb, ub, st

The set BOUND primitive takes a global computation range with global lower

bound, upper bound and stride. It distributes this global range statically among

the group of processors speci�ed by the dim parameter on the logical processor

dimension. The DIST parameter gives the distribution attribute such as block

or cyclic. The set BOUND primitive computes and returns the local compu-

tation range in local lower bound, local upper bound and local stride for each

processor. The algorithm to implement this primitive can be found in [7].

10 Chapter 1

In summary, our computation and data distributions have two implications.

The processor that is assigned an iteration is responsible for computing

the rhs expression of the assignment statement.

The processor that owns an array element (lhs or rhs) must communicate

the value of that element to the processors performing the computation.

5 COMMUNICATION

Our HPF compiler produces calls to collective communication routines [17] in-

stead of generating individual processor send and receive calls inside the com-

piled code. There are three main reasons for using collective communication to

support interprocessor communication in the HPF compiler.

1. Improved performance of HPF programs. To achieve good performance,

interprocessor communication must be minimized. By developing a sepa-

rate library of interprocessor communication routines, each routine can be

optimized. This is particularly important given that the routines will be

used by many programs compiled through the compiler.

2. Increased portability of the Fortran 90D/HPF compiler. By separating

the communication library from the basic compiler design, portability is

enhanced because to port the compiler, only the machine speci�c low-level

communication calls in the library need to be changed.

3. Improved performance estimation of communication costs. Our compiler

takes the data distribution for the source arrays from the user as com-

piler directives. However, any future compiler will require a capability to

perform automatic data distribution and alignments [18, 19, 10]. Such

techniques usually require computing trade-o�s between exploitable paral-

lelism and the communication costs. The costs of collective communication

routines can be determined more precisely, thereby enabling the compiler

to generate better distributions automatically.

In order to perform a collective communication on array elements, the com-

munication primitive needs the following information 1-) send processors list,

2-) receive processors list, 3-) local index list of the source array and, 4-) local

index list of the destination array.

Compiling HPF 11

There are two ways of determining the above information. 1) Using a prepro-

cessing loop to compute the above values or, 2) based on the type of commu-

nication, the above information may be implicitly available, and therefore, not

require preprocessing. We classify our communication primitives into unstruc-

tured and structured communication.

Our structured communication primitives are based on a logical grid con�gura-

tion of the processors. Hence, they use grid-based communications such as shift

along dimensions, broadcast along dimensions etc. The following summarizes

some of the structured communication primitives implemented in our compiler.

transfer: Single source to single destination message.

multicast: broadcast along a dimension of the logical grid.

overlap shift: shifting data into overlap areas in one or more grid di-

mensions. This is particularly useful when the shift amount is known at

compile time. This primitive uses that fact to avoid intra processor copying

of data and directly stores data in the overlap areas [20].

temporary shift: This is similar to overlap shift except that the data is

shifted into a temporary array. This is useful when the shift amount is not

a compile time constant. This shift may require intra-processor copying of

data.

concatenation: This primitive concatenates a distributed array and the

resultant array ends up in all the processors participating in this primitive.

We have implemented two sets of unstructured communication primitives: One,

to support cases where the communicating processors can determine the send

and receive lists based only on local information, and hence, only require prepro-

cessing that involves local computations [21], and the other, where to determine

the send and receive lists preprocessing itself requires communication among

the processors [22]. The primitives are as follows.

precomp read: This primitive is used to bring all non-local data to the

place it is needed before the computation is performed.

postcomp write: This primitive is used to store remote data by sending

it to the processors that own the data after the computation is performed.

Note that these two primitives requires only local computation in the pre-

processing loop.

12 Chapter 1

gather: This is similar to precomp read except that preprocessing loop

itself may require communication.

scatter: This is similar to postcomp write except that preprocessing loop

itself may require communication.

The compiler must recognize the presence of collective communication pat-

terns in the computations in order to generate the appropriate communication

calls. Speci�cally, this involves a number of tests on the relationship among

subscripts of various arrays in a forall statement. These tests should also in-

clude information about array alignments and distributions. We use pattern

matching techniques similar to those proposed by Chen [23]. Further, we ex-

tend the above tests to include unstructured communication. Table 1 shows

the patterns of communication primitives used in our compiler. The detail of

communication detection algorithm can be found in [7].

Steps (lhs,rhs) Comm. primitives

1 (i; s) multicast

2 (i; i+ c) overlap shift

3 (i; i� c) overlap shift

4 (i; i+ s) temporary shift

5 (i; i� s) temporary shift

6 (d; s) transfer

7 (i; i) no communication

8 (i; f(i)) precomp read

9 (f(i); i) postcomp write

10 (i; V (i)) gather

11 (V (i); i) scatter

12 (i; unknown) gather

13 (unknown; i) scatter

Table 1 Communicationprimitives based on the relationship between lhs and
rhs array subscript reference pattern for block distribution. (c: compile time

constant, s, d: scalar, f : invertible function, V : an indirection array).

5.1 Communication Generation

Having recognized the type of communication in each dimension of an array

for structured communication or each array for unstructured communication

Compiling HPF 13

in a forall statement, the compiler needs to perform the appropriate program

transformations. We now illustrate these transformations with the aid of some

examples.

Structured Communication

All the examples discussed below have the following mapping directives.

CHPF$ PROCESSORS(P,Q)

CHPF$ DISTRIBUTE TEMPL(BLOCK,BLOCK)

CHPF$ ALIGN A(I,J) WITH TEMPL(I,J)

CHPF$ ALIGN B(I,J) WITH TEMPL(I,J)

Example 1 (transfer) Consider the statement

FORALL(I=1:N) A(I,8)=B(I,3)

The �rst subscript of B is marked as no communication because A and B are
aligned in the �rst dimension and have identical indices. The second dimension
is marked as transfer.

1. call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

2. call set_DAD(B_DAD,.....) ! put information for B into B_DAD

3. call transfer(B, B_DAD, TMP,src=global_to_proc(8), dest=global_to_proc(3))

4. DO I=lb,ub,st

5. A(I,global_to_local(8)) = TMP(I)

6. END DO

In the above code, the set BOUND primitive (line 1) computes the local bounds

for computation assignment based on the iteration distribution (Section 4). In

line 2, the primitive set DAD is used to �ll the Distributed Array Descriptor

(DAD) associated with array B so that it can be passed to the transfer com-

munication primitive at run-time. The DAD has su�cient information for the

communication primitives to compute all the necessary information including

local bounds, distributions, global shape etc. Note that transfer performs one-

to-one send-receive communication based on the logical grid. In this example,

one column of grid processors communicate with another column of the grid

processors as shown in Figure 3 (a).

14 Chapter 1

Example 2 (multicast) Consider the statement

FORALL(I=1:N,J=1:M) A(I,J)=B(I,3)

The second subscript ofB marked asmulticast and the �rst as no communication.

1. call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

2. call set_BOUND(lb1,ub1,st1,1,M,1) ! compute local lb, ub, and st

3. call set_DAD(B_DAD,.....) ! put information for B into B_DAD

4. call multicast(B, B_DAD, TMP,source_proc=global_to_proc(3), dim=2)

5. DO I=lb,ub,st

6. DO J=lb1,ub1,st1

7. A(I,J) = TMP(I)

8. END DO

Line 4 shows a broadcast along dimension 2 of the logical processor grid by the

processors owning elements B(I; 3) where 1 � I � N (Figure 3 (b).)

(a) transfer (b) multicast

Figure 3 Structured communication on logical grid processors.

Unstructured Communication

In distributed memory MIMD architectures, there is typically a non-trivial

communication latency or startup cost. Hence, it is attractive to vectorize

messages to reduce the number of startups. For unstructured communication,

this optimization can be achieved by performing the entire preprocessing loop

before communication so that the schedule routine can combine the messages

to the maximum extent. The preprocessing loop is also called the \inspector"

loop [25, 26].

Example 1 (precomp read) Consider the statement

Compiling HPF 15

FORALL(I=1:N) A(I)=B(2*I+1)

The array B is marked as precomp read since the distributed dimension sub-

script is written as f(i) = 2 � i + 1 which is invertible as g(i) = (i � 1)=2.

1 count=1

2 call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

3 DO I=1, N/P

4 receive_list(count)=global_to_proc(f(i))

5 send_list(count)= global_to_proc(g(i))

6 local_list(count) = global_to_local(g(i))

7 count=count+1

8 END DO

9 isch = schedule1(receive_list, send_list, local_list, count)

10 call precomp_read(isch, tmp,B)

11 count=1

12 DO I=1, N/P

13 if((I.ge.lb).and.(I.le.ub).and.(mod(I,st).eq.0)) ! mask

& A(I) = tmp(count)

14 count= count+1

15 END DO

The preprocessing loop is given in lines 1-9. Note that this preprocessing loop

executes concurrently in each processor. The loop covers entire local array

bounds since each processor has to calculate the receive list as well as the

send list of processors. Each processor also �lls the local indices of the array

elements which are needed by that processor.

The schedule1 routine does not need to communicate but only constructs the

scheduling data structure isch. The schedule isch can also be used to carry

out identical patterns of data exchanges on several di�erent but identically dis-

tributed arrays or array sections. The same schedule can be reused repeatedly

to carry out a particular pattern of data exchange on a single distributed array.

In these cases, the cost of generating the schedules can be amortized by only

executing it once. This analysis can be performed at compile time. Hence,

if the compiler recognizes that the same schedule can be reused, it does not

generate code for scheduling but it passes a pointer to the already existing

schedule. Furthermore, the preprocessing computation can be moved up as

much as possible by analyzing de�nition-use chains [27]. Reduction in com-

munication overhead can be signi�cant if the scheduling code can be moved

16 Chapter 1

out of one or more nested loops by this analysis. In the above example, lo-

cal list (line 6) is used to store the index of one-dimensional array. However,

in general, local list will store indices from a multi-dimensional Fortran array

by using the usual column-major subscript calculations to map the indices to

a one-dimensional index.

The precomp read primitive performs the actual communicationusing the sched-

ule. Once the communication is performed, the data is ordered in a one dimen-

sional array, and the computation (lines 12-15) uses this one dimensional array.

The precomp read primitive brings an element into temp for each local array

element since preprocessing loops coves entire local array. The if statement

masks the assignment to preserve the semantic of original loop.

Example 2 (gather) Consider the statement

FORALL(I=1:N) A(I)=B(V(I))

The array B is marked as requiring gather communication since the subscript is

only known at runtime. The receiving processors can know what non-local data

they need from other processors, but a processor may not know what local data

it needs to send to other processors. For simplicity, in this example, we assume

that the indirection array V is replicated. If it is not replicated, the indirection

array must also be communicated to compute the receive list on each processor.

1 count=1

2 call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

3 DO I=lb,ub,st

4 receive_list(count)=global_to_proc(V(i))

6 local_list(count) = global_to_local(V(i))

7 count=count+1

8 END DO

9 isch = schedule2(receive_list, local_list, count)

10 call gather(isch, tmp,B)

11 count=1

12 DO I=lb,ub,st

13 A(I) = tmp(count)

14 count= count+1

15 END DO

Compiling HPF 17

Once the scheduling is completed, every processors knows exactly which non-

local data elements it needs to send to and receive from other processors. Recall

that the task of scheduler2 is to determine exactly which send and receive com-

munications must be carried out by each processor. The scheduler �rst �gures

out how many messages each processor will have to send and receive during the

data exchange. Each processor computes the number of elements (receive list)

and the local index of each element it needs from all other processors. In sched-

ule2 routine, processors communicate to combine these lists (a fan-in type of

communication). At the end of this processing, each processor contains the

send and receive list. After this point, each processor transmits a list of re-

quired array elements (local list) to the appropriate processors. Each processor

now has the information required to set up the send and receive messages that

are needed to carry out the scheduled communication. This is done by the

gather primitives. Note that schedule1 does not need to communicate to form

scheduling unlike schedule2.

Example 3 (scatter) Consider the statement

FORALL(I=1:N) A(U(I))=B(I)

The array A is marked as requiring scatter primitive since the subscript is only

known at runtime. Note that owner computes rule is not applied here. The pro-

cessor performing the computation knows the processor and the corresponding

local-o�set at which the resultant element must be written.

1 count=1

2 call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

3 DO I=lb,ub,st

4 send_list(count)=global_to_proc(U(i))

6 local_list(count) = global_to_local(U(i))

7 count=count+1

8 END DO

9 isch = schedule3(proc_to, local_to, count)

10 call scatter(isch, A, B)

Unlike the gather primitive, in this case each processor computes a send list

containing processor ids and local list containing the local index where the

communicated data must be stored. The schedule3 is similar to schedule2 of

gather primitives except that schedule3 does not need to send local index in a

separate communication step.

18 Chapter 1

The gather and scatter operations are powerful enough to provide the ability to

read and write distributed arrays with vectorized communication facility. These

two primitives are available in PARTI (Parallel Automatic Runtime Toolkit at

ICASE) [25] designed to e�ciently support irregular patterns of distributed

array accesses. The PARTI and other communication primitives and intrinsic

functions form the run-time support system of our Fortran 90D compiler.

6 RUN-TIME SUPPORT SYSTEM

The Fortran 90D/HPF compiler relies on a very powerful run-time support

system. The run-time support system consists of functions which can be called

from the node programs of a distributed memory machine. Intrinsic functions

support many of the basic data parallel operations in Fortran 90. They do not

only provide a concise means of expressing operations on arrays, but also iden-

tify parallel computation patterns that may be di�cult to detect automatically.

Fortran 90 provides intrinsic functions for operations such as shift, reduction,

transpose, reshape, and matrixmultiplication. The intrinsic functions that may

induce communication can be divided into �ve categories as shown in Table 2.

1. Structured 2. Reduction 3. Multicasting 4. Unstructured 5. Special

communication communication routines

CSHIFT DOTPRODUCT SPREAD PACK MATMUL

EOSHIFT ALL, ANY UNPACK

COUNT RESHAPE

MAXVAL, MINVAL TRANSPOSE

PRODUCT

SUM

MAXLOC, MINLOC

Table 2 Some HPF Intrinsic Functions.

The �rst category requires data to be transferred using with less overhead

structured shift communications operations. The second category of intrinsic

functions require computations based on local data followed by use of a reduc-

tion tree on the processors involved in the execution of the intrinsic function.

The third category uses multiple broadcast trees to spread data. The fourth

category is implemented using unstructured communication patterns. The �fth

category is implemented using existing research on parallel matrix algorithms

[17]. Some of the intrinsic functions can be further optimized for the underlying

hardware architecture.

Compiling HPF 19

Nproc ALL ANY MAXVAL PRODUCT TRANSPOSE

(1K x 1K) (1K x 1K) (1K x 1K) (256K) (512 x 512)

1 580.6 606.2 658.8 90.1 299.0

2 291.0 303.7 330.4 50.0 575.0

4 146.2 152.6 166.1 25.1 395.0

8 73.84 77.1 84.1 13.1 213.0

16 37.9 39.4 43.4 7.2 121.0

32 19.9 20.7 23.2 4.2 69.0
Table 3 Performance of some HPF Intrinsic Functions (time is milliseconds).

Table 3 presents a sample of performance numbers for a subset of the intrinsic

functions on iPSC/860. A detailed performance study is presented in [11]. The

times in the table include both the computation and communication times for

each function. For most of the functions we were able to obtain almost linear

speedups. In the case of TRANSPOSE function, going from one processor to

two or four actually results in increase in the time due to the communication

requirements. However, for larger size multiprocessors the times decrease as

expected.

Arrays may be redistributed across subroutine boundaries. A dummyargument

which is distributed di�erently than its actual argument in the calling routine is

automatically redistributed upon entry to the subroutine by the compiler, and

is automatically redistributed back to its original distribution at subroutine

exit. These operations are performed by the redistribution primitives which

transform from block to cyclic or vice versa.

When a distributed array is passed as an argument to some of the run-time

support primitives, it is also necessary to provide information such as its size,

distribution among the nodes of the distributed memory machine etc. All this

information is stored into a structure which is called distributed array descriptor

(DAD) [11].

In summary, parallel intrinsic functions, communication routines, dynamic data

redistribution primitives and others are part of the run-time support system.

20 Chapter 1

7 OPTIMIZATIONS

Several types of communication and computation optimization can be per-

formed to generate a more e�cient code. In terms of computation optimiza-

tion, it is expected that the scalar node compiler performs a number of classic

scalar optimizations within basic blocks. These optimizations include common

subexpression elimination, copy propagation (of constants, variables, and ex-

pressions), constant folding, useless assignment elimination, and a number of

algebraic identities and strength reduction transformations. However, to use

parallelism within the single node (e.g. using attached vector units), our com-

piler propagates the information to the node compiler using node directives.

Since in the original data parallel constructs such as forall statement, there

is no data dependency between di�erent loop iteration, vectorization can be

performed easily by the node compiler.

Our compiler performs several optimizations to reduce the total cost of com-

munication. Some of communication optimizations [23, 28, 29] are as follows.

Vectorized communication. One of the important considerations for mes-

sage passing on distributed memory machines is the setup time required

for sending a message. Typically, this cost is equivalent to the sending

cost of hundreds of bytes. Vectorization combines messages for the same

source and destination into a single message to reduce this overhead. Since

in Fortran 90D we are only parallelizing array assignments and forall loops,

there is no data dependency between di�erent loop iterations. Thus, all

the required communication can be performed before or after the execution

of loop on each of the processors involved.

Eliminate unnecessary communications. In many cases, communication

required for two di�erent operands can be replaced by their union. For

example, the following code may require two overlapping shifts. However,

with simple analysis, the compiler can eliminate the shift of size 2.

FORALL(I=1:N) A(I)=B(I+2)+B(I+3)

Reuse of scheduling information. Unstructured communication primitives

are required by computations which require the use of a preprocessor. As

discussed in Section 6.3.2, the schedules can be reused with appropriate

analysis.

Code movement. The compiler can utilize the information that the run-

time support routines do not have procedural side e�ects. For example,

Compiling HPF 21

the preprocessing loop or communication routines can be moved up as

much as possible by analyzing de�nition-use chains [27]. This may lead to

moving of the scheduling code out of one or more nested loops which may

reduce the amount of communication required signi�cantly.

We are incrementally incorporating many more optimizations in the compiler.

8 EXPERIMENTAL RESULTS

A prototype compiler is complete (it was demonstrated at Supercomputing'92).

In this section, we describe our experience in using the compiler.

One of the principal requirements of the users of distributed memory MIMD

systems is some \guarantee" of the portability for their code. Express paral-

lel programming environment [30] guarantees this the portability on various

platforms including, Intel iPSC/860, nCUBE/2, networks of workstations etc.

We should emphasize that we have implemented a collective communication

library which is currently built on the top of Express message passing prim-

itives. Hence, in order to change to any other message passing system such

as PVM [31] (which also runs on several platforms), we only need to replace

the calls to the communication primitives in our communication library (not

the compiler). However, it should be noted that a penalty must be paid to

achieve portability because portable routines are normally built on top of the

system routines. Therefore, the performance also depends on how e�cient are

the communication primitives on the top of which the communication library

is built.

As a test application we use Gaussian Elimination, which is a part of the

FortranD/HPF benchmark test suite [32]. Figure 4 shows the execution times

obtained to run the same compiler generated code on a 16-node Intel/860 and

nCUBE/2 for various problem sizes. Due to space limitations, we do not present

performance of many other programs, and some of them can be found in [?].

Table 4 shows a comparison between the performance of the hand-written For-

tran 77+MP code with that of the compiler generated code. We can observe

that the performance of the compiler generated code is within 10% of the hand-

written code. This is due to the fact that the compiler generated code produces

an extra communication call that can be eliminated using optimizations. How-

ever as Figure 5 shows, the gap between the performance of the two codes

22 Chapter 1

increases as the number of processors increases. This is because the extra com-

munication step is a broadcast which is almost O(log(P)) for a P processor

hypercube system.

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

Time

Array size N (Nx(N+1) real)

Gaussian Elimination

iPSC/860 3

3 3 3 3
3

3
3

3

nCUBE/2 +

+
+

+

+

+

+

+

+

Figure 4 Execution time of HPF compiler generated code for Gaussian Elim-
ination on a 16-node Intel iPSC/860 and nCUBE/2 (time in seconds).

Number of PEs

1 2 4 8 16

Hand Written 623.16 446.60 235.37 134.89 79.48

HPF 618.79 451.93 261.87 147.25 87.44

Table 4 Comparison of the execution times of the hand-written code and
HPF compiler generated code for Gaussian Elimination. Matrix size is
1023x1024 and it is column distributed.(Intel iPSC/860, time in seconds).

9 SUMMARY OF RELATED WORK

The compilation technique of Fortran 77 for distributed memory systems has

been addressed by Callahan and Kennedy [13]. Currently, a Fortran 77D com-

piler is being developed at Rice [28, 34]. Superb [12] compiles a Fortran 77

Compiling HPF 23

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

2 4 6 8 10 12 14 16 18

Speedup

Processors

Gaussian Elimination

Compiler generated 3

3

3

3

3

3

Hand written +

+
+

+

+

+

Figure 5 Speed-up against the sequential code (corresponds to Table 4 of
the hand-written code and Fortran 90D compiler generated code for Gaussian
Elimination).

program into a semantically equivalent parallel SUPRENUM multiprocessor.

Koelbel and Mehrotra [26, 21] puts a great deal of e�ort on run-time analysis

for optimizing message passing in implementation of Kali. Quinn et al. [35, 36]

use a data parallel approach for compiling C* for hypercube machines. The

ADAPT system [37] compiles Fortran 90 for execution on MIMD distributed

memory architectures. The ADAPTOR [38] is a tool that transform data par-

allel programs written in Fortran with array extension and layout directives to

explicit message passing. Chen [23, 39] describes general compiler optimization

techniques that reduce communication overhead for Fortran-90 implementation

on massivelly parallel machines. Many techniques especially unstructured com-

munication of our compiler are adapted from Saltz et al. [40, 29, 22]. Gupta

et al. [24, 41] use collective communication on automatic data partitioning on

distributed memory machines. Due to space limitations, we do not elaborate

on various other related projects.

24 Chapter 1

10 SUMMARY AND CONCLUSIONS

HPF are languages that incorporate parallel constructs and allow users to spec-

ify data distributions. In this paper, we presented a design for HPF compiler

for distributed memory machines. Speci�cally, techniques for processing dis-

tribution directives, computation partitioning, communication detection and

generation were presented. We show that our design is portable, yet e�cient.

We believe that the methodology presented in this paper to compile HPF can

be used by the other designers and implementors for HPF language.

APPENDIX A

A.1 GAUSSIAN E. WITH HPF

integer, dimension(N) :: indx

integer, dimension(1) :: iTmp

real, dimension(N,NN) :: a

real, dimension(N) :: fac

real, dimension(NN) :: row

real :: maxNum

CHPF$ PROCESSORS PROC(P)

CHPF$ TEMPLATE T(NN)

CHPF$ DISTRIBUTE T(BLOCK)

CHPF$ ALIGN row(J) WITH T(J)

CHPF$ ALIGN a(*,J) WITH T(J)

indx = -1

do k = 0, N-1

iTmp = MAXLOC(ABS(a(:,k)), MASK = indx .EQ. -1)

indxRow = iTmp(1)

Compiling HPF 25

maxNum = a(indxRow,k)

indx(indxRow) = k

fac = a(:,k) / maxNum

row = a(indxRow,:)

forall (i = 0:N-1, j = k:NN-1, indx(i) .EQ. -1)

& a(i,j) = a(i,j) - fac(i) * row(j)

end do

Acknowledgements

We are grateful to Parasoft for providing the Fortran 90 parser and Express

without which the prototype compiler could have been delayed. We would

like to thank the other members of our compiler research group I. Ahmad, R.

Bordawekar, R. Ponnusamy, R. Thakur, and J. C. Wang for their contribution

in the project including the development of the run-time library functions,

testing, and help with programming. We would also like to thank K. Kennedy,

C. Koelbel, C. Tseng and S. Hiranandani of Rice University and J. Saltz and

his group of Maryland University for many inspiring discussions and inputs

that have greatly inuenced this work.

This work was supported in part by NSF under CCR-9110812 (Center for

Research on Parallel Computation) and DARPA under contract # DABT63-

91-C-0028. The content of the information does not necessarily reect the

position or the policy of the Government and no o�cial endorsement should

be inferred. Alok Choudhary is also supported by an NSF Young Investigator

Award.

REFERENCES

[1] American National Standards Institue. Fortran 90: X3j3 internal document

s8.118. Summitted as Text for ISO/IEC 1539:1991, May 1991.

[2] G. C. Fox, S. Hiranadani, K. Kenndy, C. Koelbel, U. Kremer, C. Tseng,

and M. Wu. Fortran D Language Speci�cation. Technical report, Rice and

Syracuse University, 1992.

[3] High Performance Fortran Forum. High performance fortran language

speci�cation version 1.0. Draft, Also available as technical report CRPC-

26 Chapter 1

TR92225 from the Center for Research on Parallel Computation, Rice

University., Jan. 1993.

[4] The Thinking Machine Corporation. CM Fortran User's Guide version

0.7-f, July 1990.

[5] Maspar Computer Corporation. MasPar Fortran User Guide version 1.1,

Aug. 1991.

[6] G. Fox. The architecture of problems and portable parallel software sys-

tems. Technical Report SCCS-78b, Syracuse University, 1991.

[7] Z. Bozkus et al. Compiling the FORALL statement on MIMD parallel

computers. Technical Report SCCS-389, Northeast Parallel Architectures

Center, July 1992.

[8] D. Padua B. Leasure D. Kuck, R. Kuhn and M. Wolf. Dependence graph

and compiler optimizations. Proc. of 8th ACM Symp. Principles on Pro-

gramming Lang., September 1981.

[9] Z. Bozkus et al. Compiling Distribution Directives in a Fortran 90D Com-

piler. Technical Report SCCS-388, Northeast Parallel Architectures Cen-

ter, July 1992.

[10] S. Chatterjee, J.R. Gilbert, R. Schreiber, and S.H Tseng. Auto-

matic Array Alignment in Data-Parallel Programs. Twentieth Annual

ACM SIGACT/SIGPLAN Symposium on Principles of Programming Lan-

guages, January 1993.

[11] I. Ahmad, R. Bordawekar, Z. Bozkus, A. Choudhary, G. Fox, K. Para-

suram, R. Ponnusamy, S. Ranka, and R. Thakur. Fortran 90D Intrinsic

Functions on Distributed Memory Machines: Implementation and Scalabil-

ity. Technical Report SCCS-256, Northeast Parallel Architectures Center,

March 1992.

[12] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi Automatic

SIMD/MIMD Parallelization. Parallel Computing, January 1988.

[13] D. Callahan and K. Kennedy. Compilingprograms for Distributed Memory

Multiprocessors. The Journal of Supercomputing, pages 171{207, 1988.

[14] M. Wu and G. Fox et al. Compiling Fortran 90 programs for distributed

memory MIMD paralelel computers. Technical Report SCCS-88, North-

east Parallel Architectures Center, May 1991.

Compiling HPF 27

[15] R. Allen. Dependency analysis for Subscripted Variables and its Appli-

cation to Program Transformation. Technical Report PhD thesis, Rice

University, 1983.

[16] J. Ng, V. Sarkar, and J.F. Shaw. Optimized execution of Fortran 90 array

constructs on supercomputer architectures. Supercomputing'91, 1991.

[17] G. C. Fox, M.A. Johnson, G.A. Lyzenga, S. W. Otto, J.K. Salmon, and

D. W. Walker. In Solving Problems on Concurent Processors, volume 1-2.

Prentice Hall, May 1988.

[18] K. Knobe, J. D. Lukas, and G. L. Steele. Data optimization: Allocation of

arrays to reduce communication on SIMD machines. Journal of Parallel

and Distributed Computing, pages 102{118, Feb 1990.

[19] J. Li and M. Chen. The data alignment phase in compiling programs for

distributed-memory machines. Journal of Parallel and Distributed Com-

puting, pages 213{221, Oct 1991.

[20] M. Gerndt. Updating distributed variables in local computations. Con-

currency: Practice and Experience, September 1990.

[21] C. Koelbel and P. Mehrotra. Supporting Compiling Global Name-Space

Parallel Loops for Distributed Execution. IEEE Transactions on Parallel

and Distributed Systems, October 1991.

[22] H. Berryman J. Saltz, J. Wu and S. Hiranandani. Distributed Memory

Compiler Design for Sparse Problems. Interim Report ICASE, NASA

Langley Research Center, 1991.

[23] J. Li and M. Chen. Compiling Communication -E�cient Programs for

Massively Parallel Machines. IEEE Transactions on Parallel and Dis-

tributed Systems, pages 361{376, July 1991.

[24] M. Gupta and P. Banerjee. Demonstration of Automatic Data Partitioning

Techniques for Parallelizing Compilers on Multicomputers. IEEE: Trans-

action on Parallel and Distributed Systems, pages 179{193, March 1992.

[25] R. Das, J. Saltz, and H. Berryman. A Manual For PARTI Runtime Prim-

itives. NASA,ICASE Interim Report 17, May 1991.

[26] C. Koelbel, P. Mehrotra, and J. V. Rosendale. Supporting Shared Data

Structures on Distributed Memory Architectures. PPoPP, March 1990.

[27] A.V. Aho, R. Sethi, and J.D Ullman. Compilers Principles, Techniques

and Tools. March 1988.

28 Chapter 1

[28] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimization for For-

tran D on MIMD distributed-memory machines. Proc. Supercomputing'91,

Nov 1991.

[29] R. Mirchandaney J. Saltz, K. Crowley and H. Berryman. Run-time

scheduling and execution of loops on message passing machines. Jour-

nal of Parallel and Distributed Computing, December 1991.

[30] ParaSoft Corp. Express Fortran refernce guide Version 3.0, 1990.

[31] A. Beguelin, J. Dongarra, A. Geist, R. Mancheck, and V. Sunderam.

A Users Guide to PVM Parallel Virtual Machine. Technical Report

ORNL/TM-11826, Oak Ridge National Laboratory, July 1991.

[32] A. G.Mohamed, G. Fox, G. V. Laszewski, M. Parashar, T. Haupt, K. Mills,

Y. Lu, N. Lin, and N. Yeh. Application Benchmark Set for Fortran-D

and High Performance Fortran. Technical Report SCCS-327, Northeast

Parallel Architectures Center, May 1992.

[33] S. L. Johnsson. Performance Modeling of Distributed Memory Architec-

tures. Journal of Parallel and Distributed Computing, pages 300{312, Au-

gust 1991.

[34] S. Hiranandani, K. Kennedy, and C.W. Tseng. Compiler support for

machine-indepentet Parallel Programming in Fortran D. Compiler and

Runtime Software for Scalable Multiprocessors, 1991.

[35] Michael Quinn, Philip Hatcher, and Karen Jourdenais. Compiling C*

Programs for a Hypercube Multicomputer. Parallel Computing Laboratory,

University of New Hampshire, PCL-87-12, December 1987.

[36] Philip Hatcher, Anthony Lapadula, Robert Jones, Michael Quinn, and

Ray Anderson. A Production-Quality C* Compiler for Hypercube Multi-

computers. Third ACM SIGPLAN symposium on PPOPP, 26:73{82, July

1991.

[37] J.H Merlin. Techniques for the Automatic Parallelisation of 'Distributed

Fortran 90'. Technical Report SNARC 92-02, Southampton Novel Archi-

tecture Research Centre, 1992.

[38] T. Brandes. ADAPTOR Language Reference Manual. Technical Report

ADAPTOR-3, German National Research Center for Computer Science,

1992.

Compiling HPF 29

[39] M. Chen and J.J Wu. Optimizing FORTRAN-90 Programs for Data Mo-

tion on Massivelly Parallel Systems. Technical Report YALEU/DCS/TR-

882, Yale University, Dep. of Comp. Sci., 1992.

[40] H. Berryman J. Saltz and J. Wu. Multiprocessors and run-time compila-

tion. Concurrency: Practice and Experience, December 1991.

[41] M. Gupta. Automatic Data Partitioning on Distributed Memory Multi-

computers. Technical Report PhD thesis, University of illinois at Urbana-

Champaign, 1992.

