
Northeast Parallel Architectures Center

The Parallelization of a
Weather Prediction Model

Gregor von Laszewski
gregor@nova.npac.syr.edu

Technical Report

SCCS 533

S Y R A C U S E

U N I V E R S I T Y
 1 8 7 0. . .

Science and Technology Center
111 College Place

Syracuse, NY 13244-4100
Tel.: (315) 443-1722, 1723; Fax: (315) 443-1973

Contents

1 Introduction 1

1.1 The Advanced Regional Prediction System : : : : : : : : : : : : 2

1.2 Modularity of the Model : 2

2 Parallelization 6

2.1 Analysis of the Parallel ARPS Code (Version 3.0) : : : : : : : : : 6

2.2 Parallelization of the ARPS Code (Version 3.1) : : : : : : : : : : 9

2.3 Summary : 13

3 Semiautomatic Translator 19

3.1 The Parallelization Tool in Context : : : : : : : : : : : : : : : : : 20

3.2 Menu Interactions : 21

3.3 Variable Layout : 24

3.4 Simple Loop Translation : 26

3.5 Forall Loop Translation : 28

3.6 Duplicating Text Segments : 30

4 ARPS and HPF 32

4.1 Fortran90D : 32

4.1.1 The Language Directives : : : : : : : : : : : : : : : : : : 33

4.1.2 The Compiler Phases : 35

4.1.3 Templates for the ARPS Code : : : : : : : : : : : : : : : 36

4.2 Summary : 38

5 Benchmarking ARPS on the CM5 41

Technical Report:

SCCS 533 CONTENTS i

5.1 Timing Results : 42

6 Summary 48

7 Appendix 51

7.1 Program Tree : 51

7.2 Operators : 56

7.3 Availability : 57

CONTENTS

Chapter 1

Introduction

Recent devastating events caused by storms show how important the develop-

ment of a reliable storm prediction system is. One such e�ort was started at

the Center for Analysis and Prediction of Storms (CAPS) in Oklahoma. This

institute tries to develop techniques for the practical prediction of weather phe-

nomena on scales ranging from a few kilometers to hundreds of kilometers.

The use of a prediction model is possible in near future because a network

of 175 Doppler radars will be installed around the U.S in order to gather the

necessary initial data for the model. The initialization is an important part of

this application since the precise initial data leads to more accurate predictions.

It is easy to imagine that this data accumulation leads to huge storage require-

ments. One way to deal with this problem is to distribute the prediction of a

storm at the area of interest. Since, many sites have di�erent computers it is

useful to develop a highly portable source code. Another important requirement

is that a modi�cation of the program should be possible with moderate e�ort

in order to incooperate new computational schemes determining the modeling

equations.

Naturally a storm has to be predicted as fast and long as possible with very

high accuracy in order to avoid damages by invoking early prevention methods.

This can be achieved by, e.g. using supercomputers for solving the modeling

equations.

This report describes the parallelization of a weather prediction code using the

1

Technical Report:
SCCS 533 CHAPTER 1. INTRODUCTION 2

dataparallel programming scheme. In addition, it is shown how to obtain a

version for message passing computers while using High Performance Fortran.

Benchmarking for the dataparallel program is done on a CM5 with 32 nodes

and vector units.

1.1 The Advanced Regional Prediction System

The program for the prediction of storms developed by CAPS is called Ad-

vanced Regional Prediction System (ARPS). In this section the features of the

ARPS code important for a parallelization are summarized. In addition a small

example is used to show the modularity introduced by the operator model.

The following design characteristics for the ARPS code are important for a

possible parallelization and the portability onto many di�erent machines:

Flexibility: The code is modular so that it is easy to modify it.

Portability: The code is written in Fortran 77.

Support: � Documentation is provided for the source code and for the user.

� The CAPS project is an ongoing project and support by the authors

is given for questions arising not covered in the documentation.

1.2 Modularity of the Model

In ARPS the di�erential equations are described by their operators. This makes

the extension of the modeling equations used in ARPS easier. We illustrate the

operator scheme for the the simple scalar conservation law:

�T

�t

= �
�(uT)

�x

�
�(vT)

�y

�
�(wT)

�z

To solve this equation the term can be expanded in the usual way as shown

in [?].

do k=1,nz

do j=1,ny

do i=1,nx

1.1. THE ADVANCED REGIONAL PREDICTION SYSTEM

Technical Report:

SCCS 533 CHAPTER 1. INTRODUCTION 3

T(i,j,k,future) = T(i,j,k,past)

-.5 * rdx * dt *

u(i,j,k,now) * (T(i+1,j,k,now)+T(i,j,k,now))

-u(i-1,j,k,now) * (T(i+1,j,k,now)+T(i-1,j,k,now))

-.5 * rdx * dt *

v(i,j,k,now) * (T(i,j+1,k,now)+T(i,j,k,now))

-v(i,j-1,k,now) * (T(i,j+1,k,now)+T(i,j-1,k,now))

-.5 * rdx * dt *

w(i,j,k,now) * (T(i,j,k+1,now)+T(i,j,k,now))

- w(i,j,k-1,now) * (T(i,j,k+1,now)+T(i,j,k-1,now))

end do

end do

end do

j

i

k

ijk

k−1

k+1

i−1

i+1

j−1 j+1

Figure 1.1: Data dependency in the calculation of the conservation law

In case new equations and parameters are added it is necessary to put con-

siderable amount into rewriting the program. In addition, the parallelization

of this code fragment is di�cult due to data dependencies inherented between

variables in the loop construct. The dependencies are shown in Figure 1.1 and

can be drawn in form of a stencil. Since the sequential loop is traversed in a

particular order it is not straight forward how to parallelize the code. To avoid

1.2. MODULARITY OF THE MODEL

Technical Report:

SCCS 533 CHAPTER 1. INTRODUCTION 4

this problem the introduction of a small set of operators is useful. Let avgd

and difd be the counterparts of the spatial average and spatial derivative in

direction d 2 fx; y; zg. Let aamult denote the element wise multiplication of

two matrices. Than the equation of the conservation law can be expressed as

shown in Figure 1.2.

begin parallel

temp1 avgx(T)

temp2 avgy(T)

temp3 avgz(T)

end parallel

begin parallel

temp1 aamult (U, temp1)

temp2 aamult (U, temp2)

temp3 aamult (U, temp3)

end parallel

begin parallel

temp1 difx(temp1)

temp2 dify(temp2)

temp3 difz(temp3)

end parallel

do k=1,nz in parallel

do j=1,ny in parallel

do i=1,nx in parallel

T(i,j,k,future) = T(i,j,k,past)

- 2 � dt � (temp1(i,j,k,now)

+ temp2(i,j,k,now)

+ temp3(i,j,k,now))

end do

end do

end do

Figure 1.2: Procedural formulation of the conservation law

The pseudo code for the three operators used is given in the appendix. Paral-

lelism occurs in three ways:

1. Each operator can work in parallel on the three temporary arrays.

1.2. MODULARITY OF THE MODEL

Technical Report:

SCCS 533 CHAPTER 1. INTRODUCTION 5

2. There are no dependencies in the do loop. Therefore, the do loop is easily

parallelizable.

3. The operators avg, dif, and aamult, the multiplication of two matrices

element by element, can be parallelized easily.

1.2. MODULARITY OF THE MODEL

Chapter 2

Parallelization

To avoid mistakes done in previous attempts to parallelize the ARPS code a

more solid software engineering approach is followed (Figure 2.1).

Analysis In the analysis phase the existing ARPS versions have been evaluated

carefully for a parallelization. (See Sections 2.1,2.2)

De�nition In consideration of the problem analysis the tasks are de�ned to

complete the project (See Sections 2.1,2.2).

Design The parallel code and supporting algorithms are designed (See Sec-

tions 2.1,2.2, 2.3, Chapters 3, 4).

Testing The program is tested and compared with the sequential program.

Benchmarking is done with real storm data used in weather prediction

codes (See Chapter 5).

2.1 Analysis of the Parallel ARPS Code (Ver-

sion 3.0)

The ARPS code version 3.0 has been previously parallelized for the DECmpp

available at NPAC [?]. The development time for the parallelization of the

code took two semesters. Unfortunately, the coding did not pass the testing

6

Technical Report:

SCCS 533 CHAPTER 2. PARALLELIZATION 7

Analysis

Definition

Design

Testing

Analysis

Definition

Design

Testing

Figure 2.1: Software engineering phases

phase due to programming errors. In order not to loose the time already spend

in this project the initial task included to eliminate the errors and generate

benchmarking results.

While trying to debug the code using the DECmpp it was quickly obvious that it

is di�cult to use this machine for the testing (debugging) phase. Problems due

to the choice of the system and due to lack of documentation of the parallelized

code occurred.

System Oriented Problems

1. A complete compilation of the 69000 lines of code took 2 hours and 30

minutes. Changing only one �le and generating the executable took inbe-

tween 15 to 30 minutes.

2. Including routines for printing variable values at di�erent times during

the computation caused runtime errors due to memory limitations of the

system.

Software Oriented Problems After carefully analysis of the parallel code

the following problems became obvious:

� One third of the original code has not been parallelized. The missing

code handles the boundary conditions and is the most complicated one to

2.1. ANALYSIS OF THE PARALLEL ARPS CODE (VERSION 3.0)

Technical Report:

SCCS 533 CHAPTER 2. PARALLELIZATION 8

parallelize. The missing calls resulted in
oating point errors.

� In order to avoid the
oating point errors a false initialization has been

introduced in the code. Finding this particular line in the 69000 lines of

code could only be done with the help of a line by line comparison between

the parallel and the sequential code. The comparison took almost a week.

� After parallelizing the remaining code it stated out that the program com-

puted the wrong results due to the elimination of some parameters used in

procedure calls of the original program. The correction of the code would

e�ect many procedure calls.

At this time it became clear that the best approach would be to start the

parallelization completely new and disregard all work spend on this project

before. The motivation for this being:

1. The original sequential code is working and available without modi�ca-

tions.

2. A new version of the sequential software has been available already since

half a year.

Since there was only limited man power available a new parallelization strategy

was necessary. The analysis of the sequential code showed that

� the procedures are similar in their structure,

� variable names are used consistently,

� common variables have been avoided,

� the main computation is done in do loops with few data dependencies.

These properties show that in a parallelized code most of the compiler directives

and parallelizable structures will be similar. To make use of this fact the devel-

opment of an interactive parallelization tool became obvious. This tool should

eliminate the time spend while rewriting similar parts of the code over and over

again.

In addition a version using High Performance Fortran (HPF) should be gen-

erated. In order to do this a common set of directives between the di�erent

Fortran 90 variants are speci�ed.

2.1. ANALYSIS OF THE PARALLEL ARPS CODE (VERSION 3.0)

Technical Report:

SCCS 533 CHAPTER 2. PARALLELIZATION 9

2.2 Parallelization of the ARPS Code (Version

3.1)

In this section the analysis of the sequential ARPS code (version 3.1) and re-

sulting consequences for a parallelization of this code are presented.

The ARPS 3.1 code is quite large with about 69000 lines of code divided in

about 150 procedures. The Figure 2.2 shows the main procedures in the calling

tree. The complete calling tree is given in the appendix.

Arps 3.1

Input corditing Output

sfcflx tinteg microph tfilt tflipradbdt

frcuvw frcp acoust solvpt solvqv solvq

solvuvw solvp

Arps 3.1

Input corditing Output

sfcflx tinteg microph tfilt tflipradbdt

frcuvw frcp acoust solvpt solvqv solvq

solvuvw solvp

Figure 2.2: Partial program tree of the ARPS 3.1 code

A program pro�le of the sequential code on a SUN SPARC workstation gives

valuable insight in the behavior of the code. For the pro�le a prediction time

of 6.00 seconds is used, while choosing a domain size of 32� 32� 32. The most

time consuming routines are listed in the Tables 2.1 and 2.2. The total time

to generate the pro�le is 425 seconds while the optimized run takes 27 seconds

on the same workstation. The time listed under mcount (50%) is used for the

bookkeeping of the pro�le. It is obvious by the 124 million calls to the multi-

plication that a fast multiplication routine is necessary in order to execute the

program e�ciently. It is important to vectorize the constructs including the

multiplications e�ciently in order to gain high performance. From the subrou-

tines the routine uvwrho has the longest execution time. This routine should be

parallelized more carefully. The other routines are more or less equal important.

2.2. PARALLELIZATION OF THE ARPS CODE (VERSION 3.1)

Technical Report:

SCCS 533 CHAPTER 2. PARALLELIZATION 10

Since the code is so big input and output routines are not parallelized1.

The important data structures used in the ARPS code are one, two, three, and

four dimensional arrays (Figure 2.3). The model domain is essentially a volume

in a three dimensional geometrical domain. The fourth dimension is used to

store values at di�erent times. Three time points are considered, namely: past,

present, and future. The variables important for the domain decomposition

are listed in Figure 2.4 and 2.5. These variables must be distributed onto the

parallel machine. For a detailed explanation of the semantic of these variables

we refer to the ARPS manual [?]. As mentioned before most array elements

neighboring each other in the index space are data dependent to each other.

This means that for an update of the array element a(i; j; k) the 6 neighboring

elements a(i � 1; j; k), a(i; j � 1; k), and a(i; j; k � 1) are necessary. Because of

the operator model all elements a(i; j; k) can be calculated at the same time.

For certain boundary conditions data dependencies between opposite boundary

elements exist resulting in more complex data dependencies.

vectors

x
y

z

2d arrays volume 4d array

past

present

future

Figure 2.3: Main data structures used in the ARPS code in respect to the three
dimensional model domain

In order to enable the integration of compiler directives for the CM5, the

DECmpp and HPF the parallelization of the code is done in four steps:

� Data distribution

� Loop vectorization

1At present, the input routine has been parallelized to about 90%

2.2. PARALLELIZATION OF THE ARPS CODE (VERSION 3.1)

Technical Report:
SCCS 533 CHAPTER 2. PARALLELIZATION 11

� Array segmentation

� Data layout directives

Data Distribution First, for each variable a special directive is assigned

telling whether the array is a parallel vector, a parallel array, a parallel volume,

or a parallel four dimensional array. The directives listed below are used to

indicate the property of the arrays. The comments behind a particular directive

indicate the semantic of the directive as used in the code. The programmers

task is to associate each variable to one of these classes. Is the variable not used

in parallel no association is necessary.

PU Array(name) A simple array

PU 2dE(name) A 2d array at the east boundary

PU 2dW(name) A 2d array at the west boundary

PU 2dS(name) A 2d array at the south boundary

PU 2dN(name) A 2d array at the north boundary

PU 2dSurface(name) A 2d array at the surface

PU Volume(name) A 3d array representing the model domain

PU 4d(name) A time dependent 3d array

This directives will be substituted by the particular machine or language direc-

tive.

Loop Vectorization Second, the loops used in the subroutines should be

vectorized. The following example demonstrates this issue. Let the original

code fragment look like:

do i=1,n

a(i) = b(i) + 1

end do

Than the modi�ed code is:

a(1:n) = b(1:n) + 1

Array Segmentation Third, for particular versions of data parallel Fortran

it is not possible to use pointers to indicate the beginning of a array segment

passed to subroutines. They have to be substituted by their particular array

segments. The following example illustrates the work to be done. Let the

original code fragment look like:

2.2. PARALLELIZATION OF THE ARPS CODE (VERSION 3.1)

Technical Report:

SCCS 533 CHAPTER 2. PARALLELIZATION 12

real a (nx,ny,nz,nt)

integer time

...

call routine (a(1,1,1,time),nx,ny,nz)

...

Than the modi�ed code is:

real a (nx,ny,nz,nt)

...

call routine (a(:,:,:,time),nx,ny,nz)

...

Using di�erent machines can complicate this issue even more. While the above

construct is allowed on the CM5 it is not possible on the DECmpp. Using the

DECmpp as a target machine one has to copy �rst the array segment into a

temporary array. This temporary array is than passed as parameter to the pro-

cedure. Another way to handle this problem would be to use common variables,

but this contradicts the design principle of the modularity used for the ARPS

code. The example shown bellow explains which additional lines of code have

to be included for the parallelization on the DECmpp. These additional state-

ments in the ARPS code lead to about 10% e�ciency loss. Let the original code

fragment look like:

real a (nx,ny,nz,nt)

integer time

...

call routine (a(1,1,1,time),nx,ny,nz)

...

Than the modi�ed code is :

real a (nx,ny,nz,nt)

real temp (nx,ny,nz)

...

temp = a(:,:,:,time)

call routine (temp,nx,ny,nz)

a(:,:,:,time) = temp

...

2.2. PARALLELIZATION OF THE ARPS CODE (VERSION 3.1)

Technical Report:

SCCS 533 CHAPTER 2. PARALLELIZATION 13

Data layout directives Once all the tasks mentioned above are completed

the data layout directives have to be substituted by valid compiler directives

suitable for the target machine of choice. Here possible layout directive substi-

tutions for the DECmpp and the CM5 are given. The directive substitutions for

HPF are introduced later since they need a more detailed discussion (Chapter 4).

CM5 data layout directives In the LAYOUT directive of the CM5 :news

means that the particular array axis is mapped on the machine in such a way

that computations in this direction are executed in parallel. The directive :serial

means that computations in this direction is done serially.

PU Array(name) CMF$ LAYOUT name (:news)

PU 2dE(name) CMF$ LAYOUT name (:news,:news)

PU 2dW(name) CMF$ LAYOUT name (:news,:news)

PU 2dS(name) CMF$ LAYOUT name (:news,:news)

PU 2dN(name) CMF$ LAYOUT name (:news,:news)

PU 2dSurface(name) CMF$ LAYOUT name (:news,:news)

PU Volume(name) CMF$ LAYOUT name (:news,:news,:news)

PU 4d(name) CMF$ LAYOUT name (:news,:news,:news,:serial)

DECmpp data layout directives Here ONDPU means that the arrays are

mapped in the from compiler suggested way onto the parallel processors. Since

the DECmpp is anyway not the main target machine for this study we leave a

more e�cient mapping for future activities.

PU Array(name) ONDPU name

PU 2dE(name) ONDPU name

PU 2dW(name) ONDPU name

PU 2dS(name) ONDPU name

PU 2dN(name) ONDPU name

PU 2dSurface(name) ONDPU name

PU Volume(name) ONDPU name

PU 4d(name) ONDPU name

2.3 Summary

We summarize the most important issues between the two target machines of

choice.

2.3. SUMMARY

Technical Report:

SCCS 533 CHAPTER 2. PARALLELIZATION 14

DECmpp

� There exists a 4d to 3d transformation problem while passing arrays. The

compiler is not able to recognize if pointers instead of array segments are

passed to a procedure.

� The compilation takes a long time. At this time it is not clear if it is a

problem caused by the system or the compiler.

� Using the print statement while doing extensive debugging leads to an out

of memory error message.

CM5

� The compilation time is much faster than on the DECmpp.

� Printing variable values during extensive debugging is possible.

� The order of the parallel array is essential for a high performance. The

serial layout should be to the far left of an array. Nevertheless, in the

way the program is written it is to the far right. This indicates a lack of

a compiler directive in CMF where the order of the array index can be

permuted arbitrarily.

� Double precision is about 15% faster than single precision.

� The system at NPAC is heavily loaded so that it might happen that the

program does not execute successfully since the memory is too small for

the applications executed in timesharing mode.

� Benchmarking is only possible when the machine is empty. But there

exists no time slot when the machine runs in single user or in batch mode.

Limited Resources

� Semiautomatic translation is necessary in order to outcome the limited

man power.

2.3. SUMMARY

Technical Report:

SCCS 533 CHAPTER 2. PARALLELIZATION 15

c TIME DEPENDENT VARIABLES

real, array(nx,ny,nz,nt) u,v,w ! Total velocities in
m

s

real, array(nx,ny,nz,nt) ptprt ! Perturbation potential temperature

! From that of base state atmosphere (K)

real, array(nx,ny,nz,nt) pprt ! Perturbation pressure from that

! Of base state atmosphere (Pascal)

real, array(nx,ny,nz,nt) qv ! Water vapor speci�c humidity

real, array(nx,ny,nz,nt) qc ! Cloud water mixing ratio

real, array(nx,ny,nz,nt) qr ! Rain water mixing ratio

real, array(nx,ny,nz,nt) qi ! Cloud ice mixing ratio

real, array(nx,ny,nz,nt) qs ! Snow mixing ratio

real, array(nx,ny,nz,nt) qh ! Hail mixing ratio

real, array(nx,ny,nz) km ! The turbulent mixing coe�cient for

! momentum
m
2

s

c BASE STATE VARIABLES

real, array(nx,ny,nz) ubar ! Base state u-velocity
m

s

real, array(nx,ny,nz) vbar ! Base state v-velocity
m

s

real, array(nx,ny,nz) ptbar ! Base state potential temperature (K)

real, array(nx,ny,nz) pbar ! Base state pressure (Pascal).

real, array(nx,ny,nz) rhobar ! Base state air density
kg

m3

real, array(nx,ny,nz) qvbar ! Base state water vapor speci�c humidity

c ARRAYS RELATED TO MODEL GRID DEFINITION

real, array(nx) x ! The coordinates of the physical and

real, array(ny) y ! computational grid.

real, array(nz) z

real, array(nx,ny,nz) zp ! The physical height coordinate de�ned at

! w-point of the staggered grid.

real, array(nx,ny) hterain ! The height of the terrain.

real, array(nx,ny,nz) j1 ! Coordinate transform Jacobian de�ned as �
� zp

� x

real, array(nx,ny,nz) j2 ! Coordinate transform Jacobian de�ned as �
� zp

� y

real, array(nx,ny,nz) j3 ! Coordinate transform Jacobian de�ned as �
� zp

� z

c PURE WORK ARRAYS THAT DO NOT CARRY PHYSICAL MEANING IN THE

CODE

real, array(nx,ny) temxy ! 2-D temporary array

! where = 1,2,3,4

real, array(nx,ny,nz) tem ! Temporary work array.

! where = 1,2,3,4,5,6,7,8,9,10,11,12,13

Figure 2.4: Most of the domain variables on which calculations are performed

2.3. SUMMARY

Technical Report:

SCCS 533 CHAPTER 2. PARALLELIZATION 16

real, array(ny,nz) pdteb ! T-tendency of pprt at e-boundary
Pascal

s

real, array(ny,nz) ptdteb ! T-tendency of ptprt at e-boundary
K

s

real, array(ny,nz) qcdteb ! T-tendency of qc at e-boundary
1

s

real, array(ny,nz) qhdteb ! T-tendency of qh at e-boundary
1

s

real, array(ny,nz) qidteb ! T-tendency of qi at e-boundary
1

s

real, array(ny,nz) qrdteb ! T-tendency of qr at e-boundary
1

s

real, array(ny,nz) qsdteb ! T-tendency of qs at e-boundary
1

s

real, array(ny,nz) qvdteb ! T-tendency of qv at e-boundary
1

s

real, array(ny,nz) udteb ! T-tendency of u at e-boundary
m

s2

real, array(ny,nz) vdteb ! T-tendency of v at e-boundary
m

s2

real, array(ny,nz) wdteb ! T-tendency of w at e-boundary
m

s2

real, array(nx,nz) pdtnb ! T-tendency of pprt at n-boundary
Pascal

s

real, array(nx,nz) ptdtnb ! T-tendency of ptprt at n-boundary (K/s)

real, array(nx,nz) qcdtnb ! T-tendency of qc at n-boundary
1

s

real, array(nx,nz) qhdtnb ! T-tendency of qh at n-boundary
1

s

real, array(nx,nz) qidtnb ! T-tendency of qi at n-boundary
1

s

real, array(nx,nz) qrdtnb ! T-tendency of qr at n-boundary
1

s

real, array(nx,nz) qsdtnb ! T-tendency of qs at n-boundary
1

s

real, array(nx,nz) qvdtnb ! T-tendency of qv at n-boundary
1

s

real, array(nx,nz) udtnb ! T-tendency of u at n-boundary
m

s2

real, array(nx,nz) vdtnb ! T-tendency of v at n-boundary
m

s2

real, array(nx,nz) wdtnb ! T-tendency of w at n-boundary
m

s2

real, array(nx,nz) pdtsb ! T-tendency of pprt at s-boundary
Pascal

s

real, array(nx,nz) ptdtsb ! T-tendency of ptprt at s-boundary
K

s

real, array(nx,nz) qcdtsb ! T-tendency of qc at s-boundary
1

s

real, array(nx,nz) qhdtsb ! T-tendency of qh at s-boundary
1

s

real, array(nx,nz) qidtsb ! T-tendency of qi at s-boundary
1

s

real, array(nx,nz) qrdtsb ! T-tendency of qr at s-boundary
1

s

real, array(nx,nz) qsdtsb ! T-tendency of qs at s-boundary
1

s

real, array(nx,nz) qvdtsb ! T-tendency of qv at s-boundary
1

s

real, array(nx,nz) udtsb ! T-tendency of u at s-boundary
m

s2

real, array(nx,nz) vdtsb ! T-tendency of v at s-boundary
m

s2

real, array(nx,nz) wdtsb ! T-tendency of w at s-boundary
m

s2

real, array(ny,nz) pdtwb ! T-tendency of pprt at w-boundary
Pascal

s

real, array(ny,nz) ptdtwb ! T-tendency of ptprt at w-boundary
K

s

real, array(ny,nz) qcdtwb ! T-tendency of qc at w-boundary
1

s

real, array(ny,nz) qhdtwb ! T-tendency of qh at w-boundary
1

s

real, array(ny,nz) qidtwb ! T-tendency of qi at w-boundary
1

s

real, array(ny,nz) qrdtwb ! T-tendency of qr at w-boundary
1

s

real, array(ny,nz) qsdtwb ! T-tendency of qs at w-boundary
1

s

real, array(ny,nz) qvdtwb ! T-tendency of qv at w-boundary
1

s

real, array(ny,nz) udtwb ! T-tendency of u at w-boundary
m

s2

real, array(ny,nz) vdtwb ! T-tendency of v at w-boundary
m

s2

real, array(ny,nz) wdtwb ! T-tendency of w at w-boundary
m

s2

Figure 2.5: The domain variables for the boundaries

2.3. SUMMARY

Technical Report:

SCCS 533 CHAPTER 2. PARALLELIZATION 17

Table 2.1: Sequential pro�le of the ARPS 3.1 code

% cumulative self self total

time seconds seconds calls ms/call ms/call name

50.1 213.46 213.46 mcount

13.4 270.70 57.24 124816095 0.00 0.00 .mul1

7.2 301.26 30.56 mul 12bit1

5.8 325.84 24.58 mul 8bit1

2.8 337.90 12.06 mul 4bit1

1.9 345.98 8.08 17 475.30 871.29 uvwrho

1.1 350.67 4.69 12 390.83 3367.74 solvuvw

0.9 354.53 3.86 35 110.29 203.35 difx

0.9 358.38 3.85 36 106.94 199.85 difz

0.9 362.17 3.79 zero divide 1

0.9 365.95 3.78 35 108.00 201.06 dify

0.9 369.71 3.76 26 144.62 231.85 avgz

0.7 372.60 2.89 29 99.66 193.23 aamult

0.6 375.18 2.58 1 2580.01 4698.80 initdvr

0.5 377.10 1.92 12 160.00 500.81 stepw

0.4 378.96 1.86 next41

0.4 380.78 1.82 12 151.67 260.85 stepv

0.4 382.59 1.82 moncontrol1

0.4 384.40 1.81 12 150.83 882.83 divgs

0.4 386.10 1.70 51 33.33 33.33
zero

0.4 387.73 1.63 7 232.86 382.46 difzz

0.4 389.26 1.53 8 191.25 331.09 tswap

0.4 390.78 1.52 12 126.67 235.85 stepu

0.3 392.18 1.40 12 116.67 216.33 pdivrg

0.3 393.52 1.34 12 111.67 190.91 stepp

0.3 394.85 1.33 1 1330.01 2279.92 inibase

0.3 396.15 1.30 11 118.18 209.63 avgx

0.3 397.27 1.12 1 1120.00 2407.55 revap

0.3 398.38 1.11 11 100.91 192.35 avgy

0.3 399.47 1.09 7 155.71 297.27 difxx

0.2 400.53 1.06 1 1060.00 1797.50 stress

0.2 401.58 1.05 1 1050.00 5001.36 cmix2uvw

0.2 402.60 1.02 7 145.71 287.27 difyy

0.2 403.61 1.01 5 202.00 2156.92 advcts

0.2 404.60 0.99 2 495.00 1427.86 tmixq

0.2 405.58 0.98 1 980.00 1769.05 deform

0.2 406.55 0.97 1 970.00 1595.99 buoycy

0.2 407.51 0.96 1 960.00 2065.80 satadj

0.2 408.45 0.94 4 235.00 419.91 divgsg

0.2 409.37 0.92 1 920.00 8597.91 microph

0.2 410.24 0.87 1371 0.63 0.63 write1

0.2 411.04 0.80 1 800.00 1315.44 qrfall

0.2 411.82 0.78 mul 16bit1

1Is a system intern call

2.3. SUMMARY

Technical Report:

SCCS 533 CHAPTER 2. PARALLELIZATION 18

Table 2.2: Sequential pro�le of the ARPS 3.1 code

% cumulative self self total

time seconds seconds calls ms/call ms/call name

0.2 412.60 0.78 1 780.00 1519.20 cftmix

0.2 413.36 0.76 1 760.00 1788.66 tmixpt

0.2 414.09 0.73 1 730.00 1779.45 stabnsq

0.2 414.77 0.68 1 680.00 1122.14 autocac

0.2 415.43 0.66 3 220.00 424.15 satmr

0.1 416.03 0.60 12 50.00 79.65 lbdtuvw

0.1 416.61 0.58 3 193.33 325.41 stepq

0.1 417.18 0.57 1 570.00 1502.86 tmixqv

0.1 417.70 0.52 3 173.33 1491.37 cmix2q

0.1 418.17 0.47 348511 0.00 0.00 r pow1

0.1 418.59 0.42 normal1

0.1 418.96 0.37 1 370.00 665.09 jacob

0.1 419.32 0.36 1 360.00 26337.97 frcuvw

0.1 419.66 0.34 1 340.00 695.75 rdmpuvw

0.1 419.99 0.33 �nite1

0.1 420.30 0.31 1 310.00 1624.28 cmix2pt

0.1 420.61 0.31 1 310.00 458.12 chkstab

0.1 420.91 0.30 12 25.00 37.93 bcw

0.1 421.19 0.28 1 280.00 56810.41 acoust

0.1 421.44 0.25 1 250.00 417.37 rdmppt

0.1 421.68 0.24 1 240.00 398.49 steppt

0.0 421.89 0.21 460 0.46 0.46 ioctl

0.0 422.09 0.20 12 16.67 24.94 bcp

0.0 422.29 0.20 12 16.67 25.12 bcu

0.0 422.47 0.18 12 15.00 23.45 bcv

0.0 422.64 0.17 1 170.00 2694.05 advv

0.0 422.80 0.16 104788 0.00 0.00 r exp1

0.0 422.95 0.15 1 150.00 886.31 inigrd

0.0 423.08 0.13 1 130.00 2705.87 advu

0.0 423.21 0.13 1 130.00 2793.60 advw

0.0 423.34 0.13 1 130.00 2859.18 frcp

0.0 423.47 0.13 1 130.00 3229.11 mixqv

0.0 423.59 0.12 348511 0.00 0.00 pow rr1

0.0 423.71 0.12 1 120.00 833.23 divgw

0.0 423.82 0.11 1 110.00 823.45 divgu

0.0 423.92 0.10 30805 0.00 0.02 x putc1

0.0 424.02 0.10 4 25.00 36.92 bcsclr

0.0 424.11 0.09 104448 0.00 0.00 Fsqrt1

0.0 424.20 0.09 1 90.00 3803.27 advpt

0.0 424.29 0.09 1 90.00 803.45 divgv

0.0 424.37 0.08 3 26.67 39.82 latbdtq

0.0 424.45 0.08 1 80.00 2558.94 advp

0.0 424.53 0.08 1 80.00 97.47 bdtu

0.0 424.60 0.07 104788 0.00 0.00 Fexp1

0.0 424.67 0.07 1 70.00 106.87 bdtp
1Is a call to an internal routine

2.3. SUMMARY

Chapter 3

Semiautomatic Translator

This chapter describes the interactive parallelization tool[3]. It is embedded in

the standard editor emacs. The parallelization technique is customized for the

ARPS code. Since the interactive shell is very easy to modify it can be used as

a base for the parallelization of other applications.

The semiautomatic translator is especially from interest because of the intro-

duction of the new Fortran standard. One of the most important features of

Fortran 90 is the ability of using vector constructs instead of simple loops used

in Fortran 77. As mentioned before these vector constructs enable to express

parallelism in an easy straight forward way. Dataparallel compilers developed

for di�erent machines make use of this vector constructs and generate parallel

code for these machines.

While transferring Fortran 77 programs to the new standard Fortran 90 one

faces the problem that most real life applications consist of many thousands of

Fortran lines. It would be a tedious task to handcode such large codes without

the support of a software tool. In case of the ARPS code the development

time could be reduced considerably while using the interactive parallelization

tool. In addition we present a way to write an intermediate code which can be

easily transferred to either CM Fortran, DECmpp Fortran, or High Performance

Fortran.

19

Technical Report:

SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 20

3.1 The Parallelization Tool in Context

Figure 3.1 shows the interactive parallelization tool in context to existing hard-

ware architectures and High Performance Fortran (HPF). First, the Fortran 77

program is changed in such a way that do loops are vectorized and the corre-

sponding layout directives for the array distribution are added to the code. This

is done by problem speci�c layout directives.

After including the directives one has the choice of a direct mapping to the

machine or transfer the program further to Fortran 90D (HPF). The advantage

of using HPF will be more obvious in future when more vendors provide this

new Fortran as standard for their machines.

Network

Fortran
Program

F77

Fortran
Program

Vectorization
Array Layout

Fortran

High
Performance

Intel
Paragon

iPSC\860

CM5

DECmpp

Interactive Parallelization

program test
integer a(n)
integer b(n)

do i=1,n−1
a(i) = b(i+1)/2

end do
end

Menu

LOOP
FORALL
COPY
LAYOUT

c Gregor von Laszewski

Figure 3.1: The interactive Parallelization Tool in context

We chose the ARPS code for parallelization and targeted the following languages

� CM Fortran,

� DECmpp Fortran,

� and Fortran 90D (HPF).

3.1. THE PARALLELIZATION TOOL IN CONTEXT

Technical Report:

SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 21

The parallelization of the code has been done in two independent groups. While

the �rst group consisting of two members used 6 month for the parallelization the

second group consisting of only one programmer did the work in one semester.

3.2 Menu Interactions

The editor emacs is used to invoke the interactions with the help of popup

menus under X-windows. Emacs is available for a huge number of di�erent

machines ranging from mainfraims to Workstations and PC's. Because of its

availability and its portability we chose emacs as the frontend to the interactive

parallelization tool. One major advantage of emacs is its extendability while

using keyboard macros and invoking shell scripts on specially marked program

regions. In the following list we give some of the advantages which made us

choosing emacs as the frontend.

� It is free.

� It is portable.

� It is available.

� Many users already use it.

� A X11 interface is available.

� A mouse interface is available.

The forthcoming sections show how the output on the monitor looks like before

and after invoking a particular mouse action. We use a simple example program

from the ARPS code which is shown in the �rst Figure.

The Menu

The menu is invoked while pressing the

CTRL key and the right mouse button

3.2. MENU INTERACTIONS

Technical Report:

SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 22

at the same time. A menu pops up as shown in the next Figure. Each item in

the menu invokes a program on a marked region. The beginning of a region is

marked with the help of

CTRL - space

The end of the region is marked by the actual cursor position. In the Figures

the begin of the region is displayed with the help of the @ character and the end

with . The menu contains

� The simple copying of a program part.

� Transforming a loop to a Forall loop.

� Transforming a loop to a vector construct.

� Determining the variable layout.

These tools are su�cient to parallelize the ARPS code.

3.2. MENU INTERACTIONS

Technical Report:

SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 23

SUBROUTINE AAMULT(a, b, nx, ny, nz,
ibgn, iend, jbgn, jend, kbgn, kend, ab)

implicit none
integer nx, ny, nz ! Number of grid points in 3 directions
real a (nx, ny, nz) ! Input array 1
real b (nx, ny, nz) ! Input array 2
integer ibgn, iend, jbgn, jend, kbgn, kend
real ab(nx, ny, nz) ! Product array
integer i, j, k

DO 100 k = kbgn, kend
DO 100 j = jbgn, jend
DO 100 i = ibgn, iend
ab(i, j, k) = a(i, j, k) * b(i, j, k)

100 CONTINUE
END

Emacs: SimpleFortranProgram.f

SUBROUTINE AAMULT(a, b, nx, ny, nz,
ibgn, iend, jbgn, jend, kbgn, kend, ab)

implicit none
integer nx, ny, nz ! Number of grid points in 3 directions
real a (nx, ny, nz) ! Input array 1
real b (nx, ny, nz) ! Input array 2
integer ibgn, iend, jbgn, jend, kbgn, kend
real ab(nx, ny, nz) ! Product array
integer i, j, k

DO 100 k = kbgn, kend
DO 100 j = jbgn, jend
DO 100 i = ibgn, iend
ab(i, j, k) = a(i, j, k) * b(i, j, k)

100 CONTINUE
END

Emacs: SimpleFortranProgram.f

Menu

Simple Loop Translation

Forall Loop Translation

Copy Text Segment

F90 Variable Layout

3.2. MENU INTERACTIONS

Technical Report:
SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 24

3.3 Variable Layout

One of the most important tasks of the parallelization is to determine the vari-

able layout. For our example we realize that the domain is a three dimensional

array representing a volume. Therefore, we design a layout macro for volumes.

This macro will be later on substituted with an appropriate compiler directives.

As example we use here the CM5. The Volume directive would be translated

into the following compiler directive:

CMF$ LAYOUT name (:news,:news,:news)

Note also that some comment lines will be inserted into the program. These

comment lines make it easier to search for parallel variables. This is especially

useful if the variables should not be laid out in parallel. We follow the strategy:

Deleting is easier and less time consuming than inserting.

In case a variable should be serial the inserted layout statements can be deleted.

Let the following Figure represent the state before invoking the Variable Layout

command:

@ SUBROUTINE AAMULT(a, b, nx, ny, nz,
ibgn, iend, jbgn, jend, kbgn, kend, ab)

implicit none
integer nx, ny, nz ! Number of grid points in 3 directions
real a (nx, ny, nz) ! Input array 1
real b (nx, ny, nz) ! Input array 2
integer ibgn, iend, jbgn, jend, kbgn, kend
real ab(nx, ny, nz) ! Product array
integer i, j, k

DO 100 k = kbgn, kend
DO 100 j = jbgn, jend
DO 100 i = ibgn, iend
ab(i, j, k) = a(i, j, k) * b(i, j, k)

100 CONTINUE
END

Emacs: SimpleFortranProgram.f

Menu

Simple Loop Translation

Forall Loop Translation

Copy Text Segment

F90 Variable Layout

3.3. VARIABLE LAYOUT

Technical Report:

SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 25

The next Figure represent the state after invoking the command:

SUBROUTINE AAMULT(a, b, nx, ny, nz,
ibgn, iend, jbgn, jend, kbgn, kend, ab)

implicit none
integer nx, ny, nz ! Number of grid points in 3 directions
real a (nx, ny, nz) ! Input array 1

cgvl <real> <a> <nx, ny, nz> ! Parameters : 3
PU Volume(a)

real b (nx, ny, nz) ! Input array 2
cgvl <real> <nx, ny, nz> ! Parameters : 3
PU Volume(b)

integer ibgn, iend, jbgn, jend, kbgn, kend
real ab(nx, ny, nz) ! Product array

cgvl <real> <ab> <nx, ny, nz> ! Parameters : 3
PU Volume(ab)

integer i, j, k
DO 100 k = kbgn, kend
DO 100 j = jbgn, jend
DO 100 i = ibgn, iend
ab(i, j, k) = a(i, j, k) * b(i, j, k)

100 CONTINUE
RETURN
END

Emacs: SimpleFortranProgram.f

3.3. VARIABLE LAYOUT

Technical Report:

SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 26

3.4 Simple Loop Translation

Many programs use simple loops with no data dependency between the left and

right hand side. This enables one to substitute the loop with a vector construct

available in Fortran 90. The loop translation consists the following phases:

1. Detect how many loops are nested in each other.

2. Detect the loop indices and their ranges.

3. Substitute in each line of the loop block the loop indices with the correct

range values.

Let the following Figure represent the state before invoking the Simple Loop

Translation command:

SUBROUTINE AAMULT(a, b, nx, ny, nz,
ibgn, iend, jbgn, jend, kbgn, kend, ab)

implicit none
integer nx, ny, nz ! Number of grid points in 3 directions
real a (nx, ny, nz) ! Input array 1
real b (nx, ny, nz) ! Input array 2
integer ibgn, iend, jbgn, jend, kbgn, kend
real ab(nx, ny, nz) ! Product array
integer i, j, k

@ DO 100 k = kbgn, kend
DO 100 j = jbgn, jend

DO 100 i = ibgn, iend
ab(i, j, k) = a(i, j, k) * b(i, j, k)

100 CONTINUE
END

Emacs: SimpleFortranProgram.f

Menu

Simple Loop Translation

Forall Loop Translation

Copy Text Segment

F90 Variable Layout

3.4. SIMPLE LOOP TRANSLATION

Technical Report:

SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 27

The next Figure represent the state after invoking the command:

SUBROUTINE AAMULT(a, b, nx, ny, nz,
ibgn, iend, jbgn, jend, kbgn, kend, ab)

implicit none
integer nx, ny, nz ! Number of grid points in 3 directions
real a (nx, ny, nz) ! Input array 1
real b (nx, ny, nz) ! Input array 2
integer ibgn, iend, jbgn, jend, kbgn, kend
real ab(nx, ny, nz) ! Product array
integer i, j, k

c.f77
c DO 100 k = kbgn, kend
c DO 100 j = jbgn, jend
c DO 100 i = ibgn, iend
c ab(i, j, k) = a(i, j, k) * b(i, j, k)
c100 CONTINUE
c.f77
c.f90

ab(ibgn:iend, jbgn:jend, kbgn:kend) =
: a(ibgn:iend, jbgn:jend, kbgn:kend)
: * b(ibgn:iend, jbgn:jend, kbgn:kend)

c.f90
RETURN
END

Emacs: SimpleFortranProgram.f

To make the statements included by the translator more transparent the old

statements are commented out in the program and are located between the

comment

c.77

The new code for this line is surrounded by the comment lines

c.90

3.4. SIMPLE LOOP TRANSLATION

Technical Report:

SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 28

3.5 Forall Loop Translation

Often a simple loop translation can not be applied because the loop indices are

incremented by a constant. Two possibilities exits to correct this problem:

1. modify the index boundaries for the loop variable

2. use the more powerful FORALL construct.

Here the FORALL translation is chosen. It contains the following phases:

1. Detect how many loops are nested in each other.

2. Detect the loop indices and their range.

3. Construct the FORALL statement with ranges.

4. Write each line of the loop block with the appropriate FORALL statement

and range information.

Let the following Figure represent the state before invoking the FORALL Loop

command:

SUBROUTINE AAMULT(a, b, nx, ny, nz,
ibgn, iend, jbgn, jend, kbgn, kend, ab)

implicit none
integer nx, ny, nz ! Number of grid points in 3 directions
real a (nx, ny, nz) ! Input array 1
real b (nx, ny, nz) ! Input array 2
integer ibgn, iend, jbgn, jend, kbgn, kend
real ab(nx, ny, nz) ! Product array
integer i, j, k

@ DO 100 k = kbgn, kend
DO 100 j = jbgn, jend
DO 100 i = ibgn, iend
ab(i, j, k) = a(i+1, j, k) * b(i, j-1, k)

100 CONTINUE
END

Menu

Simple Loop Translation

Forall Loop Translation

Copy Text Segment

F90 Variable Layout

Emacs: SimpleFortranProgram.f

3.5. FORALL LOOP TRANSLATION

Technical Report:

SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 29

The next Figure represent the state after invoking the command:

SUBROUTINE AAMULT(a, b, nx, ny, nz,
ibgn, iend, jbgn, jend, kbgn, kend, ab)

implicit none
integer nx, ny, nz ! Number of grid points in 3 directions
real a (nx, ny, nz) ! Input array 1
real b (nx, ny, nz) ! Input array 2
integer ibgn, iend, jbgn, jend, kbgn, kend
real ab(nx, ny, nz) ! Product array
integer i, j, k

c.f77
c DO 100 k = kbgn, kend
c DO 100 j = jbgn, jend
c DO 100 i = ibgn, iend
c ab(i, j, k) = a(i+1, j, k) * b(i, j-1, k)
c100 CONTINUE
c.f77
c.f90

FORALL (k = kbgn:kend, j = jbgn:jend, i = ibgn:iend)
: ab(i, j, k) = a(i+1, j, k) * b(i-1, j, k)

c.f90
RETURN
END

Emacs: SimpleFortranProgram.f

3.5. FORALL LOOP TRANSLATION

Technical Report:

SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 30

3.6 Duplicating Text Segments

Sometimes more complicated parallelization methods have to be used. in this

case it is useful to copy particular parts of the program and modify them by

hand. Let the following Figure represent the state before invoking the Copying

command:

SUBROUTINE AAMULT(a, b, nx, ny, nz,
ibgn, iend, jbgn, jend, kbgn, kend, ab)

implicit none
integer nx, ny, nz ! Number of grid points in 3 directions
real a (nx, ny, nz) ! Input array 1
real b (nx, ny, nz) ! Input array 2
integer ibgn, iend, jbgn, jend, kbgn, kend
real ab(nx, ny, nz) ! Product array
integer i, j, k

@ DO 100 k = kbgn, kend
DO 100 j = jbgn, jend
DO 100 i = ibgn, iend
ab(i, j, k) = a(i, j, k) * b(i, j, k)

100 CONTINUE
END

Emacs: SimpleFortranProgram.f

Menu

Simple Loop Translation

Forall Loop Translation

Copy Text Segment

F90 Variable Layout

3.6. DUPLICATING TEXT SEGMENTS

Technical Report:

SCCS 533 CHAPTER 3. SEMIAUTOMATIC TRANSLATOR 31

The next Figure represent the state after invoking the command:

SUBROUTINE AAMULT(a, b, nx, ny, nz,
ibgn, iend, jbgn, jend, kbgn, kend, ab)

implicit none
integer nx, ny, nz ! Number of grid points in 3 directions
real a (nx, ny, nz) ! Input array 1
real b (nx, ny, nz) ! Input array 2
integer ibgn, iend, jbgn, jend, kbgn, kend
real ab(nx, ny, nz) ! Product array
integer i, j, k

c.f77
c DO 100 k = kbgn, kend
c DO 100 j = jbgn, jend
c DO 100 i = ibgn, iend
c ab(i, j, k) = a(i, j, k) * b(i, j, k)
c100 CONTINUE
c.f77
c.f90

DO 100 k = kbgn, kend
DO 100 j = jbgn, jend
DO 100 i = ibgn, iend
ab(i, j, k) = a(i, j, k) * b(i, j, k)

100 CONTINUE
c.f90

RETURN

END

Emacs: SimpleFortranProgram.f

3.6. DUPLICATING TEXT SEGMENTS

Chapter 4

ARPS and HPF

This chapter shows how to implement the Advanced Regional Storm Prediction

System (ARPS) in Fortran 90D/HPF[4]. The modi�cation from Fortran 90 to

HPF can be done very quickly because of �ndings from the program analysis

described in Chapter 2. First, we will introduce the Fortran 90D constructs

necessary for the implementation of ARPS. Than we show in detail what we

have to change in the Fortran 90 program. Using HPF has the advantage that

the program will be portable on many machines. Many vendors are currently

developing HPF compilers for their computers.

4.1 Fortran90D

Many scienti�c applications use multi dimensional arrays on which computations

are performed. To write e�cient parallel programs while using message passing

the data decomposition is an important issue. To obtain speedup via parallel

execution it is necessary to decompose the array and perform the computations

in parallel on separate processing units.

First, one has to decide how the arrays should be aligned with respect to each

other, both within and across the array dimensions. The purpose of the align-

ment is to reduce the data movement while performing the calculation. The

alignment is basically independent of the actual machine layout. Second, these

arrays are distributed onto the machine. This includes issues dealing with min-

32

Technical Report:

SCCS 533 CHAPTER 4. ARPS AND HPF 33

imizing the data movement while maintaining load balance. The Figure 4.1

describes the strategy used in specifying Fortran90D programs:

1. Find the structure of the problem domain used in the original program.

2. De�ne an appropriate template for the data alignment. The template can

be viewed as logical data or memory space.

3. De�ne an appropriate distribution of the template to a logical processor

space.

4. A mapping to the speci�ed hardware architecture is created by the com-

piler.

Domain

Vector

Array

Volume

Template
Logical Processors

(here Grid)
Physical Processors
 (here Hypercube)

Figure 4.1: Mapping the Domain onto the Processing Elements

4.1.1 The Language Directives

We explain the Fortran D directives important for the implementation for the

ARPS code with the help of a small example where two arrays with di�erent

array indices are added and stored in a third array:

REAL, ARRAY (N): A, B, AB

DO i=1,N-1

AB(i) = A(i+1) + B(i)

END DO

The Language Directives

Technical Report:

SCCS 533 CHAPTER 4. ARPS AND HPF 34

Figure 4.2 shows a possible decomposition and its alignment which is advantages

for a parallel execution. Here M speci�es the number of processors used for the

parallel execution. Inspecting the data dependencies between the arrays AB, A,

and B we see that these arrays can be accessed in arbitrary order. This enables

one to use a FORALL loop. The complete Fortran 90D code fragment is shown

bellow:

REAL, ARRAY(N) A,B

TEMPLATE vector(N)

DISTRIBUTE vector(BLOCK(M))

ALIGN A(i+1) with vector(i)

ALIGN B(i) with vector(i)

FORALL i=1,N-1

AB(i) = A(i+1) + B(i)

END FORALL

The DISTRIBUTE statement speci�es in which way the data is distributed onto

the templates. For the ARPS code we need only the BLOCK distribution. That

means that the vector is divided into chunks of N/M and than each is mapped

onto one processor. For other choices we refer to [2].

DECOMPOSITION template(N)

ALIGN A(i+1) with template(i)

ALIGN B(i) with template(i)

PROCESSORS M

N/MN/MN/M

Figure 4.2: Example of a decomposition and an alignment

In addition to the distribution directives, parallel forall loops, independent loops,

and reduction operators are supported. The Figure 4.3 explains the di�erent

semantic of a forall and independent loop. In a forall loop each statement is

parallelized separately over the given index set. In an independent loop the

statements in the loop are considered as a block and are executed as a block in

The Language Directives

Technical Report:

SCCS 533 CHAPTER 4. ARPS AND HPF 35

INDEPENDENT i
DO i=1,N

A(i) = 1
B(i) = A(i) + 1

END DO

FORALL j=1,N
A(i) = 1
B(i) = A(i) + 1

END FORALL

A(i) = 1
B(i) = A(i) + 1

END DO

DO i=i_min_local, i_max_local

A(i) = 1

B(i) = A(i) + 1
END DO

END DO

DO i=i_min_local, i_max_local

DO i=i_min_local, i_max_local

compile

compile

Figure 4.3: Example of a forall and independent loop

parallel over the given index set. A more detailed description of the language

extension can be found in [1, 2].

4.1.2 The Compiler Phases

Figure 4.4 shows the outline of the Fortran90D/HPF compiler. In the �rst

phase of the compilation a parse tree is generated from a syntactically correct

Fortran90D/HPF program. In addition array assignments and where constructs

are transformed into equivalent forall statements such that the following phases

of the compiler deal only with forall constructs.

In the partitioning phase the data distribution directives decomposition, dis-

tribute and align are recognized and the appropriate code is generated for the

data partitioning and their distribution onto the processors. In the sequential-

ization phase all parallel constructs in the node program are sequentialized since

they can be e�ciently executed on a single processor. In case communication

from one processor to another is necessary this code is inserted during the com-

munication detection phase of the compilation. The �nal code is generated in

the last phase of the compilation. following the Single Program Multiple Data

(SPMD) paradigm. The program is naturally divided into code fragments con-

taining local computation, where operations of a processor are performed on

data stored in its own local memory, and global communication, where data is

The Compiler Phases

Technical Report:
SCCS 533 CHAPTER 4. ARPS AND HPF 36

transferred among processors.

Fortran 90D
HPF Code

Fortran 90D
HPF Code

Lexer &
Parser

Lexer &
Parser

Partitioning
Dependency
Analysis

Partitioning
Dependency
Analysis

Sequentialization
and Optimization

Sequentialization
and Optimization

Communication
Insertion and
Optimization

Communication
Insertion and
Optimization

Code
Generation

Code
Generation

Fortran 77MP
 Code

Fortran 77MP
 Code

Components of the Fortran90D/HPF compiler

Input: Fortran 90D/HPF Code

Output: Fortran 77+Message Passing

Figure 4.4: The main components of the Fortran90D compiler

4.1.3 Templates for the ARPS Code

In this section we specify the basic code needed for a Fortran D implementation.

As mentioned before the variables in the ARPS code consist of one, two, three,

and four dimensional arrays. The model domain is essentially a volume in a

three dimensional geometrical domain.

We assume there are procs x, procs y, procs z processors in x; y; and z direction.

The size of the model domain is speci�ed by nx; ny and nz. Naturally we divide

arrays with a dimension in x direction in procs x blocks. In the same way it is

done for the y and z direction. This results in a total of procs x � procs y �

procs z processors. Thus we de�ne the templates for the ARPS code as shown

in Figure 2.3. The following code fragment speci�es the templates used in the

Fortran D code of ARPS.

INTEGER procs x, procs y, procs z

INTEGER nx, ny, nz

TEMPLATE Volume(nx,ny,nz)

TEMPLATE x-vector(nx)

TEMPLATE y-vector(ny)

TEMPLATE z-vector(nz)

TEMPLATE xy-boundary(nx,ny)

Templates for the ARPS Code

Technical Report:
SCCS 533 CHAPTER 4. ARPS AND HPF 37

TEMPLATE xz-boundary(nx,nz)

TEMPLATE yz-boundary(ny,nz)

Now it is easy to distribute these templates on the processors by using the appro-

priate number of processors in a particular direction of the model domain. We

choose a block distribution because the algorithms are based on nearest neigh-

bor communication in the three dimensional space (See the Program Analysis

in Chapter 2).

DISTRIBUTE Volume (BLOCK(procs x), BLOCK(procs y), BLOCK(procs z))

DISTRIBUTE x-vector (BLOCK(procs x), * , *)

DISTRIBUTE y-vector (* , BLOCK(procs y), *)

DISTRIBUTE z-vector (* , * , BLOCK(procs z))

DISTRIBUTE xy-boundary (BLOCK(procs x), BLOCK(procs y), *)

DISTRIBUTE xz-boundary (BLOCK(procs x), * , BLOCK(procs z))

DISTRIBUTE yz-boundary (* , BLOCK(procs y), BLOCK(procs z))

Now the four dimensional arrays can be laid out in the following way:

REAL, ARRAY(nx,ny,nz,nt) u

ALIGN u with Volume ! Array collapse in the fourth dimension

Note that there exists an array collapse in the fourth dimension. That means

The elements a(i; j; k; t) with t 2 fpresent; past; futureg are mapped onto the

same template position. The three dimensional arrays are mapped in the fol-

lowing way onto the template

REAL, ARRAY(nx,ny,nz) xyz

ALIGN xyz with Volume

Two dimensional arrays are mapped according to their dimensional speci�cation

REAL, ARRAY(nx,ny) xy

REAL, ARRAY(nx,nz) xz

REAL, ARRAY(ny,nz) yz

ALIGN xy with xy-vector

ALIGN xz with xz-vector

ALIGN yz with yz-vector

Vectors with dimension nx, ny, or nz are mapped as follows

REAL, ARRAY(nx) x

Templates for the ARPS Code

Technical Report:

SCCS 533 CHAPTER 4. ARPS AND HPF 38

REAL, ARRAY(ny) y

REAL, ARRAY(nx) z

ALIGN x with x-vector

ALIGN y with y-vector

ALIGN z with z-vector

With this scheme the variables shown in Figure 2.4 and 2.5 are distributed

with the help of the code fragment shown in Figure 4.5 and 4.6 onto a parallel

machine.

4.2 Summary

This chapter shows how to use the Fortran D directives to implement the ARPS

code for the Fortran 90D/HPF language. Since HPF is expected to be soon

standard on a variety of massively parallel machines the ARPS code is already

ported to these machines.

For each dimension of the physical model domain a particular number of pro-

cessors is used. Therefore, the code can be easily modi�ed for di�erent machine

sizes. Furthermore, one can explore in future experiments the in
uence of the

memory hierarchy on the speed of the data excess while modifying the number

of processors in a particular dimension. This issue is in detail explained in [5].

We could show that a high level language support tool for MIMD machines as

introduced in [5] is not necessary. The implementation of the ARPS code with

Fortran 90D showed that the language consist of enough expressionistic power

to implement the problem.

4.2. SUMMARY

Technical Report:

SCCS 533 CHAPTER 4. ARPS AND HPF 39

c TIME DEPENDENT VARIABLES

ALIGN u,v,w with Volume ! Total velocities in
m

s

ALIGN ptprt with Volume ! Perturbation potential temperature

! From that of base state atmosphere

ALIGN pprt with Volume ! Perturbation pressure from that

! Of base state atmosphere

ALIGN qv with Volume ! Water vapor speci�c humidity

ALIGN qc with Volume ! Cloud water mixing ratio

ALIGN qr with Volume ! Rain water mixing ratio

ALIGN qi with Volume ! Cloud ice mixing ratio

ALIGN qs with Volume ! Snow mixing ratio

ALIGN qh with Volume ! Hail mixing ratio

ALIGN km with Volume ! The turbulent mixing coe�cient for

! momentum
m
2

s

c BASE STATE VARIABLES

ALIGN ubar with Volume ! Base state u-velocity
m

s

ALIGN vbar with Volume ! Base state v-velocity
m

s

ALIGN ptbar with Volume ! Base state potential temperature (K)

ALIGN pbar with Volume ! Base state pressure (Pascal).

ALIGN rhobar with Volume ! Base state air density
kg

m3

ALIGN qvbar with Volume ! Base state water vapor speci�c humidity

c ARRAYS RELATED TO MODEL GRID DEFINITION

ALIGN x with x-vector

ALIGN y with y-vector

ALIGN z with z-vector

ALIGN zp with Volume ! The physical height coordinate de�ned at

! w-point of the staggered grid.

ALIGN hterain with xy-boundary ! The height of the terrain.

ALIGN j1 with Volume ! Coordinate transform Jacobian de�ned as �
� zp

� x

ALIGN j2 with Volume ! Coordinate transform Jacobian de�ned as �
� zp

� y

ALIGN j3 with Volume ! Coordinate transform Jacobian de�ned as �
� zp

� z

c PURE WORK ARRAYS THAT DO NOT CARRY PHYSICAL MEANING IN THE

CODE

ALIGN temxy with xy-boundary ! 2-D temporary array

! where = 1,2,3,4

ALIGN tem with Volume ! Temporary work array.

! where = 1,2,3,4,5,6,7,8,9,10,11,12,13

Figure 4.5: Most of the domain variables on which calculations are performed

4.2. SUMMARY

Technical Report:

SCCS 533 CHAPTER 4. ARPS AND HPF 40

ALIGN pdteb with yz-boundary ! T-tendency of pprt at e-boundary
Pascal

s

ALIGN ptdteb with yz-boundary ! T-tendency of ptprt at e-boundary
K

s

ALIGN qcdteb with yz-boundary ! T-tendency of qc at e-boundary
1

s

ALIGN qhdteb with yz-boundary ! T-tendency of qh at e-boundary
1

s

ALIGN qidteb with yz-boundary ! T-tendency of qi at e-boundary
1

s

ALIGN qrdteb with yz-boundary ! T-tendency of qr at e-boundary
1

s

ALIGN qsdteb with yz-boundary ! T-tendency of qs at e-boundary
1

s

ALIGN qvdteb with yz-boundary ! T-tendency of qv at e-boundary
1

s

ALIGN udteb with yz-boundary ! T-tendency of u at e-boundary
m

s2

ALIGN vdteb with yz-boundary ! T-tendency of v at e-boundary
m

s2

ALIGN wdteb with yz-boundary ! T-tendency of w at e-boundary
m

s2

ALIGN pdtnb with xz-boundary ! T-tendency of pprt at n-boundary
Pascal

s

ALIGN ptdtnb with xz-boundary ! T-tendency of ptprt at n-boundary (K/s)

ALIGN qcdtnb with xz-boundary ! T-tendency of qc at n-boundary
1

s

ALIGN qhdtnb with xz-boundary ! T-tendency of qh at n-boundary
1

s

ALIGN qidtnb with xz-boundary ! T-tendency of qi at n-boundary
1

s

ALIGN qrdtnb with xz-boundary ! T-tendency of qr at n-boundary
1

s

ALIGN qsdtnb with xz-boundary ! T-tendency of qs at n-boundary
1

s

ALIGN qvdtnb with xz-boundary ! T-tendency of qv at n-boundary
1

s

ALIGN udtnb with xz-boundary ! T-tendency of u at n-boundary
m

s2

ALIGN vdtnb with xz-boundary ! T-tendency of v at n-boundary
m

s2

ALIGN wdtnb with xz-boundary ! T-tendency of w at n-boundary
m

s2

ALIGN pdtsb with xz-boundary ! T-tendency of pprt at s-boundary
Pascal

s

ALIGN ptdtsb with xz-boundary ! T-tendency of ptprt at s-boundary
K

s

ALIGN qcdtsb with xz-boundary ! T-tendency of qc at s-boundary
1

s

ALIGN qhdtsb with xz-boundary ! T-tendency of qh at s-boundary
1

s

ALIGN qidtsb with xz-boundary ! T-tendency of qi at s-boundary
1

s

ALIGN qrdtsb with xz-boundary ! T-tendency of qr at s-boundary
1

s

ALIGN qsdtsb with xz-boundary ! T-tendency of qs at s-boundary
1

s

ALIGN qvdtsb with xz-boundary ! T-tendency of qv at s-boundary
1

s

ALIGN udtsb with xz-boundary ! T-tendency of u at s-boundary
m

s2

ALIGN vdtsb with xz-boundary ! T-tendency of v at s-boundary
m

s2

ALIGN wdtsb with xz-boundary ! T-tendency of w at s-boundary
m

s2

ALIGN pdtwb with yz-boundary ! T-tendency of pprt at w-boundary
Pascal

s

ALIGN ptdtwb with yz-boundary ! T-tendency of ptprt at w-boundary
K

s

ALIGN qcdtwb with yz-boundary ! T-tendency of qc at w-boundary
1

s

ALIGN qhdtwb with yz-boundary ! T-tendency of qh at w-boundary
1

s

ALIGN qidtwb with yz-boundary ! T-tendency of qi at w-boundary
1

s

ALIGN qrdtwb with yz-boundary ! T-tendency of qr at w-boundary
1

s

ALIGN qsdtwb with yz-boundary ! T-tendency of qs at w-boundary
1

s

ALIGN qvdtwb with yz-boundary ! T-tendency of qv at w-boundary
1

s

ALIGN udtwb with yz-boundary ! T-tendency of u at w-boundary
m

s2

ALIGN vdtwb with yz-boundary ! T-tendency of v at w-boundary
m

s2

ALIGN wdtwb with yz-boundary ! T-tendency of w at w-boundary
m

s2

Figure 4.6: The domain variables for the boundaries

4.2. SUMMARY

Chapter 5

Benchmarking ARPS on

the CM5

The CM5 is used for benchmarking the dataparallel implementation of the

ARPS code. The machine available at the Northeast Parallel Architectures

Center at Syracuse University consists of 32 nodes with a SPARC 1 scalar

CPU. Each node has a memory of 32MB and four vector units. The processors

are connected with the help of a quad-tree topology. The peak performance is

estimated to be 3 GFLOPS.

To compare the execution time in a forthcoming study between a version using

message passing vs. a data parallel program, as introduced in this paper, timers

are set as shown in the calling tree (Figure 5.1, 5.2, and 5.3). To be consistent

with previously published results a common initial data set is used. The data

is stored in the so called sounding �le. The sounding �le may20.snd contains

one dimensional sounding data from a supercell storm which took place at 20

May, 1977 in Ft. Sill, OK. From this data the next 6.0 seconds are predicted.

To exclude all possible interferences caused by the timesharing system the runs

have been done on an empty machine.

41

Technical Report:

SCCS 533 CHAPTER 5. BENCHMARKING ARPS ON THE CM5 42

Timers in the Calling Tree

To measure the time for the execution of some routines the CM timer func-

tions timer start, timer clear and timer stop have been used. For the sequential

program this timer calls have been reimplemented. 64 timers are usable. A

particular timer can be accessed in the following way (Figures 5.1 { 5.3):

(=0) is equivalent to a clear the timer with number 0

(+0) is equivalent to start or better continue the timer 0

(-0) is equivalent to stop or better to interrupt the timer 0

The timers are called outside the subroutine to be measured. For example, the

function call f(a,b,c) is timed in the following way:

call timer start(n)

call f(a,b,c)

call timer stop(n)

5.1 Timing Results

For the timings the program has been compiled for the CM5 with the compiler

options -O -vu to enable optimization and the usage of the vector units. While

the elapsed time on the CM5 is 13.086 seconds the CM busy Time is 10.194

seconds. The timings of the routines are compared to the timings one can

obtain while running the program on a single workstation. Here a SPARC 1

is used1. On this machine the code did run 24.71 seconds using all possible

compiler optimization options. As stated in [?] the execution of the code on a

single node of the CM5 is about 28 seconds.

It is obvious that the speedup gained for the particular procedures is di�erent.

The overall speedup is about 2.5 while the speedup for the routine microph is

about 9. The explanation for this di�erence is quite easy.

1Th name of the machine is lambda.npac.syr.edu

5.1. TIMING RESULTS

Technical Report:

SCCS 533 CHAPTER 5. BENCHMARKING ARPS ON THE CM5 43

Table 5.1: Comparison of the timers between a single workstation and a CM5
with 32 nodes

Sequential ARPS Parallel ARPS Speedup
Timer Procedure CPU Time CPU Time

in seconds in seconds

1 tinteg 19.983 7.995 2.499
2 microph 4.250 0.458 9.279
3 t�lt 0.000 0.000 0.000
5 frcuvw 5.616 1.100 5.105

6 frcp 0.417 0.175 2.383
7 nestbdt 0.000 0.000 0.000
8 acoust 9.866 4.854 2.033
9 solvpt 1.250 0.464 2.694
10 solvqv 0.950 0.439 2.164
11 solvq 1.850 0.962 1.923
12 mixuvw 3.567 0.466 7.655
13 advuvw 1.567 0.467 3.355
14 coriol 0.000 0.000 0.000
15 buoycy 0.400 0.161 2.484
16 solvuvw 7.233 3.224 2.243

64 Total 24.716 10.194 2.425

� First, the data distribution is done on the three spatial dimensions. The

time axis has been kept serially.

� Second, CM Fortran is more e�cient when the serial dimensions are on

the left and not on the right as it is in the current parallelized code.

� Third, vectorization is done on the procedural level. It is to be expected

while using inlining of code the performance will increase.

This results in high speedups for low level functions with many computations like

the subroutine microph but to little speed up for higher level routines like tinteg.

To speed up the computation even further one should change the array layout in

such a way that the serial array dimension is to the right. In addition, we notice

that the boundary conditions are handled in two dimensional arrays. It would

be good to place them in a three dimensional array and do the calculations

5.1. TIMING RESULTS

Technical Report:

SCCS 533 CHAPTER 5. BENCHMARKING ARPS ON THE CM5 44

on the elements of the boundary. The execution in double precision leads to a

performance gain from about 15%. The limited time and man power did not

allow to work on this issues. Preliminary, results to be published in [?] indicate

that these additional improvements will reduce the running time to about 4

seconds.

5.1. TIMING RESULTS

Technical Report:

SCCS 533 CHAPTER 5. BENCHMARKING ARPS ON THE CM5 45

ARPS31-+
:
...
:
(=0 ... = 64)
(+64) (before do loop)
(+0)
+-CORDINTG-+

(+63)
-SFCFLX
(-63)
(+1)

j +-TINTEG-+
(+5)
-FRCUVW-

(+12)
+-MIXUVW-+-FLZERO

j j j j +-TMIXUVW-+-STABNSQ{SATMR
j j j j j +-DEFORM{BCDEFM
j j j j j +-CFTMIX
j j j j j +-STRESS
j j j j j +-DIVGU-+-DIFX
j j j j j j +-DIFY
j j j j j j +-DIFZ
j j j j j +-DIVGV-+-DIFX
j j j j j j +-DIFY
j j j j j j +-DIFZ
j j j j j +-DIVGW-+-DIFX
j j j j j +-DIFY
j j j j j +-DIFZ
j j j j +-CMIX2UVW-+-DIFXX
j j j j j +-DIFYY
j j j j j +-DIFZZ
j j j j j +-AVGZ
j j j j +-CMIX4UVW-+-DIFXX
j j j j j +-BUDIFXX
j j j j j +-DIFYY
j j j j j +-BUDIFYY
j j j j j +-DIFZZ
j j j j j +-BUDIFZZ
j j j j j +-BVDIFXX
j j j j j +-BVDIFYY
j j j j j +-BVDIFZZ
j j j j j +-AVGZ
j j j j j +-BWDIFXX
j j j j j +-BWDIFYY
j j j j j +-BWDIFZZ
j j j j +-RDMPUVW

(-12)
(+13)

j j j +-ADVUVW-+-UVWRHO
j j j j +-ADVU-+-AVGX
j j j j j +-DIFX
j j j j j +-AAMULT
j j j j j +-DIFY
j j j j j +-AVGY
j j j j j +-DIFZ
j j j j j +-AVGZ
j j j j +-ADVV-+-AVGY
j j j j j +-DIFX
j j j j j +-AAMULT
j j j j j +-AVGX
j j j j j +-DIFY
j j j j j +-DIFZ
j j j j j +-AVGZ
j j j j +-ADVW-+-AVGZ
j j j j +-DIFX
j j j j +-AAMULT
j j j j +-AVGX
j j j j +-DIFY
j j j j +-AVGY
j j j j +-DIFZ

(-13)
(+14)

j j j +-CORIOL-+-AVGY
j j j j +-AVGZ
j j j j +-AVGX
j j j j +-AAMULT

(-14)

Figure 5.1: The timer for the benchmark, Part a

5.1. TIMING RESULTS

Technical Report:

SCCS 533 CHAPTER 5. BENCHMARKING ARPS ON THE CM5 46

(+15)
j j j +-BUOYCY

(-15)
(-5)
(+6)

j j +-FRCP-+-ADVP-+-ADVCTS-+-DIFX
j j j j j +-AAMULT
j j j j j +-AVGX
j j j j j +-DIFY
j j j j j +-AVGY
j j j j j +-DIFZ
j j j j j +-AVGZ
j j j j +-AVGZ
j j j +-SRCP

(-6)
(+7)

j j +-NESTBDT
(-7)
(+8)

j j +-ACOUST-
(+16)
+-SOLVUVW-+-UVWRHO

j j j j +-PGRAD-+-DIFX
j j j j j +-DIFY
j j j j j +-DIFZ
j j j j +-STEPU
j j j j +-STEPV
j j j j +-STEPW{AVGZ
j j j j +-BCU
j j j j +-BCV
j j j j +-BCW
j j j j +-LBDTUVW

(-16)
j j j +-SOLVP-+-DIVGS-+-DIFX
j j j j +-DIFY
j j j j +-DIFZ
j j j +-PDIVRG
j j j +-STEPP
j j j +-BCP

(-8)
(+9)

j j +-SOLVPT-+-ADVPT-+-UVWRHO
j j j j +-ADVCTS-+-DIFX
j j j j j +-AAMULT
j j j j j +-AVGX
j j j j j +-DIFY
j j j j j +-AVGY
j j j j j +-DIFZ
j j j j j +-AVGZ
j j j j +-DIFZ
j j j j +-AAMULT
j j j j +-AVGZ
j j j +-MIXPT-+-FLZERO
j j j j +-TMIXPT{DIVGSG
j j j j +-CMIX2PT-+-AAMULT
j j j j j +-DIFXX
j j j j j +-DIFYY
j j j j j +-DIFZZ
j j j j +-CMIX4PT-+-AAMULT
j j j j j +-DIFXX
j j j j j +-BSDIFXX
j j j j j +-DIFYY
j j j j j +-BSDIFYY
j j j j j +-DIFZZ
j j j j j +-BSDIFZZ
j j j j +-RDMPPT
j j j +-SRCPT
j j j +-STEPPT
j j j +-BCPT{BCSCLR
j j j +-LATBDTPT

(-9)
(+10)

j j +-SOLVQV-+-ADVQ-+-UVWRHO
j j j j +-ADVCTS-+-DIFX
j j j j +-AAMULT
j j j j +-AVGX
j j j j +-DIFY
j j j j +-AVGY
j j j j +-DIFZ
j j j j +-AVGZ

Figure 5.2: The timer for the benchmark, Part b

5.1. TIMING RESULTS

Technical Report:

SCCS 533 CHAPTER 5. BENCHMARKING ARPS ON THE CM5 47

j j j +-MIXQV-+-FLZERO
j j j j +-TMIXQV{DIVGSG
j j j j +-CMIX2Q-+-AAMULT
j j j j j +-DIFXX
j j j j j +-DIFYY
j j j j j +-DIFZZ
j j j j +-CMIX4Q-+-AAMULT
j j j j +-DIFXX
j j j j +-BSDIFXX
j j j j +-DIFYY
j j j j +-BSDIFYY
j j j j +-DIFZZ
j j j j +-BSDIFZZ
j j j +-STEPQ
j j j +-BCQ{BCSCLR
j j j +-LATBDTQ

(-10)
(+11)

j j +-SOLVQ-+-ADVQ-+-UVWRHO
j j j +-ADVCTS-+-DIFX
j j j +-AAMULT
j j j +-AVGX
j j j +-DIFY
j j j +-AVGY
j j j +-DIFZ
j j j +-AVGZ
j j +-MIXQ-+-FLZERO
j j j +-TMIXQ{DIVGSG
j j j +-CMIX2Q-+-AAMULT
j j j j +-DIFXX
j j j j +-DIFYY
j j j j +-DIFZZ
j j j +-CMIX4Q-+-AAMULT
j j j +-DIFXX
j j j +-BSDIFXX
j j j +-DIFYY
j j j +-BSDIFYY
j j j +-DIFZZ
j j j +-BSDIFZZ
j j +-STEPQ
j j +-BCQ{BCSCLR
j j +-LATBDTQ

(-11)
(-1)
(+2)

j +-MICROPH-+-AUTOCAC
j j +-REVAP{SATMR
j j +-QRFALL
j j +-SATADJ{SATMR

(-2)
(+3)

j +-TFILT{ASELIN
(-3)
(+4)

j +-RADBDT-+-BDTU
j j +-BDTV
j j +-BDTP

(-4)
j +-TFLIP{TSWAP
j +-CHKSTAB (outcommented)
(-0)
+-OUTPUT (outcommented)
:
...
:
+-CHKSTAB (outcommented)
:
...
:
+-(GRAFCLOSE) (outcommented)
(-64) (after do loop)

Figure 5.3: The timer for the benchmark, Part c

5.1. TIMING RESULTS

Chapter 6

Summary

This study shows that it is a big software engineering challenge to parallelize a

huge code like the ARPS code. In a limited time it is only possible while using

a semiautomatic translation tool. For the ARPS code it is su�cient to have

translator functions for

1. the data layout,

2. forall loops,

3. and loop vectorization.

This is motivated by the observation that

� the procedures are similar in their structure,

� variable names are used consistently,

� common variables have been avoided,

� the main computation is done in do loops with few data dependencies.

In addition it is shown that the introduction of problem speci�c compiler di-

rectives determining the layout of a variable are a most helpful while adapting

the code from one machine to the other. This includes even the possibility to

transfer the CAPS code to HPF.

48

Technical Report:
SCCS 533 CHAPTER 6. SUMMARY 49

The benchmarking results show clearly that the current version of CM Fortran

has to be improved while dealing with serial and parallel dimensions in an

array. There should be no need for the programmer to change the code in such

a way that the serial dimension is placed to the far left. This could be done

easily by the compiler. One way to deal with this problem is to introduce a

new directive PERMUTE which enables the permutation of the subscription

indices to a variable without actually rewriting the code. This is also discovered

independently in [?]. The following example illustrates this issue:

Assume the following code:

REAL a(nx,ny,nz,nt)

CMF LAYOUT a(news:,news:,news:,serial:)

CMF PERMUTE a(4,1,2,3)

a(i,j,k,t) = 5

The PERMUTE directive transforms the code into:

REAL a(nx,ny,nz,nt)

CMF LAYOUT a(serial:,news:,news:,news:)

a(t,i,j,k) = 5

With this additional directive it is to be expected that the running time of

the parallel program can be improved by the factor of 2 as demonstrated in [?].

This permutation is not necessary for HPF. In a forthcoming study a comparison

between the data parallel and the message passing version of the ARPS code

will be done.

Acknowledgment

I thank Kim Mills, Gang Cheng for their valuable discussions while parallelizing

the CAPS code and Rahul Bhargava to make his initial attempt to parallelize

the ARPS 3.0 code available to me.

Bibliography

[1] Bozkus, Z., Choudhary, A., Fox, G., Haupt, T., and Ranka, S.

Fortran 90D/HPF Compiler for Distributed Memory MIMD Computers.
Tech. rep., Syracuse University, Rice University, 1990.

[2] Fox, G., Hiranandani, S., Kennedy, K., Koebel, C., Kremer, U.,
Tseng, C.-W., and Wu, M. Fortran D Language Speci�cation. Tech.
Rep. Rice COMP TR90079, SCCS42c, Syracuse University, Rice University,
1990.

[3] von Laszewski, G. Customized Interactive Parallelization of Fortran 77
Programs. Tech. Rep. SCCS 510, Northeast Parallel Architectures Center
at Syracuse University, July 1993.

[4] von Laszewski, G. Implementing the Advanced Regional Prediction Sys-
tem (ARPS) with Fortran D. Tech. Rep. SCCS 492, Northeast Parallel
Architectures Center at Syracuse University, June 1993.

[5] von Laszewski, G. The MIMDVolume Distributor for Multigrid Methods.
Tech. Rep. SCCS 478, Northeast Parallel Architectures Center at Syracuse
University, April 1993.

50

Chapter 7

Appendix

7.1 Program Tree

ARPS31-+-INITIAL-+-INITPARA-+-STRLNTH

j j +-PRTPARA-+-GTLOGFN

j j +-STRLNTH

j +-INIT0{FLZERO

j +-INIGRD{JACOB

j +-INITVAR-+-INIBASE{ZPROFIL-+-SOUNDG{GETQVS

j j +-SNDINTRP{INTE1D

j +-INITDVR{RANARY{RAN3

j +-INITBDT{ZEROBDT

j +-RSTIN-+-JACOB

j j +-CPYARY

j j +-A3DMAX0

j +-EXTINIT-+-JACOB

j +-CPYARY

j +-A3DMAX0

+-INITOUT-+-A3DMAX0

j +-MAXMIN{A3DMAX

j +-ENERGY-+-AAMULT

j j +-UVWRHO

j +-BASPRT{WRIGAR{OUTARR

j +-FMTPRT-+-WRIGAR{OUTARR

j j +-PLTARY{PARRAY

j +-GTBASFN

j +-DTADUMP-+-BINDUMP{KNTARY

j j +-ASCDUMP{KNTARY

j j +-HDFDUMP-+-(DSSDIMS)

j j j +-KNTARY

j j j +-HDFGDMP-+-(DSSDIST)

j j j j +-(DSSDISC)

j j j +-EDGFILL

j j j +-(DSSDAST)

j j j +-(DSADATA)

j j +-PAKDUMP-+-KNTARY

j j j +-MKHEAD{TRNCHAR

j j j +-A3DMAX0

j j j +-EDGFILL

j j j +-PACKDAT

51

Technical Report:

SCCS 533 CHAPTER 7. APPENDIX 52

j j j +-MKLABEL-+-TRNCHAR

j j j +-TRNREAL

j j +-SVIDUMP-+-(GRAFOPEN)

j j j +-(GRAFDEFNGRID)

j j j +-(GRAFWRITEGRIDPOINT)

j j j +-(GRAFDEFNSCALAR)

j j j +-(GRAFDEFNVECT)

j j j +-CVTTIM

j j j +-(GRAFTIMESTART)

j j j +-(GRAFTIMESTEP)

j j j +-(GRAFNEWFRAME)

j j j +-(GRAFWRITESCALARPOINT)

j j j +-(GRAFENDFRAME)

j j +-BN2DUMP{KNTARY

j +-GTDMPFN{CVTTSND

+-CORDINTG-+-SFCFLX

j +-TINTEG-+-FRCUVW-+-MIXUVW-+-FLZERO

j j j j +-TMIXUVW-+-STABNSQ{SATMR

j j j j j +-DEFORM{BCDEFM

j j j j j +-CFTMIX

j j j j j +-STRESS

j j j j j +-DIVGU-+-DIFX

j j j j j j +-DIFY

j j j j j j +-DIFZ

j j j j j +-DIVGV-+-DIFX

j j j j j j +-DIFY

j j j j j j +-DIFZ

j j j j j +-DIVGW-+-DIFX

j j j j j +-DIFY

j j j j j +-DIFZ

j j j j +-CMIX2UVW-+-DIFXX

j j j j j +-DIFYY

j j j j j +-DIFZZ

j j j j j +-AVGZ

j j j j +-CMIX4UVW-+-DIFXX

j j j j j +-BUDIFXX

j j j j j +-DIFYY

j j j j j +-BUDIFYY

j j j j j +-DIFZZ

j j j j j +-BUDIFZZ

j j j j j +-BVDIFXX

j j j j j +-BVDIFYY

j j j j j +-BVDIFZZ

j j j j j +-AVGZ

j j j j j +-BWDIFXX

j j j j j +-BWDIFYY

j j j j j +-BWDIFZZ

j j j j +-RDMPUVW

j j j +-ADVUVW-+-UVWRHO

j j j j +-ADVU-+-AVGX

j j j j j +-DIFX

j j j j j +-AAMULT

j j j j j +-DIFY

j j j j j +-AVGY

j j j j j +-DIFZ

j j j j j +-AVGZ

j j j j +-ADVV-+-AVGY

j j j j j +-DIFX

j j j j j +-AAMULT

j j j j j +-AVGX

j j j j j +-DIFY

j j j j j +-DIFZ

j j j j j +-AVGZ

j j j j +-ADVW-+-AVGZ

j j j j +-DIFX

j j j j +-AAMULT

j j j j +-AVGX

7.1. PROGRAM TREE

Technical Report:

SCCS 533 CHAPTER 7. APPENDIX 53

j j j j +-DIFY

j j j j +-AVGY

j j j j +-DIFZ

j j j +-CORIOL-+-AVGY

j j j j +-AVGZ

j j j j +-AVGX

j j j j +-AAMULT

j j j +-BUOYCY

j j +-FRCP-+-ADVP-+-ADVCTS-+-DIFX

j j j j j +-AAMULT

j j j j j +-AVGX

j j j j j +-DIFY

j j j j j +-AVGY

j j j j j +-DIFZ

j j j j j +-AVGZ

j j j j +-AVGZ

j j j +-SRCP

j j +-NESTBDT

j j +-ACOUST-+-SOLVUVW-+-UVWRHO

j j j j +-PGRAD-+-DIFX

j j j j j +-DIFY

j j j j j +-DIFZ

j j j j +-STEPU

j j j j +-STEPV

j j j j +-STEPW{AVGZ

j j j j +-BCU

j j j j +-BCV

j j j j +-BCW

j j j j +-LBDTUVW

j j j +-SOLVP-+-DIVGS-+-DIFX

j j j j +-DIFY

j j j j +-DIFZ

j j j +-PDIVRG

j j j +-STEPP

j j j +-BCP

j j +-SOLVPT-+-ADVPT-+-UVWRHO

j j j j +-ADVCTS-+-DIFX

j j j j j +-AAMULT

j j j j j +-AVGX

j j j j j +-DIFY

j j j j j +-AVGY

j j j j j +-DIFZ

j j j j j +-AVGZ

j j j j +-DIFZ

j j j j +-AAMULT

j j j j +-AVGZ

j j j +-MIXPT-+-FLZERO

j j j j +-TMIXPT{DIVGSG

j j j j +-CMIX2PT-+-AAMULT

j j j j j +-DIFXX

j j j j j +-DIFYY

j j j j j +-DIFZZ

j j j j +-CMIX4PT-+-AAMULT

j j j j j +-DIFXX

j j j j j +-BSDIFXX

j j j j j +-DIFYY

j j j j j +-BSDIFYY

j j j j j +-DIFZZ

j j j j j +-BSDIFZZ

j j j j +-RDMPPT

j j j +-SRCPT

j j j +-STEPPT

j j j +-BCPT{BCSCLR

j j j +-LATBDTPT

j j +-SOLVQV-+-ADVQ-+-UVWRHO

j j j j +-ADVCTS-+-DIFX

j j j j +-AAMULT

7.1. PROGRAM TREE

Technical Report:

SCCS 533 CHAPTER 7. APPENDIX 54

j j j j +-AVGX

j j j j +-DIFY

j j j j +-AVGY

j j j j +-DIFZ

j j j j +-AVGZ

j j j +-MIXQV-+-FLZERO

j j j j +-TMIXQV{DIVGSG

j j j j +-CMIX2Q-+-AAMULT

j j j j j +-DIFXX

j j j j j +-DIFYY

j j j j j +-DIFZZ

j j j j +-CMIX4Q-+-AAMULT

j j j j +-DIFXX

j j j j +-BSDIFXX

j j j j +-DIFYY

j j j j +-BSDIFYY

j j j j +-DIFZZ

j j j j +-BSDIFZZ

j j j +-STEPQ

j j j +-BCQ{BCSCLR

j j j +-LATBDTQ

j j +-SOLVQ-+-ADVQ-+-UVWRHO

j j j +-ADVCTS-+-DIFX

j j j +-AAMULT

j j j +-AVGX

j j j +-DIFY

j j j +-AVGY

j j j +-DIFZ

j j j +-AVGZ

j j +-MIXQ-+-FLZERO

j j j +-TMIXQ{DIVGSG

j j j +-CMIX2Q-+-AAMULT

j j j j +-DIFXX

j j j j +-DIFYY

j j j j +-DIFZZ

j j j +-CMIX4Q-+-AAMULT

j j j +-DIFXX

j j j +-BSDIFXX

j j j +-DIFYY

j j j +-BSDIFYY

j j j +-DIFZZ

j j j +-BSDIFZZ

j j +-STEPQ

j j +-BCQ{BCSCLR

j j +-LATBDTQ

j +-MICROPH-+-AUTOCAC

j j +-REVAP{SATMR

j j +-QRFALL

j j +-SATADJ{SATMR

j +-TFILT{ASELIN

j +-RADBDT-+-BDTU

j j +-BDTV

j j +-BDTP

j +-TFLIP{TSWAP

j +-CHKSTAB-+-MAXMIN{A3DMAX

j +-FMTPRT-+-WRIGAR{OUTARR

j j +-PLTARY{PARRAY

j +-GTDMPFN{CVTTSND

j +-DTADUMP-+-BINDUMP{KNTARY

j j +-ASCDUMP{KNTARY

j j +-HDFDUMP-+-(DSSDIMS)

j j j +-KNTARY

j j j +-HDFGDMP-+-(DSSDIST)

j j j j +-(DSSDISC)

j j j +-EDGFILL

j j j +-(DSSDAST)

j j j +-(DSADATA)

7.1. PROGRAM TREE

Technical Report:

SCCS 533 CHAPTER 7. APPENDIX 55

j j +-PAKDUMP-+-KNTARY

j j j +-MKHEAD{TRNCHAR

j j j +-A3DMAX0

j j j +-EDGFILL

j j j +-PACKDAT

j j j +-MKLABEL-+-TRNCHAR

j j j +-TRNREAL

j j +-SVIDUMP-+-(GRAFOPEN)

j j j +-(GRAFDEFNGRID)

j j j +-(GRAFWRITEGRIDPOINT)

j j j +-(GRAFDEFNSCALAR)

j j j +-(GRAFDEFNVECT)

j j j +-CVTTIM

j j j +-(GRAFTIMESTART)

j j j +-(GRAFTIMESTEP)

j j j +-(GRAFNEWFRAME)

j j j +-(GRAFWRITESCALARPOINT)

j j j +-(GRAFENDFRAME)

j j +-BN2DUMP{KNTARY

j +-(GRAFCLOSE)

+-OUTPUT-+-RSTOUT-+-CVTTSND

j j +-CPYARY

j +-MAXMIN{A3DMAX

j +-ENERGY-+-AAMULT

j j +-UVWRHO

j +-FMTPRT-+-WRIGAR{OUTARR

j j +-PLTARY{PARRAY

j +-GTDMPFN{CVTTSND

j +-DTADUMP-+-BINDUMP{KNTARY

j +-ASCDUMP{KNTARY

j +-HDFDUMP-+-(DSSDIMS)

j j +-KNTARY

j j +-HDFGDMP-+-(DSSDIST)

j j j +-(DSSDISC)

j j +-EDGFILL

j j +-(DSSDAST)

j j +-(DSADATA)

j +-PAKDUMP-+-KNTARY

j j +-MKHEAD{TRNCHAR

j j +-A3DMAX0

j j +-EDGFILL

j j +-PACKDAT

j j +-MKLABEL-+-TRNCHAR

j j +-TRNREAL

j +-SVIDUMP-+-(GRAFOPEN)

j j +-(GRAFDEFNGRID)

j j +-(GRAFWRITEGRIDPOINT)

j j +-(GRAFDEFNSCALAR)

j j +-(GRAFDEFNVECT)

j j +-CVTTIM

j j +-(GRAFTIMESTART)

j j +-(GRAFTIMESTEP)

j j +-(GRAFNEWFRAME)

j j +-(GRAFWRITESCALARPOINT)

j j +-(GRAFENDFRAME)

j +-BN2DUMP{KNTARY

+-CHKSTAB-+-MAXMIN{A3DMAX

j +-FMTPRT-+-WRIGAR{OUTARR

j j +-PLTARY{PARRAY

j +-GTDMPFN{CVTTSND

j +-DTADUMP-+-BINDUMP{KNTARY

j j +-ASCDUMP{KNTARY

j j +-HDFDUMP-+-(DSSDIMS)

j j j +-KNTARY

j j j +-HDFGDMP-+-(DSSDIST)

j j j j +-(DSSDISC)

j j j +-EDGFILL

7.1. PROGRAM TREE

Technical Report:

SCCS 533 CHAPTER 7. APPENDIX 56

j j j +-(DSSDAST)

j j j +-(DSADATA)

j j +-PAKDUMP-+-KNTARY

j j j +-MKHEAD{TRNCHAR

j j j +-A3DMAX0

j j j +-EDGFILL

j j j +-PACKDAT

j j j +-MKLABEL-+-TRNCHAR

j j j +-TRNREAL

j j +-SVIDUMP-+-(GRAFOPEN)

j j j +-(GRAFDEFNGRID)

j j j +-(GRAFWRITEGRIDPOINT)

j j j +-(GRAFDEFNSCALAR)

j j j +-(GRAFDEFNVECT)

j j j +-CVTTIM

j j j +-(GRAFTIMESTART)

j j j +-(GRAFTIMESTEP)

j j j +-(GRAFNEWFRAME)

j j j +-(GRAFWRITESCALARPOINT)

j j j +-(GRAFENDFRAME)

j j +-BN2DUMP{KNTARY

j +-(GRAFCLOSE)

+-(GRAFCLOSE)

7.2 Operators

SUBROUTINE AAMULT (a,b,ab)

do k=kbgn,kend

do j=jbgn,jend

do i=ibgn,iend

ab(i,j,k)=a(i,j,k)*b(i,j,k)

end do

end do

end do

END

SUBROUTINE AVGX (a, onvf, aavg)

IF (onvf.eq.1) THEN

iright = 0

ileft = -1

ELSE

iright = 1

7.2. OPERATORS

Technical Report:

SCCS 533 CHAPTER 7. APPENDIX 57

ileft = 0

END IF

do k=kbgn,kend

do j=jbgn,jend

do i=ibgn,iend

aavg(i,j,k)=(a(i+iright,j,k)

: +a(i+ileft ,j,k))*0.5

end do

END

SUBROUTINE DIFX (a, onvf, adifx)

IF (onvf.eq.1) THEN

iright = 0

ileft = -1

ELSE

iright = 1

ileft = 0

END IF

dxinv = 1.0/dx

DO 100 k=kbgn,kend

DO 100 j=jbgn,jend

DO 100 i=ibgn,iend

adifx(i,j,k)=(a(i+iright,j,k)-a(i+ileft ,j,k))*dxinv

100 CONTINUE

RETURN

END

7.3 Availability

Since the code is about 69000 lines long it would be unhandy to provide the

complete source code in the appendix. The code is available via anonymous ftp

at NPAC.

7.3. AVAILABILITY

Technical Report:

SCCS 533 CHAPTER 7. APPENDIX 58

The site name is FTP.NPAC.SYR.EDU. This archive site is provided by the

Northeast Parallel Architectures Center at Syracuse University. Access is al-

lowed 24 hours a day, seven days a week. All transfers will be logged with your

host name and email address. If your FTP client crashes or hangs shortly after

login, try using a dash (-) as the �rst character of your password. This will turn

o� the informational messages that may be confusing your ftp client.

This FTP server will handle compression on the
y. If you append a .Z (or

.gz) to a �lename, it will be compressed (or gzipped) before transmission; if you

omit one of these su�xes, the �le will be sent uncompressed. The server also

understands the su�xes .tar, .tar.Z, and .tar.gz, which can be used to retrieve

entire directories as well as individual �les.

If you have any problems or questions, the archive maintainers can be reached

by electronic mail at the address ftp@ftp.npac.syr.edu.

The directory in which the parallel ARPS code for the CM5 is stored is:

/pub/gregor

The �le to be downloaded is

arps31.parallel.tar.Z

A make�le is included. For technical reports please contact the author at

gregor@npac.syr.edu or lsd@npac.syr.edu.

7.3. AVAILABILITY

