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Fig. 1

Hg 2

Figure Captions

The edge extrinsic-curvature specific heat C'()) as a function of A.
Multi-histogram with errors are shown for N = 576 (long and short-
dashed lines) and N=1,152 (solidlines). Four individual data points
are al so shown for N=2, 304 (solidcircles). One sees that the specific
heat peak has saturated - it is not growng wth the systemsize N
above 576.

The specific heat C(3) of the tvo-dinensional O(3) non-linear signa
nodel as a function of J for lattice volunes N =16, 25, 64, 100, 900,
2, 500, 4, 900 and 10, 000. The peak saturates quicklyfor N> 100 and

“B.” does not increase wth the vol une.
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N F[K][ F[q—6]
576 | 5.71+.08 | 8.39+. 04
1152 || 5. 59 & . 05| 8. 32 + . 03
2304 | 5. 70+ . 10| 8. 37 £ . 06

Table 2: The nean square fluctuations of the extrinsic Gaussian curvature
K and the defect coordination nunber ¢ — 6, witherrors, for different lattice
sizes.

estinate of R, whichallows us toestinate for the Fhusdorff di nension at the
pseudo- critical point A the value dy =4. 35+ . 3. This is anintriguingresult,
since 41s the extrinsi ¢ Hhusdorff di nensionof a class of branched pol yners, as
constructed, for instance, inreferences [39 Such configurations are expected
to domnate the string functional integral for 1arge enbeddi ng di nension D.
This vork has been done with NPAC(Northeast Parallel Architectures
(énter) and (RPC ((enter for Research in Parallel (bnputing) conput-
ing facilities. 'The research of MB was supported by the DFpartnent of
Fhergy Outstandi ng Junior Investigator Grant DXE IJS HO2- 85FRI0231
and that of (Hby research funds fromSyracuse Unversity. KAwshes to
thank John Apostol akis for discussions and for providing hi mwi th his (X3)
code and Tryphon Anagnostopoulos and Aexis Avilias for hospitality at
the [knocritos Niclear (éenter in Ahens, (Geece where part of this work
vas conpl eted. THand M vere supported by NPACresearch funds. W
grateful ly acknowt edge discussions with Jan Anbjgrn, (eoffrey Fox, Dhvid
Nelson and Bengt Petersson.



A= A7, v is the anal ogous exponent for the correlation length and d is
the intrinsic Fhusdorff dinension of the surface. In other words there nay
be a cusp singularity at A. as, for exanple, inthe case of the superfluid (A)
transition in Hé [30, 31], for which a =—0. 0127 £ 0. 0026. Since we do
not have a neasurenent of rd, which nay even be rather large, we have

no reliable idea of the exponent «vitself. C(enerally speaking one finds that
second order transitions on fixed l attices becone hi gher order on dynamcal
lattices, as for exanpl e inthe case of the 2d-1sing nodel [32 33]. Since there
seems to be a 2nd order crunpling transition for non-self-avoiding tethered
(fixed- triangul ation) surfaces [35 36, 37, 3§, it would be consistent for the
transition to be hi gher than 2nd order when the nodel is coupled to gravity.

Al told our vork gives only weak evidence for a conti nuumcrunpling
transition. 'The strongest evidence in favour of such a transition, at present,
is the scaling behaviour of the string tension and nass gap reported in [2].
Thi's hi ghl1 ghts the need for nere extensi ve neasurenents on t hese i nport ant
observabl es.

W have al so neasured the fluctuations of the extrinsic Gaussian curva-
ture | K| , defined as the average nagni tude of the deficit angle at each vertex
as neasured in the enbedded space. likewise, we have al so conputed the
fluctuations of the nean defect coordination nunber | ¢ —6| , whichis propor-
tional to the intrinsic Chussian curvature. In reference [|3ve had observed
that fluctuations of these observables vere quite large near the coupling A .
but then drop qui te dranaticallyfor slightlyhigher A\. Wfind that onlarger
lattices the fluctuations of these observables at A also do not growwth N,
thus their behaviour does not provide unequi vocal evidence of the presence
of a phase transition. In Table 2 ve give the nean-square fluctuations of
both observabl es.

Fnally ve note the behaviour of the gyration radius at A . (which ve
will take as being 1. 425 in the following). For large A (> 2), the scaling of

RN) ~ N T vith N gives a Hausdorff di nension close to 2 (as ve expect

for flat surfaces). In the crumpled region the Hhusdorff di nension rapidly
increases with dimnishing \. W had pointed out in [3 ] that finite size
eflects were rel evant in the sector close to A and that we coul d not estinate

a reliable nunber fromthe lattice sizes anal yzed. Here the largest lattice
ve simul ated (N =2304) does not give useful data, since the error in R
is too large, but on the 1152 and 576 node lattices we get a fairly precise



clusters updated a vol une exceeding 30 tines the vol une of the lattice 2.
For each point of the N =16, 64, 900, 2, 500 and 4, 900 lattices we used
20, 000 neasurenents. Wtook a neasurenent every tine the Wl ff cl usters
updated a vol une exceedi ng 3 t1nes the vol une of the lattice. It is veryclear
that the peak levels off quickly for N> 100 and that “4 .” is not increasing
with the size of the lattice. Masurenents of the asynptotic value of C(/)
have been reported in the past [23 | 24]. 'The authors of [25, 26, 27 explain
the peak as the excitation of an extra degree of freedom the so-called o-
particle [28. 'The woul d-be transition occurs vhen the nass of the o-particle
becones conparabl e to the inverse correlation length of the (3) nodel. It
nay be that there is a simlar interpretationof the observed peak of C()).

W are currently histogranmng our data to examne as well the be-
haviour of the conplex zeroes of the partition function when A is allowed
to becone conplex. For SU(2) lattice gauge theory, which also exhibits a
speci fic heat peak wi thout an associated phase transition, 1t has been shown
that there are conpl ex zeroes which are near the real axis but do not con-
verge toit inthe infini te-vol une limt [17, 18]. Hgh-tenperature expansions
also indicate that the ((3) nodel susceptibility has a complex singularity
near the real axis [29. Ow search has been so far inconclusive. W used
the single histogramming techni que [17 , 1§ for N =36, 72, 144, 288, and
572. W checked our code by reproducing the results of [18 ] for N=64. The
nedul us of the partitionfunction becones quite snall near the real axis and
ve vere not able to see the conplex zeroes due to statistical fluctuations.
For N =36 and 144, for exanple, the conpl ex zeroes have I'm A >0.3 and
0. 1 respectively. Hgher statistics and an inprovenent of the nethod [20 ]
voul d hel p to probe deeper into the conplex A pl ane and study the scaling
of the conpl ex zeroes with the vol une. 15ing single histogramnmng and the
sinul ations of the two dinensional (X3) nodel nentioned in the previous
paragraph, ve vere not able to see the conpl ex zeroes of the (X3) partition
function reportedin [29 either.

It is still possible that there is a true continuous phase transition, the
crunpl ing transition, occurring at A\.. Assumng a continuous transition, a
standard fini te-size-scaling argunent only tells us that w =2 < 0, vhere
« is the exponent governing the divergence of the specific heat, C(A) ~

3For the N = 16, 64, 900 and 4,900 lattices the integrated autocorrel ation times were
between 1 and 2 Wol ff updatings of the entire lattice



N Clae) X |
36 || 3. 484+ . 008| 1. 425 + . 035
72 || 4.571 £ . 015] 1. 410 £ . 015
144 5. 374 .08 1. 395 £ . 017
288 5.55+ .05 1. 410 £ . 015
576 5. 81+.06/ 1. 425+ . 010
1152 5.69+ .04 1.425+.010
2304 5.7+ .10 1. 425 4+ . 010

Table 1: The naxi mumof the specific heat andits position, with errors, for
di flerent lattice sizes.

true asynptotic behaviour. These results also invalidate the interpretation
raised in the introduction [4 3. Aone-loop renormalization group cal cu-
lation shovs that the persistence length ¢ grovs with bending rigidity A as
exp(=A). Epuating ¢ withthe spatial extent of the lattice N/din where d;,
is the intrinsic Fhusdorff di nension of the lattice, one sees that they becone
conparable at a coupling A . ~ 47Tgl)’mln(l\f). In the continuumlimt N — oo,
A diverges. Since, for reasonable values of f,, we do not see the increase
in A, wth N predicted by the above rel ationship we can state with sone
confidence that the origin of the observed specific heat peakis not expl ai ned
by the persistence length becomng conparable to the extent of the lattice.
In[3 wealsodiscussedother, noresubtle, possibilities that coul d account
for the observed behavi our of C(\) wi thout invoking a phase transition. Gne
vas based on the anal ogy betveen the present nodel and the (X3) signa-
nedel in2d [21]. 'This nedel is also asynptotically free and consequently
disordered at all non-zero tenperatures. Yt mmerical simulations showa
distinct peak in the specific heat which grows for small lattices and then
saturates, just as ve find in the nodel of a rigid string treated here. This
nay be seenin Hg. 2 where we have plotted the specific heat C(3) for the
tvo dinensional (X3) nodel. The sinulations vere done on square lattices
of volune N=16, 25, 64, 100, 900, 2, 500, 4, 900 and 10, 000 using the Wl ff
al gorithm[22]. Ior each point of the N =25, 100 and 10, 000 lattices we

used 100, 000 neasurenents. W took a neasurenent every tine the W ff




aset of 3Nfli ps are perforned, 3Nrandonhy sel ected enbeddi ng coordi nates
are updated by randomshi fts froma flat distribution.

The observable of nest direct physical interest is the edge extrinsic-
curvature speci fic heat

2
C()\):?‘V(<S§;>—<SE>2) : (2)
This exhibits a peak at a coupling A . which depends on the exact discrete
formof the action chosen [11, 12 13, 14, 15 16, 2 3. In [B we found
that the naxi numval ue of the specific heat grows with the systemsize as
Coe =AN Y, withw =0.06+0.05 Inour newseries of simulations on
lattices with 1152 nodes we ran 54 mllion sveeps at A =1. 425, 21 mllion
sveeps at A =1. 430 and 18 mllionsweeps at A =1.435 !. (hthe data from
these three points we use multi-histogramreconstruction [17 , 18 19]. This
vorks vell in that three different reconstructions give coherent results. (h
lattices of 2304 nodes we have poorer statistics. Wran 17 mllion sweeps
at A =1. 425 plus approximatel y 5 mllion sweeps at A =1. 40, 1. 42 and 1. 43
as a consistency check. (h the 2304 lattice histogranmng does not work
vell. This is to be expected since the statistics are not good enough for such
a large lattice. Still we have checked that our neasurenents at A =1. 425
give consistent results, that the error estinate is reliable and that vwe are,
w th good accuracy, at the peak of the specific heat. Inall these simul ations
required the equivalent of approxinately one year of (PUtine on an HP
9000 (720 series) workstation.

The specific heat peak for N =576, 1152 and 2304 is showm in K g. 1.
InTable 1 ve give our results for the naxi mmmof the specific heat and the
associ ated coupling A\, as a function of N 2.

(early the naxi mmof the specific heat curve ¢, 1s effectivel y con-
stant for surfaces with 576 or nore nodes. 'The (pseudo)-critical coupling A.
is also constant for N =576 and above. Wth the present data ve can defi-
ni tel y excl ude the presence of a di vergence i nthe specific heat. The growth of
the speci fic heat peak observed on snall lattices [11, 12, 13] does not reflect

ISince the autocorrelation time 7is of order 400,000 sweeps on the 1152 lattice these
runs have at least 457 neasurenents.

2We have reanal yzed the data presented inreferenc¢)([dsing a different nethod of
wel ghting rel ative errors when conbining histograns. Thus, sone of the errors quoted
here are snaller than the respective uncertainties inreferkhpce ([3



The theory of 2d fluid randomsurfaces enmbedded in B 3, with an ex
trinsic curvature term(bending rigidity) in the action, has received consid-
erable anal ytical and nunerical attention in the last decade [1, 2 3. In
[3 ve presented the results of a large-scale Mnte Carlo simlation of a
dynamcal 1 y-triangul ated torus in R® with up to 576 nodes, corresponding
to 1152 triangles. Athough we observed a rapi d crossover froma cruped
regine for A <X . toa smithregine for A >\ ., vhere A is the extrinsic
curvature coupling constant and A .~ 1. 425, it was not at all clear whether a
true continuous thernedynamec phase transition separated the tvo regines.

In fact several alternative interpretations of the data vere discussed in |3
Perhaps the sinplest possibility, advocated in [4], is that the persistence
length & describing the exponential decay of the nornal-nornal two-point
function in the crunpled (disordered) regine sinply reaches the finite size

of the systemat A.. Inthis case the observed smooth regine would be a
fini te-size artifact with the true continuumtheory really being crunpl ed for
all couplings A, inaccordance wi th perturbative anal ytical results [56, 7, §.
Since £ grovs exponentially with A, according to the one-1oop beta-function,
this interpretation wouldinply that A . diverges logarithmcal ly with system
size N. o resolve this issue and to gain further insight into the nodel it
vas clearly desirable to extend the nunerical simulations to larger lattice
sizes and to clarify the influence of finite-size effects. Inthis short letter ve
present an extension of our previous work to include toroidal lattices 1152
and 2304 nodes.

% in[3] we study the theory defined by the action

S=5 Gauss + ASE =D Cijf( X = X+ A (1—nf-nf), (1)

= P !
Ty K kl

vhere C';; is the adjacency matrix, X/ is the position in R of node ¢
(¢ =1, .., N) and zz is the normal vector to a triangle k& in the cellular
deconposition of alattice discretizationof atorus. 'The discretizationgdof
a continuumextrinsic curvature termtakes support on the edges (links) of
the lattice and is known as the (discrete) edge extrinsic-curvature. The sim
ul ation consists of a standard Mtropolis al gorithmfor the updating of the
nodes X/ and a DIRS-al gorithm[9 ., 10] to sweep through the space of trian-
gul ations. 'The basic flip nove is attenpted on randonhy chosenlinks. Ater
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