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Standard Monte Carlo cluster algorithms have proven to be very e�ective for many

di�erent spin models, however they fail for frustrated spin systems. Recently a gen-

eralized cluster algorithm was introduced that works extremely well for the fully

frustrated Ising model on a square lattice, by placing bonds between sites based on

information from plaquettes rather than links of the lattice. Here we study some prop-

erties of this algorithm and some variants of it. We introduce a practical methodology

for constructing a generalized cluster algorithm for a given spin model, and inves-

tigate apply this method to some other frustrated Ising models. We �nd that such

algorithms work well for simple fully frustrated Ising models in two dimensions, but

appear to work poorly or not at all for more complex models such as spin glasses.
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I. INTRODUCTION

The cluster update algorithms of Swendsen and Wang [1] and Wol� [2] can provide

a great improvement in computational e�ciency over the Metropolis algorithm [3, 4]

and other local Monte Carlo update schemes. Due to the non-local nature of the

cluster algorithms, which update large clusters of spins at a time, they are very ef-

fective at decorrelating successive con�gurations and can therefore greatly reduce

critical slowing down [4, 5] in certain ferromagnetic and anti-ferromagnetic spin mod-

els. However the cluster algorithms are ine�ective for frustrated spin models [6] such

as spin glasses [7], the systems for which critical slowing down can be most extreme,

and for which a non-local update algorithm would be of most bene�t. The reason

for this failure is that at the critical point, these algorithms produce a cluster that

encompasses a large fraction (if not all) of the sites in the lattice, so that updating

the spins in this cluster is virtually the same as a trivial global spin update.

Kandel, Ben-Av and Domany (KBD) introduced a generalized cluster algo-

rithm [8, 9] that includes the other cluster algorithms as special cases. Their method

also works very well for the two dimensional fully frustrated Ising model [8, 10], but

has not been applied to any other frustrated spin models. The only other cluster

algorithm that has been shown to work e�ectively for a frustrated spin model is the

Replica Monte Carlo algorithm [11], however this has only been successfully applied

to the 2-d Ising spin glass [12]. It is therefore of great interest to determine whether

the generalized cluster algorithm can be applied to other frustrated spin models. We

have investigated some variants of the KBD algorithm for the 2-d fully frustrated

Ising model (FFIM), and attempted to apply the method to some other frustrated

two dimensional Ising models.

We introduce a practical method for constructing a generalized cluster algorithm

for a given spin model in section II. We then apply this methodology to the FFIM
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on a square lattice in section III, the triangular lattice Ising anti-ferromagnet in

section IV, and the 2-d Ising spin glass in section V. We analyze the performance of

the generalized cluster algorithms for each of these models.

II. THE GENERALIZED CLUSTER ALGORITHM

First we briey describe the Swendsen-Wang (SW) cluster algorithm for the Ising

model [4], which has an interaction energy given by

E = �
X
<i;j>

Jij�i�j; (1)

where the spins �i can take the values +1 or �1. We will consider the case where the

interaction strength Jij takes on values +J or �J , for some constant parameter J > 0.

Let us de�ne a link to be the connection between two neighboring sites on the lattice.

A link is said to be satis�ed if it is in a state of minimumenergy, which means that the

spins on the two sites are the same for Jij > 0 or opposite for Jij < 0, otherwise it is

unsatis�ed. In the SW algorithm, bonds are introduced between spins on neighboring

sites with probability 1�e�2K if the link is satis�ed, and 0 if it is unsatis�ed. Here

K = J=kT is a dimensionless coupling constant, where T is the temperature and k is

Boltzmann's constant. This procedure creates clusters of bonded sites. The update

part of the algorithm consists of ipping all the spins in a cluster (i.e. �i ! ��i)

with probability 1
2
. Since the clusters can be quite large, this clearly produces large,

non-local changes in the spin con�guration, and thus decorrelates the con�gurations

much faster than local update algorithms.

This algorithm works very well for the ferromagnetic (Jij = +J) and anti-

ferromagnetic (Jij = �J) Ising model, but fails for frustrated systems, which have a

mixture of positive and negative couplings in such a way that it is not possible for all

links to be satis�ed in the ground state. The simple reason for this failure is that the

critical point for such systems usually occurs at low temperature (i.e. large K), where
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the probability of putting a bond on a satis�ed link is close to 1. For example, the

two dimensional fully frustrated Ising model has a critical point at zero temperature,

where there are 3 satis�ed links per plaquette. Hence the SW algorithm bonds each

site to 3 of its neighbors on average, which results in all the sites in the lattice being

connected into a single cluster. A more fundamental reason for this problem is that

the SW algorithm only uses information from links, from which it is not possible to

see the frustration in the system. To do that one needs information from the spins

over at least a plaquette, which is the basic idea behind the KBD algorithm.

The generalized cluster algorithm begins by expressing the energy of the system

as a sum E =
P

l Vl. We will consider l to label subregions of the lattice such as links,

plaquettes, or some other group of sites that can give a tiling of the lattice, that is,

they can be replicated over the lattice in such a way that each link is part of one

(and only one) subregion. We will refer to such a subregion as a tile. For each tile

l we stochastically assign one of n possible operations with a probability P l
i (u) that

depends on the spin con�guration u and the operation i. These operations involve

placing bonds between certain sites in the tile l. We refer to the placement (or non-

placement) of bonds as freezing (or deleting) the connections between two neighboring

sites. The frozen bonds produce clusters of connected sites. The probabilities must

of course satisfy

X
i

P l
i (u) = 1; 0 � P l

i (u) � 1; (2)

for all l and u. KBD show that detailed balance is satis�ed if the probabilities also

satisfy [9]

E(u)�
1

�
logPi(u) + Ci =

8>><
>>:
0 for an allowed operation i

1 otherwise.
(3)
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Here E(u) is the energy for the con�guration u, Ci is a constant (independent of the

con�guration), � = 1=kT is the inverse temperature, and we have suppressed the

subscript l labeling the particular tile. To simplify matters we will concentrate on

a special case of the KBD generalized cluster algorithm, and de�ne an operation as

allowed if it does not freeze any unsatis�ed links of the con�guration u (for a more

general de�nition, see Ref. [9]). If we de�ne ai(u) to be 1 if operation i is allowed for

con�guration u, and 0 otherwise, then equation 3 can be written as

Pi(u) = ai(u) e
�(E(u)+Ci): (4)

Imposing the normalization condition of equation 2, we have

X
i

ai(u) ci = e��E(u) 8u ; ci = e�Ci: (5)

This can be conveniently written as a matrix equation

Ac = b; (6)

where the ci are the elements of the vector c, the Boltzmann factors bj = e��E(u) are

the elements of the vector b, and the ai(u) make up the elementsAij of the allowance

matrix A, with j labeling the di�erent possible con�gurations u.

Formulating a generalized cluster algorithm involves identifying some candidate

operations, constructing the allowance matrix A, and then solving the matrix equa-

tion 6 for c, from which the probabilities for each operation can be calculated via

equation 4. For a given set of operations and con�gurations, there is no guarantee

that a solution to the matrix equation will exist. Even if the equation has a solution,

it is quite likely that it will not satisfy the constraint that all the probabilities must

be between 0 and 1. For all but the simplest models and tiles, the number of possible

operations will be large, and the di�culty in this method is in choosing some subset

of operations that allow a valid solution to the matrix equation. Here we o�er some
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guidelines for choosing operators in order to maximize the possibility of obtaining a

valid algorithm. Examples of this procedure will be given in the following sections.

Clearly the simplest way to approach the problem is to choose the operations so

that the allowance matrix is square (the same number of operations as con�gurations)

and upper triangular. This will guarantee a solution, although it may not satisfy the

constraint that the probabilities are all between 0 and 1. A quick preliminary check

to see if this constraint is violated is to check whether any of the elements of the

solution vector c are negative, which is not allowed since ci = eCi.

There will generally be more than one operation available for a given con�gura-

tion which will produce an upper triangular allowance matrix. For frustrated models,

we want to choose the operation which freezes the least number of bonds, and bonds

together the fewest sites into the same cluster. However in some cases it is advanta-

geous to choose more than one such operation for a given con�guration. This gives a

system of equations that is under-determined, that is, there are more unknowns than

equations, producing free parameters in the solution. Having free parameters to play

with is extremely useful: �rstly, we may change an invalid solution into one that obeys

the probability constraints; secondly, it may allow some optimization in the algorithm

by tuning the size of the largest cluster, as done by KBD for the FFIM [8, 10]. Also,

if an operation i only occurs for a single con�guration, there are no constraints on

the choice of Ci, which also gives a free parameter in choosing the probabilities.

For frustrated spin models, we are usually interested in simulating the system at

low temperature. A good method of constructing an algorithm in this case is to start

with a simpler zero temperature algorithm. In this case we only need consider the

ground state con�gurations, and those operations that conserve the energy of these

con�gurations. This greatly simpli�es the problem of determining valid solutions,

and also allows a quicker indication of whether the algorithm can produce a good
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distribution of cluster sizes. If the implemented zero temperature algorithm produces

clusters that are neither too large nor too small, then an extended algorithm should

work even better at non-zero temperature where the largest cluster will be smaller.

It should be possible to automate the procedure for constructing a valid gen-

eralized cluster algorithm. Given a particular spin model, a particular lattice, and

a particular tiling of the lattice, a program could generate all possible con�gura-

tions of the tile, and all possible allowed operations on those con�gurations. The

program could then pick one possible choice of operations that give an upper trian-

gular allowance matrix, possibly including some redundant operations to allow free

parameters in the solution. It could then solve the matrix equation, calculate the

probabilities, and check that the constraints on them are satis�ed (this could all be

done using a symbolic algebra package such as Mathematica [13]). If not, it could

choose a new set of operations and repeat the procedure, until it �nds a valid solution,

or exhausts the list of operations. So far we have done most of this process by hand,

however the steps involved appear amenable to automation.

III. THE SQUARE LATTICE FULLY FRUSTRATED ISING MODEL

The fully frustrated Ising model (FFIM) was introduced by Villain [14], as a

simple regular frustrated system lacking the extra complication of disorder that is

present in systems such as spin glasses. On a square lattice, the FFIM has ferro-

magnetic couplings on all links except for a line of anti-ferromagnetic couplings on

every second column of links. This means that every plaquette is frustrated, having

3 ferromagnetic links and one anti-ferromagnetic link.

The critical point of this model is at zero temperature, where the con�gurations

have one unsatis�ed link per plaquette. The SW algorithm for this model puts a

bond on all satis�ed links, so there is only one unbonded link per plaquette. It is
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easy to prove (using the method of Kandel and Domany [10]) that in this case all

the sites are bonded into a single cluster. Consider the dual lattice, where there is a

site centered in each plaquette, and dual links which connect these dual sites, so that

each dual link crosses (at right angles) a single link of the original lattice. Let us put

bonds on the dual links which cross through unbonded original links, and no bonds on

dual links which cross bonded original links. Now suppose that in the original lattice

there was a site or cluster of sites that was not bonded to the main cluster. Then

on the dual lattice, it would be surrounded by a closed loop of dual bonds. However

it is easy to see that for this model it is impossible to construct such a closed loop.

Since there is only one unbonded link per plaquette on the original lattice, there can

only be one dual bond coming from any dual site at the center of a plaquette. It is

therefore impossible to connect more than one dual bond, since that would require

two dual bonds coming from the same dual site. Hence dual sites are only connected

in pairs, by a single dual bond, and there is no possibility of making a closed loop of

dual bonds.

Thus the SW algorithm bonds all the sites in the lattice together into a single

cluster at the critical point, and so does not work for this model. However the

generalized cluster algorithm of KBD, which deletes bonds using information on the

state of plaquettes rather than links, works extremely well in this case [8, 10].

A. The KBD Algorithm

We will derive the KBD algorithm in a slightly di�erent way, so as to make the

generalization to other frustrated models more obvious, and to highlight the simple

matrix methodology outlined in section II.

In the KBD algorithm, the tile used is a plaquette. There are seven freeze/delete

operations, as shown in Fig. 1. Operations 2-7 conserve the energy of a con�guration.
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Note that operations 2-3 and operations 4-7 are just di�erent orientations of the same

basic topology of frozen and deleted bonds. To simplify matters, we will classify the

operations into the 3 basic topologies (A, B, and C in Fig. 1) which we will refer to

as operators. Each of the operators has some number of possible orientations: 1 for

operator A, 2 for operator B, and 4 for operator C. However, the important feature

of these operators for constructing a generalized cluster algorithm is the number of

orientations that are possible for any given con�guration of spins in a plaquette.

For example, consider a plaquette having the lowest energy, �2J . This has one

unsatis�ed link. Since we can only freeze satis�ed links, this means there is only

one allowed orientation of operator B (the one with the deleted bonds corresponding

to the unsatis�ed link and the link parallel to it), and two allowed orientations of

operator C (deleting the unsatis�ed link and one of the links at right angles to it on

either side).

Likewise, the important property of a plaquette con�guration is not the spins, but

rather which of the links are satis�ed, since that alone determines which freeze/delete

operations can be applied. From now on we will use the term \con�guration" to mean

a con�guration of satis�ed and unsatis�ed links, rather than spins. Again, there are

only a few basic topologies of satis�ed and unsatis�ed links { for the square lattice

FFIM there are only two (either 1 or 3 unsatis�ed links), in general there will be at

least as many as there are possible energy states of the tile. All other con�gurations

are just di�erent orientations of these basic \link topologies".

To simplify matters, we will consider di�erent orientations of the con�gurations

and the freeze/delete operations to be equivalent. In order to use the matrix formalism

outlined in section II, we need to know the number of di�erent link topologies, and

the number of allowed orientations nij of each operator i for any given con�guration

of link topology j. If we adopt this approach, the elements of the allowance matrix
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A will be nij. The allowance matrix for the KBD algorithm is shown in Table I.

Solving equation 6 (which is easily done using Mathematica) gives the probabili-

ties Pi(j) given in Table II. Here the Pi(j) refer to the probability of choosing operator

i for a given con�guration of link topology j. Each orientation of the operator which

is allowed for the particular con�guration would then be assigned with equal prob-

ability, 1=nij . For example, if we chose operator C, we would randomly choose with

probability 1
2
to delete either of the 2 bonds perpendicular to the unsatis�ed link.

Since for this model we have 3 operators and only 2 link topologies, the solution

to the matrix equation has a free parameter p. KBD use this freedom in the choice of

the probabilities to prove (using a subtle geometrical argument) that for a particular

choice of probabilities, the lattice is always split into at least two large clusters at

the zero temperature critical point [10]. For the probabilities chosen by KBD, the

average maximum cluster size is neither too large nor too small (the average being

0.6432(5) for a 642 lattice), so the KBD cluster algorithm works extremely well.

When we set up the matrix equation, we could have treated all possible orienta-

tions of the con�gurations and the operators as di�erent, rather than grouping them

together as we have done. This would give 4 lowest energy con�gurations (rather than

just 1), corresponding to the 4 possible positions of the single unsatis�ed link in the

plaquette. It would also give the 6 energy conserving operations of Fig. 1 (rather than

the 2 basic operators). So instead of a single free parameter, from having 2 operators

and only 1 con�guration, there are now 2 free parameters, from having 6 operations

and only 4 con�gurations. If we solve the extended matrix equation, we �nd that the

free parameter enters (as one might expect) in the probability of choosing which of

the bonds perpendicular to the unsatis�ed link are to be deleted for operator C. We

now have an extra probability psub of choosing the operations from the subgroup (4-5)

of the angled operations, and 1 � psub of choosing the operations from the subgroup
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(6-7), where previously we had psub =
1
2
.

Both these approaches { using the basic topologies or using all possible orienta-

tions { are correct, i.e. satisfy detailed balance. The �rst is simpler and allows an

easier implementation of more complex problems where there are a large number of

possible topologies and orientations; the other may provide some extra freedom in

the choice of probabilities, that can allow some tuning to improve the performance of

the algorithm, as we shall see in section IIIC.

Although the KBD algorithm satis�es detailed balance, it is not ergodic at zero

temperature { that is, starting from a particular ground state con�guration, it cannot

generate all other ground state con�gurations. In fact, it can readily be seen for

small lattice sizes that the KBD algorithm cycles between subsets of possible ground

state con�gurations. In order for the algorithm to be ergodic, each KBD update

must be followed by a Metropolis sweep. However, to our knowledge ergodicity of

the Metropolis algorithm has not been proven for this model at zero temperature,

although it is believed to be true (proving ergodicity is often a very di�cult problem,

see for example Ref. [15]). It can however be easily seen (again by just looking at

test con�gurations on small lattices) that the Metropolis algorithm is not ergodic if

the sites to be updated are chosen in serial (rather than random) order.

B. Dynamic Critical Exponents

KBD measured the dynamic critical exponent for the exponential autocorrelation

time to be z � 0:55 for their algorithm [10], compared to z � 2 for the Metropolis

algorithm (see Refs. [4, 5] for discussion and de�nitions of autocorrelation times and

dynamic critical exponents). However they had very low statistics (100,000 sweeps)

and fairly small lattice sizes (up to 1282), and it has been seen for the Ising ferromagnet

that it is very di�cult to get an accurate determination of z from such data [16]. We
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have therefore obtained much better data for the autocorrelations for this algorithm,

in order to get a better determination of the dynamic critical exponent.

We measured the normalized autocorrelation function

�A(t) =
< A(0)A(t) > � < A(0) >2

< A(0)A(0) > � < A(0) >2
(7)

for the magnetization (A = M) as well as the square and the absolute value of

the magnetization (A = M2 and A = jM j), and used this to extract exponential

autocorrelation times �exp, via

�(t) � e�t=�exp; (8)

as well as integrated autocorrelation times

�int =
1

2
+

1X
t=1

�A(t); (9)

that are relevant to the increase in the statistical error due to correlated con�gura-

tions. Details of the methods we used for measuring the autocorrelations, doing the

�ts, and estimating the errors are given in Ref. [16].

In Table IV we give the results for the autocorrelation times of M2 for di�erent

lattice sizes L up to L = 256. All the results are from at least 7:5�106 iterations

(more for smaller lattice sizes). Fig. 2 shows a log-log plot of these results. Straight

line �2 �ts give zint = 0:28(1) and zexp = 0:66(5). The integrated autocorrelations

also �t fairly well to a logarithm, so that zint could also be zero. This uncertainty

also occurs with the autocorrelations of cluster algorithms for the ferromagnetic Ising

model [16], since it is very di�cult to di�erentiate between a logarithm and a small

power.

Let us de�ne �0 to be the autocorrelation time obtained from an exponential �t

to �(t) at only two points, t = 0 and t = 1. This is also plotted in Fig. 2. We can

see that �0 grows extremely slowly with L (slower than log(log L) in fact), and seems
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to be approaching a constant value. This is in marked contrast to �exp, which grows

as a substantial power of L. Unfortunately this makes it very di�cult to get a good

asymptotic �t to �(t) at large t, since it has already fallen o� so much at t = 1 that

the signal is very small and noisy in the region where we need to �t to obtain �exp.

The fact that �0 increases so slowly means that the �int grows much slower than �exp,

and consequently zint is much smaller than zexp.

The reason that �int << �exp is presumably that the operator M2 does not have a

large overlap with the slowest mode. The value of �exp should be independent of the

operator measured, since it measures the relaxation of the slowest mode, however if

there is not good overlap with this mode, this maymean that our estimate of �exp is not

a good one. To get a better understanding of the dynamics of this system, one would

need to �nd an operator for which �int � �exp. We also measured the autocorrelation

times for the magnetization and the absolute value of the magnetization. For the

former the results were zero for all lattice sizes, while the latter gave results almost

identical to those given above for the square of the magnetization.

In almost every iteration of the standard KBD algorithm, the lattice is split into

2 clusters, and only rarely into 3 or more. The update consists of ipping the spins in

a cluster with probability 1/2. If there are two clusters, this means that in half of the

iterations either no spins are ipped, or all the spins are ipped, so there is no change

in the con�guration apart from a trivial global spin ip. Only half of the iterations

make a non-trivial update of the con�guration by updating one of the clusters and

not the other. If there are 2 clusters, a more e�ective update scheme is to pick one

of them at random and ip its spins. This guarantees that there are no \wasted"

iterations. One would expect that this new update scheme would decrease the error

in measurable quantities by a factor of
p
2, due to a decrease in �int by a factor of 2.

However it turns out that the improvement is actually greater than this. The reason
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is that the the autocorrelation function for the new algorithm alternates in sign, as

shown in Fig. 4. Thus using the de�nition for �int (equation 9) gives a value close to

zero, and much less than half of the value for the standard KBD algorithm with an

exponential autocorrelation function.

The autocorrelation function for a Markov process can generally be expressed

asymptotically as �(t) = at, where jaj < 1 [17]. If a > 0, then rede�ning a = e�1=�exp

gives the standard asymptotic exponential form for �(t). However it is also possible to

have a < 0, in which case the autocorrelation function still falls o� exponentially, but

its sign is (�1)t. This generally indicates that the original data forms an alternating

time series, with successive measurements falling predominantly on one side and then

the other of the mean value [17]. If �(t) = at, then �int =
1
2
1+a
1�a

, which can be very

small for a negative. In order to calculate �int for the alternating autocorrelation

function from the simulation data, we adopt a similar procedure to that used for the

standard autocorrelation function [16]. We treat �(2t) and ��(2t + 1) as separate

positive functions, and �t them in the usual way to �nd �+exp and ��exp. These two

values are very similar for this algorithm, as are the corresponding dynamic critical

exponents z+exp = 0:42(4) and z�exp = 0:36(4), which are distinctly smaller than zexp

for the standard KBD algorithm. A logarithmic increase in �exp with lattice size (i.e.

z�exp = 0) is also consistent with the data.

We can also calculate

�+int=
1

2
+

1X
t=1

�(2t);

��int=�
1X
t=0

�(2t+ 1); (10)

in the usual way by by splitting each in�nite sum into a small t �nite sum plus the

remaining large t in�nite sum, which can be summed analytically using the fact that

the autocorrelation functions fall o� asymptotically as Ae�t=�exp. This gives
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�+int=
1

2
+

W+X
t=1

�(2t) +
A+e�2(W

++1)=�+exp

1 � e�2=�
+
exp

;

��int=
W�X
t=0

�(2t+ 1) +
A�e�[2(W

�+1)+1]=��exp

1� e�2=�
�

exp

; (11)

where the windows W+ and W� are taken to be the end of the region where we �t

for �exp. Now we can obtain the integrated autocorrelation time for the alternating

�(t) as

�int = �+int � ��int: (12)

The integrated autocorrelation times for this method are shown in Fig. 2. They are

smaller than for the standard KBD algorithm, however the dynamic critical exponent

zint = 0:32(2) is approximately the same, and could also be zero.

Another interesting result concerns the autocorrelation function �(t) for the KBD

algorithm without the Metropolis sweep needed for ergodicity, which is shown in

Fig. 5, along with �(t) for the algorithm including Metropolis sweeps. The latter

falls o� asymptotically as an exponential, as expected, while �(t) for the non-ergodic

algorithm asymptotes to a logarithm. This implies that the autocorrelation time

is in�nite, which one might expect for a non-ergodic algorithm (although it is not

clear why �(t) should have a perfectly logarithmic form). However, measuring the

autocorrelation function at zero temperature cannot tell us whether an algorithm

is ergodic. For example, the Metropolis algorithm implemented so that the sites

are visited in serial order is also a non-ergodic algorithm for this model, although

we found that its autocorrelation function was asymptotically exponential, and in

fact has a much smaller apparent autocorrelation time than the algorithm with the

sites chosen in random order, which is presumed to be ergodic. In this case the non-

ergodic algorithm has smaller correlations between successive con�gurations, but only

generates a subset of all possible con�gurations.
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C. A Variant of the KBD Algorithm

In order to guarantee that the lattice is broken up into at least 2 large clusters

at zero temperature, KBD used the freedom in choosing the probabilities so that

only operations 2 and 3 of Fig. 1 had non-zero probability at T =0. However in

order to investigate the e�ect of tuning the extra free parameter psub, we used an

alternate version of the KBD algorithm that uses only the angle operations (4-7) at

zero temperature, rather than the operations (2,3) used by KBD. We measured the

cluster sizes and autocorrelations for this algorithm for di�erent values of psub: 1.0,

0.8, and 0.5. As noted by KBD, for this choice of probabilities the lattice is no longer

split into two large clusters, rather we get one very large cluster and a number of very

small clusters. Tuning this extra free parameter does have an e�ect on the largest

cluster size, although it is quite small: the average maximum cluster size is 0.91762(1)

of the lattice for psub = 0:5, 0.89978(6) for psub = 0:8, and 0.87371(10) for psub = 1:0.

For psub = 1:0 the geometry of the operators is such that all sites are either in a single

site cluster or part of a spanning cluster (the largest cluster).

Integrated autocorrelation times for these three variations of the KBD algorithm

are shown in Fig. 3, along with results for the Metropolis algorithm, and the KBD

results from Fig 2. The results are quite surprising. As expected, psub = 0:5 gives a

value z = 1:97(2) which is very similar to the Metropolis algorithm, since the largest

cluster encompasses most of the lattice and consequently the cluster update does little

apart from a global spin ip. For larger values of psub we have seen that the biggest

cluster size is reduced very slightly, however this is enough to substantially reduce

the autocorrelations: psub = 0:8 has z = 0:62(2), while psub = 1:0 has z = 0:48(1). It

is very surprising that in going from psub = 0:5 to 1.0 the biggest cluster size is only

reduced by about 5%, yet z is reduced from around 2.0 to around 0.5! This result

is very promising, since it implies that critical slowing down can be substantially
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reduced even when the biggest cluster size is quite large (87% of the lattice in this

case), so for other frustrated spin models we may not have to unfreeze the lattice very

much to get good results.

Our result is also surprising in that z appears to vary continuously between the

Metropolis and KBD values. Based on the ideas of dynamic universality, it is more

likely that there is a critical value of psub for which z jumps from one value (Metropolis)

to the other (KBD). We have used rather small lattices (L � 64) for our analysis, so

it is quite possible that the true value of z is actually the same for psub = 0:8 and

psub = 1:0.

The generalized cluster algorithm works extremely well for the square lattice FFI,

almost completely eliminating critical slowing down. However it is not clear that it

can be successfully applied to other frustrated models. It is only by a fortuitous ge-

ometrical happenstance that the standard KBD algorithm is able to split the lattice

into two large clusters at the critical point, and the algorithm we have investigated

which uses only the angled operations works well only because it has a tunable pa-

rameter psub that allows the maximum cluster size to be reduced just enough to give a

greatly reduced z. We were therefore interested to see whether the generalized cluster

algorithms would work for other frustrated spin models.

IV. THE TRIANGULAR LATTICE ISING ANTIFERROMAGNET

We �rst attempted to apply the KBD cluster algorithm to an even simpler fully

frustrated model, the anti-ferromagnetic Ising model on a triangular lattice. This

model is very similar to the square lattice FFIM, being in the same universality class

and also having a critical point at zero temperature [18, 19].

The ground state of this model has only one unsatis�ed link per triangular pla-

quette. The SW algorithm puts a bond on all satis�ed links, so we can apply the
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same argument as for the square lattice FFIM to see that the SW algorithm again

freezes the lattice into a single cluster at zero temperature.

We can get some idea of the percentage of bonds that need to be deleted to break

up this single cluster by noting that the bond percolation threshold for a triangular

lattice is 0.35792 [20]. For the square lattice the bond percolation threshold is 0.5 [20],

which is also the ratio of frozen bonds to links in the KBD algorithm for the square

lattice FFIM at the zero temperature critical point. This is of course only a rough

pointer to what is required, since for bond percolation the bonds are placed on the

lattice at random, whereas for the KBD algorithm on the square lattice we must

have two bonds for each plaquette at zero temperature. Even with the bond/link

ratio being the same as the percolation threshold, the largest cluster for the KBD

algorithm percolates at a temperature well above the critical point.

A. The Plaquette Algorithm

The application of the KBD algorithm to the triangular lattice FFIM is very

simple. As with the square lattice, we choose the basic element to be a (triangular)

plaquette, which has two possible energy states, +J and �J . For the triangular lattice

there are only four possible freeze/delete operations, which are shown in Fig. 6. We

can either delete all the bonds, or delete one of the two satis�ed bonds. Since the

ground state con�guration has a single unsatis�ed link, and the energy conserving

operations (2-4 of Fig. 6) freeze a single bond, there are 3 possible orientations of

each. Thus, unlike the square lattice case, there are no free parameters when we solve

the matrix equation 6, even when all possible orientations of the con�gurations and

operations are used. The probabilities for each operation are given in Table V.

At the zero temperature critical point, we only perform the energy conserving

operations (2-4). This gives a bond/link ratio of 1
3
, which is below the percolation
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threshold for the triangular lattice, although in this case the bonds are not placed

randomly, but rather one per plaquette. However we expect to at least be able to

create multiple clusters, as with the KBD algorithm with angled operations for the

square lattice FFIM.

We tested this algorithm at zero temperature, following every cluster update by

a Metropolis sweep to ensure ergodicity. We found that the algorithm produces one

very large cluster, and a number of very small clusters. For a 642 lattice there are

an average of 205.1(1) clusters, with the average size of the largest cluster being

0.9233(1) of the lattice volume. This is very similar to the results for the square

lattice case using the angled operations with equal probability. In that case there is

a free parameter (psub) that allows us to bias the choice of the operations so as to

reduce the largest cluster size and greatly improve the performance of the algorithm.

However for the triangular lattice there is no such freedom, and in order to satisfy

detailed balance the two possible energy conserving operations for each plaquette

must be chosen with equal probability. We checked that introducing a bias in the

choice of the operations (2-4) does indeed reduce the largest cluster size, but of course

it also gives incorrect results due to the violation of detailed balance.

Since the ground state for this model is paramagnetic, we measured the param-

agnetic susceptibility � = V < M2 >, where M is the average magnetization per site,

and V is the lattice volume. At the zero temperature critical point, this quantity

approaches a constant value as the lattice size is increased. We also measured the

spin correlation function �(R) =< �0�R > (which is known exactly for an in�nite

lattice [21]) at a distance R=2. We measured the autocorrelations in � and �(2) for

both the plaquette algorithm and the standard Metropolis algorithm. The autocorre-

lation times for the plaquette algorithm were doubled to give a fairer comparison with

the Metropolis algorithm, since every iteration of the plaquette algorithm includes a
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Metropolis update to ensure ergodicity.

The integrated and exponential autocorrelation times for the Metropolis and pla-

quette algorithms for � are shown in Fig. 7, and for �(2) in Fig. 8. Even for the

Metropolis algorithm, the autocorrelations are quite small, and grow much slower

than L2. The plaquette algorithm seems to almost completely eliminate critical slow-

ing down in the measurement of �, although this is not much of an improvement over

Metropolis. However the plaquette algorithm substantially reduces the autocorrela-

tions for �(2), especially �exp, which is related to the time required to thermalize to

a ground state con�guration. Notice that �exp is di�erent for the di�erent operators.

Again, this means that M2 (and possibly also �(2)) does not have a large overlap

with the slowest mode, so our measurements of this quantity are presumably quite

poor. Again, one would like to �nd an operator for which �int � �exp. The dynamic

critical exponents for � and �(2) for the two Monte Carlo algorithms are shown in

Table VI.

It is possible to construct a simple plaquette generalized cluster algorithm for the

triangular lattice FFIM that is certainly superior to the standard Swendsen-Wang

cluster algorithm, which freezes the lattice into a single cluster and is therefore totally

ine�ective. The size of the biggest cluster in the plaquette algorithm is still very large,

and there are no tunable parameters that might enable us to reduce it, although it

appears that the algorithm performs well in spite of this problem. However this may

just be an fortuitous anomaly, since even the Metropolis algorithm performs quite well

for the quantities which we measured. We therefore tried to �nd a general method

for improving the generalized cluster algorithm by further decreasing the size of the

largest cluster.
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B. A Larger Tile Algorithm

To try to improve on this algorithm, we investigated making the tile something

larger than a plaquette. Since increasing the tile from a single link (Swendsen-Wang)

to a plaquette (KBD) improves the low temperature algorithm substantially, it is

possible that an even larger tile will produce better results. Note that the simple

double plaquette shown in Fig. 9(a) cannot tile the lattice { that is, it is not possible

to cover all the links in the lattice such that each link is uniquely assigned to a double

triangular plaquette. Since the double plaquette has only 5 links and the number of

links in the lattice is a multiple of 3, there is an extra link required. Fig. 9(b) shows

a set of links that can tile a triangular lattice.

For this model a ground state con�guration has two satis�ed links in each trian-

gular plaquette. There are 8 con�gurations of the tile that can occur in the ground

state, which are shown in Fig. 10. Unlike the algorithm using the triangular plaquette,

these ground state con�gurations of the tile can have di�erent energies.

An operation conserves energy if it freezes at least one satis�ed bond for each

triangular plaquette. For this tile, there are 17 possible energy conserving operations

that freeze 3 or fewer bonds. These are shown in Fig. 11, along with the single

allowed operation that freezes 5 bonds, and one of the 5 possible operations that

freeze four bonds. Note that operations 14-18 (and the other 4-bond operations

that are not shown) are equivalent in the sense that they ensure the same 4 sites

are bonded together into the same cluster, so there is no reason to choose one in

preference to another. Note that there is a subtlety here in what we mean by an energy

conserving operation. These operations ensure that the total energy of a ground state

con�guration is unchanged, as it should be at zero temperature. However the energy

of a tile can take three di�erent values for a given ground state con�guration: �4J ,

�2J and 0. The energy conserving operations may change the energy of a tile, but
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they will not change the total energy of the con�guration (summed over all tiles).

It is quite straightforward to choose a subset of the possible operations in Fig. 11

which give an upper triangular allowance matrix, as shown in Table VII. Since we have

many more operations than con�gurations, it is possible to choose some redundant

operations which add free parameters to the probabilities. For simplicity we have only

chosen one (operation 6), however there are other possible choices which would add

extra parameters. Solving the matrix equation gives the probabilities in Table VIII,

which give a valid algorithm at zero temperature. Notice that if we choose to set

the free parameter p2 = 1, the algorithm is greatly simpli�ed and only involves a few

operations (1, 2, 4, 18, 19), since the probabilities for the other operations are zero.

The �rst three of these freeze only 2 bonds per tile, thus giving the same bond/link

ratio as the single plaquette algorithm. The problem with this algorithm is that in

order to get an upper triangular allowance matrix (and thus sensible probabilities), we

need to choose 2 operations (18 and 19) which freeze all the bonds in con�gurations 7

and 8, which make up a substantial proportion of the tiles at zero temperature. This

means that the algorithm with this larger tile has a greater bond/link ratio than the

single plaquette algorithm. Any choice of the other operations and free parameters

will su�er the same problem.

One subtlety in this algorithm is the choice of tiling at each iteration. For the

single plaquette algorithm there are two possible tilings of the triangular lattice, just

as there are for the square lattice algorithm, and one of the two possibilities (either

the black or white squares in a checkerboard pattern) are chosen at random for each

iteration. However in this case the tile of Fig. 9(b) is asymmetric, so the number of

di�erent tilings is 12, since there are 6 possible ways the link coming o� the double

plaquette can be oriented, and 2 possible ways of partitioning the lattice (the black

and white partitioning) for each of these orientations. One of the 12 possible tilings
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is chosen at random for each iteration.

We found that the larger bond/link ratio of this algorithm produced a single

cluster covering the whole lattice at zero temperature. We tried some variations,

such as taking p2 < 1, and trying di�erent operations, but got the same result. Thus

the generalized cluster algorithm with a larger tile does even worse than the single

plaquette algorithm for the FFIM on a triangular lattice.

V. OTHER 2-D FRUSTRATED MODELS

Let us consider the �J Ising spin glass, where the couplings Jij in equation 1 are

chosen to be ferromagnetic (+J) or antiferromagnetic (�J) at random [7]. For the

spin glass the generalization of the KBD algorithm at the zero temperature critical

point is very simple. For plaquettes with an even number of ferromagnetic links, we

must freeze all the satis�ed links in order to conserve energy, so this is the same as

the SW algorithm. For plaquettes with an odd number of ferromagnetic links, we

have the KBD algorithm for the FFIM.

For the spin glass there is not the regular geometry that allows the KBD algorithm

to split the lattice into two clusters for the FFIM, and at zero temperature this

combined KBD/SW algorithm freezes the lattice into a single cluster. It is possible

that a workable generalized cluster algorithm may be constructed for this model using

a larger tile than the plaquette, however as we have seen this was not the case for the

triangular lattice FFIM.

VI. CONCLUSIONS

One of the main ideas of KBD was to extend the basic element of a cluster

algorithm from a link connecting only two sites to a larger geometrical object such

as a plaquette. This is clearly necessary for frustrated systems, for which knowledge
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of the frustration of the system cannot be obtained from looking at the interaction

of two neighboring spins. We have presented a simpli�ed method for constructing a

generalized cluster algorithm for an arbitrary spin model based on any group of spins

that can tile the lattice.

However for a particular spin model, there is no guarantee that a valid algo-

rithm with sensible probabilities for each possible freeze/delete operation can be con-

structed. Even if such an algorithm does exist, the resulting clusters may still be too

large, causing poor performance. For the 2-d Ising spin glass we found that a general-

ized cluster algorithm froze the lattice into a single cluster at zero temperature. For

the triangular lattice FFIM the method produced a very large cluster, however the

algorithm still appeared to work well. We have also used this method to construct a

generalized cluster algorithm for the 3-d cubic lattice FFIM, which also produces a

very large cluster at the critical point, and performs no better than the Metropolis

algorithm [22].

Even when the plaquette algorithms do not perform well, they are still a great

improvement over the Swendsen-Wang algorithm, which is the single-link version of

the generalized cluster algorithm. It is possible that using tiles even larger than a

plaquette will improve matters further, however we found that for the case of the

triangular lattice FFIM this produced an algorithm which froze the lattice into a

single cluster at zero temperature, and was therefore worse than the smaller tile

algorithm.

The method we have used here is a more convenient, but specialized, case of the

KBD generalized cluster algorithm. In particular, we have looked only at the case

where the bonds are either frozen or deleted. This produces clusters that can be up-

dated independently of one another. However the generalized cluster algorithm allows

for another possibility, in which there is an interaction energy between the clusters.
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This could allow the creation of smaller clusters that may be updated with a prob-

ability dependent on the energies of the other clusters, in a fashion similar to the

algorithms of Niedermayer [23] and D'Onorio de Meo et al. [24]. However these kinds

of interacting cluster algorithms have not proven to be e�ective for non-frustrated sys-

tems, mainly because the probability of updating a cluster is approximately inversely

proportional to the exponential of the cluster size. Thus updating large clusters oc-

curs with a very small probability, so these algorithms tend to be not much better

than standard local Monte Carlo methods, at a much greater computational cost.

Although the generalized cluster algorithm seems very promising as an approach

to simulating frustrated systems, and works very well for simple two dimensional fully

frustrated Ising models, it does not appear to be generally applicable to any spin

model. Just constructing clusters to update so as to satisfy detailed balance does not

appear to be enough { cluster algorithms only seem to work when the clusters are

constructed in a way which reects the physics of the model. Thus di�erent algorithms

are required for di�erent models, and �nding a general algorithm which works in all

cases seems a daunting task. We have not tried all possible choices of operations and

parameters for this method, however from our experience it appears that just tuning

parameters will not work, and some new ideas are necessary before generalized cluster

algorithms can be successfully applied to more complicated frustrated systems such

as spin glasses and models in more than two dimensions.
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NOTE ADDED

After this work was completed, we obtained the University of Marburg preprint

\Cluster mechanisms in the fully frustrated Ising model", by Werner Kerler and

Peter Rehberg (cond-mat/9401063), which addresses many similar issues to the work

described here.
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TABLES

TABLE I. Matrix containing the number of possible orientations of the freeze/delete

operators of Fig. 1 for each energy state of the the square lattice FFIM.

Operators

Energy Con�g A B C

�2J 1 1 1 2

2J 2 1 0 0

TABLE II. Probabilities for the freeze/delete operators of Fig. 1 for the square lattice

FFIM.

Operators

Energy Con�g A B C

�2J 1 e�4K p 1� e�4K � p

2J 2 1 0 0
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TABLE III. The average size of the maximum cluster (as a ratio of the lattice volume)

and the other clusters (given as a number of sites), and the average number of clusters, for

di�erent values of the free parameter psub for the KBD algorithm using the angled operations

(4-7) for the square lattice FFIM at zero temperature on a 642 lattice. Also shown are the

values for the standard KBD algorithm using only operations (1-3).

psub 0.5 0.8 1.0 KBD

Size of Largest Cluster 0.91760(2) 0.89970(1) 0.87362(2) 0.6432(5)

Size of Other Clusters 1.204 1.11 1.00 708

Number of Clusters 280.22(6) 370.18(4) 518.64(6) 2.0603(7)

TABLE IV. Autocorrelation times of M2 for the standard KBD algorithm applied to

the square lattice FFIM at zero temperature.

L �int(M
2) �exp(M

2)

8 0.888(1) 0.977(9)

16 1.035(2) 1.85(3)

32 1.265(2) 3.60(6)

64 1.539(4) 5.9(1)

128 1.849(7) 9.3(2)

256 2.188(16) 13.7(5)
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TABLE V. Probabilities for the freeze/delete operations of Fig. 6 for the triangular

lattice FFIM.

Operations

Energy Con�g 1 2

�J 1 e�4K 1� e�4K

3J 2 1 0

TABLE VI. Dynamic critical exponents for the Metropolis and plaquette algorithms for

applied to the triangular lattice FFIM at zero temperature.

Metropolis Plaquette

zint(�) 0.12(5) 0.04(3)

zexp(�) 0.24(8) 0.08(5)

zint(�(2)) 0.52(5) 0.12(3)

zexp(�(2)) 0.70(10) 0.39(10)
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TABLE VII. The allowance matrix for the freeze/delete operations of Fig. 11 for the

triangular lattice FFIM at zero temperature.

Operations

Energy Con�g 1 4 2 6 8 5 10 18 19

�4J 1 1 1 0 0 0 1 0 1 1

�2J 2 1 1 0 0 0 0 0 1 0

�2J 3 0 1 1 1 0 0 1 0 0

�2J 4 1 0 1 0 1 1 0 0 0

�2J 5 0 0 1 0 1 0 0 0 0

�2J 6 0 0 1 1 0 0 0 0 0

0 7 0 1 0 0 0 0 0 0 0

0 8 1 0 0 0 0 0 0 0 0

TABLE VIII. Probabilities for the freeze/delete operations of Fig. 11 for the triangular

lattice FFIM at zero temperature.

Operations

Energy Con�g 1 4 2 6 8 5 10 18 19

�4J 1 0 0 0 0 0 0 0 0 1

�2J 2 0 0 0 0 0 0 0 1 0

�2J 3 0 0 p2 1�p2 0 0 0 0 0

�2J 4 0 0 p2 0 1�p2 0 0 0 0

�2J 5 0 0 p2 0 1�p2 0 0 0 0

�2J 6 0 0 p2 1�p2 0 0 0 0 0

0 7 0 1 0 0 0 0 0 0 0

0 8 1 0 0 0 0 0 0 0 0
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FIGURES

FIG. 1. Freeze/delete operations for the square lattice FFIM. The bold lines indicate

frozen bonds.

FIG. 2. Log-log plot of the autocorrelation times of M2 for the standard KBD algo-

rithm for the square lattice FFIM at zero temperature.

FIG. 3. Log-log plot of �int of M
2 for the square lattice FFIM at zero temperature,

using the Metropolis algorithm, the standard KBD algorithm, the new improved KBD

algorithm where a cluster is ipped at every iteration, and the KBD algorithm using just

angled operations with three di�erent values of the free parameter psub.

FIG. 4. Autocorrelation function for the improved KBD algorithm for the FFIM on a

642 lattice at zero temperature.

FIG. 5. Autocorrelation functions of M2 for the square lattice FFIM at zero temper-

ature on a 642 lattice for the KBD algorithm with and without Metropolis sweeps, with

asymptotic �ts to an exponential and a logarithm respectively.

FIG. 6. Freeze/delete operations for the triangular lattice FFIM. The bold lines indi-

cate frozen bonds.
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FIG. 7. Autocorrelation times for � at T =0 for the triangular lattice FFIM using the

Metropolis and plaquette algorithms.

FIG. 8. Autocorrelation times for �(2) at T =0 for the triangular lattice FFIM using

the Metropolis and plaquette algorithms.

FIG. 9. Extensions of basic triangular plaquette: (a) double plaquette, (b) double

plaquette plus extra link.

FIG. 10. Possible ground state con�gurations of the tile shown in Fig. 9(b). Here solid

lines denote satis�ed bonds.

FIG. 11. Possible energy conserving operations for the tile shown in Fig. 9(b). The

bold lines indicate frozen bonds.
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