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ABSTRACT

Monte Carlo simulation is one of the main applications involving the use of random

number generators. It is also one of the best methods of testing the randomness prop-

erties of such generators, by comparing results of simulations using di�erent generators

with each other, or with analytic results. Here we compare the performance of some

popular random number generators by high precision Monte Carlo simulation of the 2-d

Ising model, for which exact results are known, using the Metropolis, Swendsen-Wang,

and Wol� Monte Carlo algorithms. Many widely used generators that perform well in

standard statistical tests are shown to fail these Monte Carlo tests.
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1. Introduction

Monte Carlo simulation is an important numerical technique for studying a wide

range of problems in the physical sciences.1 Being a probabilistic technique, it re-

lies heavily on the use of pseudo-random number generators.2;3;4 The generation of

random numbers on a computer is a notoriously di�cult problem. An ideal random

number generator would provide numbers that are uniformly distributed, uncorre-

lated, satisfy any statistical test of randomness, have a large period of repetition,

can be changed by adjusting an initial \seed" value, are repeatable, portable, and

can be generated rapidly using minimal computer memory.

Many statistical tests have been developed to check for randomness,2;5 and in

most cases the period of the generator can be calculated (at least approximately).

As noted in a number of recent review articles,3;4;6 random number generators

provided by computer vendors or recommended in computer science texts often

have been (and unfortunately continue to be) of poor quality. Even generators that

perform well in standard statistical tests for randomness may be unreliable in certain

applications, as has been found in some Monte Carlo simulations.7;8;9;10;11;12;13

There are two main types of random number generators for producing sequences

of pseudo-random integers X
i
:

1. Linear congruential generators (LCGs)2;6
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X
i
= A �X

i�1 + B modM

which we will denote by L(A;B;M ). The period is M for suitably chosen A

and B (M � 1 if B = 0).

2. Lagged Fibonacci generators (LFGs)2;5

X
i
= X

i�P
�X

i�Q

which we will denote by F(P;Q;�), P > Q, where � is any binary arithmetic

operation, such as +;�; � or � (the bitwise exclusive OR function XOR). The

arithmetic operations are done modulo any large integer value, or modulo 1 if

the X's are represented as 
oating point numbers in the interval [0,1), as can

be done if the operation is + or �. Multiplication is done on the set of odd

integers. For b-bit precision X's, the period is (2P � 1)2b�1, or (2P � 1)2b�3

for multiplication, for suitably chosen lags.5

It is possible to �nd sets of parameters (A;B;M ) or (P;Q;�) for which these

two types of generators work well for most practical purposes, and it is possible

to improve the performance of these generators by increasing M or P .5 There are

practical limits on these two parameters: M should not be very much greater than

machine precision to avoid using slow multi-precision arithmetic, and a large lag P

means storing a large array of previous numbers in the sequence (the \lag table")

which may be subject to memory constraints. However on most modern computers

adequate values of M and P can be found which are well within these limits.

Linear congruential generators have two major defects. The �rst is that the

least signi�cant bits of the numbers produced are highly correlated, and a resultant

\scatter-plot" of ordered pairs of random 
oating point numbers in the interval

[0,1) shows regular lattice structure.5;14;15;16 They are also known to have long-

range correlations, especially for intervals which are a power of 2.7;9;17;18 Another

problem is that for 32-bit integers the period of these generators is at most 232, or

of order 109. On a modern RISC workstation capable of around 108 
oating point

operations per second, this period can be exhausted in a matter of minutes. This

can be alleviated by the use of 64-bit precision, however the correlation problems

still remain (although to a lesser degree). In spite of these problems, LCGs with

well-chosen parameters perform well in most standard statistical tests, and an LCG

(unfortunately not always with well-chosen parameters!) is provided as the default

generator on many computer systems.

Lagged Fibonacci generators using arithmetic operations (+;�; �) give good re-

sults in standard statistical tests with very modest lags on the order of tens.5 When

the binary operation used is XOR, these generators are referred to as generalized

feedback shift register generators.19;20 Marsaglia has shown that XOR is one of

the worst operations one can use in a generator of this type, and strongly recom-

mends the use of standard arithmetic operations that have much longer periods

and perform much better in statistical tests.5 Although shift register generators
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pass statistical tests when the lag is large enough (of order hundreds),5;21;22 very

little (apart from the period) is known theoretically about these generators, and

they have produced biased results in Monte Carlo studies of the Ising model in

two11 and three8 dimensions, and of self-avoiding random walks.12;13

Mixing two di�erent generators is believed to improve performance in some

cases,5;15 and many generators that perform well in statistical tests are of this kind.

Marsaglia has suggested a fast, simple Weyl (or arithmetic sequence) generator27;28

X
i
= X

i�1 �K modM ,

with K a constant relatively prime to M , that can be e�ectively combined with

a lagged Fibonacci generator. Adding a Weyl generator also increases the period

of the combined generator by a factor of M (the period of the Weyl generator).

L'Ecuyer15 has shown how to combine two di�erent 32-bit LCGs to produce a mixed

generator that passes the scatter-plot test and has a long period of around 1018,

thus overcoming some of the drawbacks of standard LCGs. Although these mixed

generators perform well in empirical tests, there is little theoretical understanding

of their behavior, and it is quite possible that mixing two generators may introduce

new defects of which we are unaware. A good single generator may therefore be

preferable to a mixed generator.

LCGs have the advantage that we have a relatively good (although still limited)

theoretically understanding of their randomness properties. They are known to

be defective, but their defects are fairly well understood (for example, the lattice

structure of an LCG can be determined analytically using the spectral test2), and

in practice they work quite well. There is clearly a need for better random num-

ber generators, and LFGs and mixed generators are prime candidates. However

currently there is little or no theoretical understanding of these and other genera-

tors, and they are used mainly on the basis of their performance in statistical tests.

They are believed to overcome some of the 
aws of LCGs, although this has not

been proven and they may possess other 
aws of which we are unaware. It is there-

fore extremely important to subject random number generators to a wide variety

of precise statistical tests.

2. Monte Carlo Tests

One practical way to test a random number generator is to use it for Monte Carlo

simulation of the two dimensional Ising model.1 This simple model has been solved

exactly for a �nite lattice,23 so that values of the energy and the speci�c heat (the

variance of the energy) of the system calculated from the Monte Carlo simulation

can be compared with the known exact values.

A number of di�erent Monte Carlo algorithms can be used to simulate the Ising

model. Here we will concentrate on the three most widely used methods: the

Metropolis algorithm,1;24 which updates a single site of the lattice at a time; the

Swendsen-Wang algorithm,25 which forms clusters of sites to be updated collec-

tively; and the Wol� algorithm,26 which updates a single cluster of sites. Each of
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these algorithms uses random numbers in a very di�erent way. The Swendsen-Wang

and Wol� cluster update algorithms are extremely e�cient and allow very precise

Monte Carlo simulations of the Ising model, easily reducing statistical errors in the

energy to better than one part in 105. This precision provides us with a very e�ec-

tive practical test of the randomness of a pseudo-random number generator, and in

particular its suitability for Monte Carlo simulation.

Ferrenberg et al.
11 recently showed that some \good" random number genera-

tors, which perform well in standard statistical tests, fail the \Monte Carlo test";

that is, they produce incorrect results when used in Monte Carlo simulations of

the Ising model, especially using the Wol� algorithm. The generators studied by

Ferrenberg et al. were:

i. CONG, the linear congruential generator L(16807; 0; 231� 1).2;6

ii. Two shift register generators, F(250; 103;�) and F(1279; 1063;�).20

iii. SWC, a subtract-with-carry generator based on F(43; 22;�).27

iv. SWCW, a combined subtract-with-carry and Weyl generator.27

In spite of the premise of that paper, CONG and the shift register generators are

in fact known to be not good random number generators. CONG has been rec-

ommended by a number of authors2;6 as one of the best 32-bit linear congruential

generators, however it still su�ers the small period and correlated low order bits

of these generators. Shift register generators have been criticized by Marsaglia,

who showed that those with small lags (less than 100) performed poorly in sta-

tistical tests.5 However similar tests of F(250; 103;�) gave good results,21;22 and

Kirkpatrick and Stoll also obtained reasonable results with Monte Carlo tests.20

Subtract-with-carry generators are another variation of LFGs, where the stan-

dard operation of subtraction is replaced by subtraction with a carry bit C, as

follows:

X
i
= X

i�P
�X

i�Q
� C;

if X
i
� 0; C = 0;

if X
i
< 0; X

i
= X

i
+M; C = 1:

This greatly increases the period of the LFG, toMP

�MQ for suitably chosen P;Q

andM ,27 compared to approximatelyM2P for a comparable LFG using subtraction.

We have usedM = 232�5, which gives very long periods for modest lags. Although

advocated by Marsaglia,27 there were no known published results on statistical tests

of the SWC or SWCW generators prior to the results of Ferrenberg et al., so again

there was little support for their claim that these are \good" generators. Recently

the shift-with-carry generators were in fact shown to perform poorly in standard

statistical tests.22
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In this paper the work of Ferrenberg et al. has been extended by studies of both

the \good" generators of that paper, and some \better" generators, which are listed

below. In this work there are also more, and in some cases longer, independent runs

for each generator, to obtain better error estimates and to better explore the e�ect

of di�erent initial seeds.

In a recent review of random number generators,3 James recommends 3 mixed

generators:

1. RANECU, L'Ecuyer's mixed LCG combining L(40014,0,2147483563) and

L(40692,0,2147483399).15

2. RANMAR, Marsaglia's combined LFG F(97; 33;�) and Weyl generator.28

3. RCARRY, a subtract-with-carry generator27 based on F(24; 10;�) (this is the

same as SWC but with a smaller lag).

We also tested the above generators, plus the following:

4. RAND, the default 32-bit C and Unix generator L(1103515245; 12345;231�1).

5. DRAND48, another standard C and Unix generator with larger modulus and

period, based on L(5DEECE66D16; B16; 2
48).

6. RANF, another 48-bit LCG, L(2875A2E7B17516 ; 0; 2
48), which is the stan-

dard generator used on CRAY and CDC CYBER machines.35

7. RAN2, which is RANECU augmented by shu�ing the order of the output

values.29

8. LFGs of di�erent lags, using +;�; � and �.

9. LFGs using + and � with 4 \taps",30;31;32 i.e.

X
i
= X

i�P
�X

i�Q
�X

i�R
�X

i�S
,

which we will denote by F(P;Q;R; S;�).

We followed Marsaglia and James by initializing each bit of the seed tables in the

LFGs by using a combination LFG and LCG (see the routines RSTART in Ref. 28

and RMARIN in Ref. 3). We also tried using RAND to initialize every element of

the seed tables, or every bit of every element in the seed tables, which had little or

no e�ect on the quality of the LFGs.

For each random number generator, 25 independent simulation runs with di�er-

ent initial seeds were performed, on a network of IBM RS/6000, HP Apollo 9000,

and DEC 5000 workstations. Each simulation was between 106 and 5�107 sweeps

of a 16�16 lattice at the critical point of the 2-d Ising model.1;23 The number of

random numbers generated per sweep per site varies with the Monte Carlo algo-

rithm used, with an average of 0.87 for Metropolis, 0.93 for Wol�, and 1.85 for

Swendsen-Wang. For the Metropolis algorithm we chose to visit the sites to be
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updated in order, rather than randomly, to provide a more e�ective way of probing

any regularity or lattice structure in the sequence of random numbers, especially

for the linear congruential style generators which are known to su�er from this

problem.5;7;14;15;16;35

Error estimates for each simulation were obtained by standard methods of bin-

ning the data, with a bin size much greater than the autocorrelation time.1 The

error in the mean of the 25 combined results was also calculated, treating them as

independent data sets. Two measures were used to compare the Monte Carlo results

with the exact results: the deviation � between the mean of the combined results

and the exact value as a multiple of the error in the mean �, and the chi squared

per degree of freedom �2 for the 25 data sets.36 The �rst test checks for any bias

in the average over all runs, the second checks for discrepancies in the statistical


uctuations expected between the individual runs. A generator is judged to have

failed the Monte Carlo test if � > 3:3�, �2 > 2:0, or �2 < 0:34, all of which should

occur with probability less than 0.001 for a truly random generator.36

3. Results

The results for �=�, the di�erence between the exact and simulated values of the

energy and speci�c heat given as a multiple of the errors in the mean, are presented

in Tables 1 and 2, along with the values of �2. Failure of a test is indicated in bold

type. The generators are grouped into 4 categories, determined by a di�erent level

of precision of the simulations. Table 1 shows generators which we would classify

as bad or very bad (at least for this type of Monte Carlo application). The very

bad generators failed at least one of the tests with 106 Monte Carlo sweeps per run,

with the bad generators failing after 107 sweeps per run.

Table 2 shows generators which we would classify as good or very good. The

good generators failed one of the tests at a level of 5�107 sweeps for the Wol� and

Metropolis algorithms, and 107 sweeps for the SW algorithm(which uses about twice

as many random numbers per sweep). The very good generators passed all the tests

at this level, which involves generating on the order of 1010 random numbers for

each of the 25 independent simulations, or approximately 3�1011 random numbers

in total. In contrast, the errors caused by using very bad generators were generally

apparent after using less than 109 random numbers, in simulations which took only

about an hour on a workstation.

Fig. 1 shows the relative error in the speci�c heat for the Wol� algorithm versus

the lag of the Fibonacci generator, for the binary operations addition, subtraction,

and XOR. In all cases the XOR operation was about an order of magnitude worse

than addition and subtraction. Since in Monte Carlo simulation an order of mag-

nitude decrease in the error requires 100 times as many iterations, the di�erence

between the quality of the LFG with di�erent operations is substantial. Quite large

lags of at least 1000 are required to reduce the error to less than 0:1%, however

the percentage error for a given lag P goes roughly as e�P , so performance can

be greatly improved with a moderate increase in the lag. For a lag of 4423 the
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Table 1. Results of Monte Carlo simulations of the 2-d Ising model using di�erent randomnumber

generators. The �rst line for each generator shows the deviation of the Monte Carlo results from

the exact values, as a multiple of the error in the mean. The second line shows the �2 per degree of

freedom. Numbers in bold type indicate results which should occur with a statistical probability

of less than 0.001. This table shows \bad" or \very bad" generators, grouped as to whether they

failed the test at the level of 106 (very bad) or 107 (bad) sweeps.

Energy Speci�c Heat
Sweeps Generator SW Wol� Metrop SW Wol� Metrop
106 RCARRY 0.68 -9.83 -12.21 7.86 15.31 5.27

1.04 7.80 3.90 2.08 14.83 2.35

SWC 2.00 -7.66 1.18 2.30 13.49 1.13
0.82 4.65 0.61 1.02 9.77 1.27

F(250,103,�) -3.13 32.26 0.30 -2.33 -70.08 0.23
0.62 31.52 1.06 1.31 230.47 1.15

F(250,103,�) 0.48 -3.86 -0.71 1.42 11.85 0.79
1.02 0.87 0.93 0.92 4.06 0.92

F(250,103,+) -1.67 -3.18 0.08 1.42 9.97 0.02
1.37 1.23 0.58 1.24 3.85 0.70

107 RAND 1.51 0.88 -0.75 -1.46 -0.07 -6.61

0.72 0.30 0.26 1.51 0.36 1.02
CONG -0.12 0.29 -1.90 -2.88 -0.80 4.92

1.65 1.03 24.64 1.70 7.81 63.56

SWCW -1.24 -2.39 -0.84 -0.67 4.10 0.92
1.41 1.16 1.72 1.12 0.90 1.51

F(1279,1063,�) -2.39 3.82 3.73 -2.10 -11.78 -2.51
1.06 1.28 1.78 0.89 5.86 1.04

F(55,24,16,8,�) -1.56 -4.08 0.78 -3.03 12.73 1.91
1.30 4.10 1.31 1.57 14.84 1.04

generators gave correct results for all binary operations within the errors of the

simulations.

Table 3 compares the results for the Wol� algorithm for various generators based

on F(43; 22;�), where the binary operation is XOR, subtraction, subtract-with-

carry, and multiplication. The results of combining this lagged Fibonacci generator

with a Weyl generator (as in SWCW or RANMAR) are also shown. We can see that

the shift register generator using XOR performs very poorly, with errors of nearly

10% in the speci�c heat. Using subtraction performs an order of magnitude better,

however adding a carry bit does not provide any extra improvement. Mixing in

the Weyl generator reduces the errors by nearly another order of magnitude. Using

multiplication instead of subtraction produces the most dramatic improvement,

for little extra computational cost on modern RISC workstations. In Table 4 the

standard 2-tap LFG is compared to a 4-tap version of the same lag, which gives

substantially better results, as was seen by Zi� for self-avoiding random walks.32

The two 32-bit LCG generators both gave consistent results at the level of 106

sweeps, for which the number of random numbers required for each simulation is

less than the period of these generators. Both failed the tests at the level of 107

sweeps, which requires producing about as many random numbers as the period.

This suggests that the failure is due to the short period of these generators rather

than the lack of randomness. This is supported in the case of RAND by the fact

that some of the �2 values in Table 1 are smaller than expected, i.e. the deviations
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Table 2. As for Table 1, except here the number of sweeps is 5�107 for the Metropolis and Wol�

algorithms, and 107 for Swendsen-Wang. This table shows \good" or \very good" generators,

where the �rst (good) group of generators failed some tests at this level, while the second (very

good) group passed all tests.

Energy Speci�c Heat
Sweeps Generator SW Wol� Metrop SW Wol� Metrop
5�107 RANMAR 0.12 -0.50 -0.65 0.75 5.40 0.84

(107 SW) 0.66 1.01 0.94 1.14 1.19 0.91
F(1279,1063,+) 1.38 -4.20 2.19 -0.24 6.46 0.34

0.87 1.41 1.34 0.75 1.14 0.93
F(2,1,�) + Weyl -0.55 0.79 -2.45 -0.91 -0.93 0.22

0.88 1.12 0.58 1.19 2.64 1.05
5�107 F(4423,1393,+) 0.82 -0.10 -1.67 1.96 1.04 0.17

(107 SW) 0.59 0.87 0.89 1.31 1.08 0.72
F(4423,1393,�) -0.85 -1.36 1.71 0.53 -0.08 -1.62

0.89 0.87 0.72 0.88 0.97 1.14
F(5,2,�) -0.70 -2.05 -0.60 -0.23 2.32 0.24

1.06 1.04 1.28 1.00 0.46 0.92
F(43,22,�) -0.99 -0.52 -1.47 -0.91 1.21 1.23

1.09 1.22 0.91 0.73 1.39 0.94
F(55,24,16,8,+) -0.52 -0.70 1.34 0.63 -1.60 -0.02

0.66 0.88 1.54 1.21 0.92 0.83
F(218,95,39,11,�) -0.49 0.71 -0.24 0.78 -0.75 0.00

0.81 1.01 0.90 0.43 1.20 1.32
RANECU 1.29 -1.54 0.89 -0.61 1.51 -0.21

1.11 1.44 1.14 1.73 0.79 0.76
RAN2 0.07 -2.19 -2.04 -1.51 1.06 2.38

1.36 0.69 0.98 0.92 0.83 1.14
DRAND48 0.10 -1.39 0.14 -0.16 0.40 -2.43

1.11 0.65 0.61 1.42 1.56 0.56
RANF 0.37 -0.23 -1.64 0.56 0.21 1.85

1.18 0.70 0.88 0.90 1.00 1.12

Fig. 1. Relative deviation in the Monte Carlo result for the speci�c heat of the 2-d Ising model,

for the Wol� algorithm using a lagged Fibonacci generator. Each point denotes a di�erent lag and

a di�erent binary operation for the random number generator.
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Table 3. Percentage deviation of the Wol� Monte Carlo results from the exact values for the

energy and speci�c heat of the 2-d Ising model using di�erent random number generators based

on the lagged Fibonacci generator F(43,22,�). The binary operations tested were �, �, �, and

subtract-with-carry (SWC). A Weyl generatorwas also added to SWC (SWCW) and to F(43,22,�)

(Weyl).

Generator Energy Speci�c Heat
F(43,22,�) 0.39 9.34
F(43,22,�) 0.034 0.80

SWC 0.048 0.80
SWCW 0.0039 0.057
Weyl 0.0039 0.058

F(43,22,�) < 0:002 < 0:02

Table 4. Percentage deviation of the Wol� Monte Carlo results from the exact values for the

energy and speci�c heat of the 2-d Ising model using the standard 2-tap lagged Fibonacci generator

F(55,24,�) and the 4-tap generator F(55,24,16,8,�).

Generator Energy Speci�c Heat
F(55,24,�) 0.34 8.25

F(55,24,16,8,�) 0.011 0.29
F(55,24,�) 0.028 0.70

F(55,24,16,8,+) < 0:002 < 0:02

from the exact value of all the independent runs are too small. This is probably

due to the fact that each run exhausts the period, so that di�erent runs are using

similar sequences of random numbers and are therefore correlated to some extent.

The mixed LCG generators RANECU and RAN2 were among the best genera-

tors, although they were also the slowest. This good performance was rather unfor-

tunate in the case of the RAN2 generator, since the authors of Numerical Recipes

have guaranteed RAN2 to produce \perfect" random numbers, with perfect de�ned

as \we will pay $1000 to anyone who convinces us otherwise (by �nding a statistical

test that RAN2 fails in a non-trivial way, excluding the ordinary limitations of a

machine's 
oating point representation)."29

The subtract-with-carry generators RCARRY and SWC were among the worst

of the generators tested, which agrees with the results of Refs. 11 and 22. With the

notable exception of the version using multiplication, the lagged Fibonacci genera-

tors performed very poorly for lags under 100 (under 1000 for the case of �), and

non-random e�ects were measurable even for lags of over 1000. In contrast, stan-

dard statistical tests by Marsaglia gave good results for LFGs using subtraction,

even for lags less than 100 (except for the \birthday spacings" test).5;28 Marsaglia

found that LFGs using multiplication performed very well in statistical tests even

for small lags, and this is also true for the Monte Carlo tests, where multiplication

gave by far the best performance for a given lag. Generators based on LFGs per-

formed worst for the Wol� algorithm, with some small lag generators also failing

the test with the Metropolis algorithm. LCGs performed worst on the Metropolis

algorithm.

Grassberger13 tested F(250; 103;�) using Monte Carlo simulations of random

walks, and conjectured that this generator has large correlations over long times
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which should only be seen for Ising model simulations using lattices larger than

162. We have also done simulations on a 1282 lattice to compare the corresponding

errors. The statistical error in the mean energy is

� =
p
2 � �

int
� variance=sweeps

=
p
2 � �

int
�C

H
=(V � sweeps);

where �
int

is the integrated autocorrelation time,1;33 C
H
is the speci�c heat, and V

is the lattice volume. Since �
int

for the Wol� algorithm has been measured to be

2.6 for V = 162 and 8.2 for V = 1282,34 and the speci�c heat increases by 1.69 for

the larger lattice,23 the statistical error in the mean energy will be approximately

the same for 8:5�104 sweeps of the 1282 lattice as for 106 sweeps of the 162 lattice,

which was indeed found to be the case in our simulations. Table 5 shows that

the discrepancy in the average energy caused by the random number generator is

actually much smaller for the larger lattice size. Since for the speci�c heat the

statistical error increases even more rapidly with increasing lattice volume, smaller

lattices seem to be more e�ective for testing some random number generators using

Monte Carlo simulations of the Ising model. Of course the inverse result is also true

{ some random number generators will perform better in Monte Carlo simulations

on large lattices.

Table 5. Deviation of the Wol� Monte Carlo results from the exact values, as a multiple of the

error in the mean, using the lagged Fibonacci generators F(250,103,�) and F(250,103,+). The

162 results are for 106 sweeps per run, and the 1282 results are for 8:5�104 sweeps per run.

Generator Lattice Size Energy Speci�c Heat
F(250,103,�) 162 32.26 -70.08
F(250,103,�) 1282 3.26 -9.31
F(250,103,+) 162 -3.18 9.97
F(250,103,+) 1282 -1.33 -0.11

4. Conclusions

Lagged Fibonacci generators using the operations of addition, subtraction or XOR

(exclusive OR) can give poor performance, especially for the Wol� algorithm, unless

the lag is very large. Using addition or subtraction gives substantially better per-

formance than the shift register generators using XOR. Using multiplication gives

extremely good performance even for small lags. Adding a carry bit to an LFG

using subtraction (the subtract-with-carry generators) gives no improvement in the

performance of these generators, however adding a simple Weyl generator greatly

improves the quality of the LFG.

The multiplicative lagged Fibonacci generator F(P;Q; �) was one of the best

generators we tested. This generator showed excellent randomness properties even

for very small lags, with only a slightly greater computational cost than an LCG, or

(on modern RISC processors) an LFG using addition or subtraction. A multiplica-

tive LFG can be given an arbitrarily large period by simply increasing the lag. A lag

of only 43 gives a period of order 1021 for 32-bit integer arithmetic, and extremely
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good randomness properties. The only drawback of these generators is the lack of

a solid theoretical understanding of their properties. More theoretical studies and

experimental tests should be done on these generators, since they appear to be very

promising candidates for a good general purpose random number generator.

The 32-bit linear congruential generators perform well up to the point where

their period is exhausted, with RAND seemingly better than CONG. The 48-bit

LCGs such as DRAND48 gave excellent results, and have a large enough period (of

order 1014) for most current applications. LCGs using even larger integers, such as

L(1313; 0; 259), show very good performance in standard statistical tests,22;35 and

have even longer periods. These longer period LCGs usually require multi-precision

arithmetic and are therefore relatively slow (e.g. DRAND48 is 6 times slower than

RAND on a DECstation 5000), however they should become more popular in the

near future, when 64-bit microprocessors become commonplace. Apart from an

increased period, large M LCGs also have better spectral (lattice) properties, how-

ever the correlations inherent in LCGs are still present. Combining a good LCG

with another generator, such as an LFG or another LCG (as with RANECU and

RAN2), may further reduce (or even eliminate) these correlations, however it is

possible that this may introduce other unknown defects. Again, we are hampered

by the lack of a good theoretical understanding of these algorithms. In general it is

probably advisable to stick with a good largeM LCG, which should work perfectly

well for most applications. However it is known that these generators can perform

poorly on vector and parallel computers, where the power-of-2 correlations can be

accentuated. 7;9

Note that by the year 2000 supercomputers will have Tera
op (1012 
oating

point operations per second) performance, and a Tera
op-year of computation (3�

1019 
ops) will become realizable for such problems as Monte Carlo simulation of

lattice QCD and condensed matter physics.37 It is therefore likely that large scale

Monte Carlo simulations only ten years from now will exhaust the period (of roughly

1018) of 64-bit LCGs or mixed 32-bit LCGs. However a 96-bit or 128-bit LCG, or

a mixed generator made up of two 64-bit LCGs (similar to the RANECU generator

studied here), should have both the randomness properties and the extremely large

period necessary for any application in the forseeable future. These multi-precision

arithmetic and mixed LCG algorithms are the slowest of the algorithms tested

here, however it should be noted that the speed of a random number generator is

often irrelevant, since in most applications the amount of time spent generating the

random numbers is insigni�cant compared to the rest of the calculation. In most

applications the quality of the random numbers is far more important than the

speed with which they are generated.

Mixed lagged Fibonacci generators such as RANMAR have extremely long peri-

ods (1043 for RANMAR), however for high precision work the generator F(97; 33;�)

on which RANMAR is based should be replaced by a longer lag generator with bet-

ter randomness properties, such as F(250; 103;�), F(607; 273;�), or F(1279; 1033;�).

The extra memory requirement is negligible for current workstations and high per-
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formance computers, except perhaps for �ne grained massively parallel machines

with limited memory per processor. Mixed generators o�er a greatly increased pe-

riod, and empirical tests indicate that they can have better randomness properties

than the single generators on which they are based. The mixed generators were

among the best tested here, however they are not as theoretically well understood

as single generators, so it is possible that unexpected correlations may occur. They

should therefore be used with caution.

Our theoretical understanding of random number generators is quite limited,

and no amount of statistical testing can ever determine the quality of a genera-

tor. It is therefore prudent in any stochastic simulation to use at least two very

di�erent generators (for example, a good large M LCG, a multiplicative LFG, or

a good mixed generator such as RANMAR or RANECU) and compare the results

obtained with each, in order to be con�dent that the random number generator is

not introducing a bias in the results.

Finally, we should note that it is unfortunate that most of the poorly performing

generators tested here are recommended in many texts and are available by default

to the unwary user on many computer systems.2;6 It should be no more acceptable

for a computing environment to have a default random number generator that is

known to be bad, than to have an incorrect implementation of a standard mathe-

matical function. Since faster computers and better algorithms are improving the

precision of Monte Carlo and other stochastic simulations at a rapid pace, it is

important to continue to search for better random number generators with very

long periods, and to make more precise and varied tests of these generators. This is

particularly true for high performance computers with vector or parallel architec-

tures, where methods for generating independent random numbers in parallel are

required.35;38
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