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Abstract

In this paper, we present several algorithms for performing all-to-many personalized commu-

nication on distributed memory parallel machines. Each processor sends a di�erent message

(of potentially di�erent size) to a subset of all the processors involved in the collective com-

munication. The algorithms are based on decomposing the communication matrix into a set

of partial permutations. We study the e�ectiveness of our algorithms both from the view of

static scheduling as well as runtime scheduling.

Index Terms - Loosely synchronous communication, node contention, non-uniform mes-

sage size, personalized communications, runtime and static scheduling.



1 Introduction

For distributed memory parallel computers, load balancing and reduction of communication

are two important issues for achieving a good performance. It is important to map the

program such that the total execution time is minimized; the mapping can be typically

performed statically or dynamically. For most regular and synchronous problems [10], this

mapping can be performed at the time of compilation by giving directives in the language to

decompose the data and its corresponding computations (based on the owner computes rule)

[6]. This typically results in regular collective communication between processors. Many such

primitives have been developed in [2, 19].

For a large class of scienti�c problems, which are irregular in nature, achieving a good

mapping is considerably more di�cult [7]. Further, the nature of this irregularity may not

be known at the time of compilation, and can be derived only at runtime. The handling of

irregular problems requires the use of runtime information to optimize communication and

load balancing [9, 13, 17]. These packages derive the necessary communication information

based on the nonlocal data required for performing the local computations.

Consider the parallelization of single concurrent computational phase of an explicit un-

structured mesh 
uids calculation (e.g.[25]). This step is typically executed repeatedly with-

out change in computational structure. The computational structure of the above code is

given in Figure 1. Similar examples of such computations are iterative solvers using sparse

matrix-vector multiplications (e.g.[21]). Further, a multiple phase computation consists of a

series of dissimilar loosely synchronous computational phases where each individual phase is

a single concurrent computational phase. Examples of these computations include unstruc-

tured multigrid (e.g. [16]), parallelized sparse triangular solver (e.g. [1, 4]), particle-in-cell

codes (e.g. [14, 24]), and vortex blob calculations [3].

The key problem in e�ciently executing these programs is partitioning the data and com-

putation such that the load on each node is balanced and the communication is minimized.

Figure 2 describes a decomposition of such a problem. The x and y arrays in Figure 1 repre-

sent the nodes in Figure 2, while the nde array represents the edges. This partitioning then

dictates the program's synchronization and communication requirements, which must also

be computed. The computational pattern may only be available at run time, this may not

be done directly by the compiler; instead, calls to a run-time environment need be generated

to do the partitioning. Several algorithms are available in the literature to perform this

partitioning (see [15] for a detailed list of such references).

The partitioning described in Figure 2 generates a 8 � 8 communication matrix COM

(Table 1). A \1" in the (i; j) entry represents processor Pi needs to communicate to processor

Pj . Each message is of di�erent size and each processor may send di�erent number of

messages. In our example, P0 sends only three messages while P4 sends �ve messages. If

we allow processors to arbitrarily send out their outgoing messages, it may happen that

at one stage processors P0, P1, P3, P4 and P6 all try to send messages to processor P2.

Since the receiving processor can typically receive messages from one processor at a time,
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0 1 2 3 4 5 6 7

0 1 1 1

1 1 1 1 1

2 1 1 1 1 1

3 1 1 1 1

4 1 1 1 1 1

5 1 1 1

6 1 1 1 1

7 1 1 1 1

Table 1: A 8� 8 communication matrix (blank entries imply no communication)

one or more of the sending processors may have to wait for other processors to complete

their communication. We use the term node contention to refer to the above situation.

We will show that node contention has a deteriorating e�ect on the total time required for

communication.

In this paper we develop and analyze several simple methods of scheduling all-to-many

personalized communication. The cost of the scheduling algorithm can be amortized over

several iterations as the same schedule can be used several times. In the above unstructured

mesh example, the same iteration is typically repeated several times.

Assuming a system with n processors, our algorithms take as input a communication

matrix COM(0::n� 1; 0::n� 1). COM(i; j) is equal to a positive integer m if processor Pi

needs to send a message (of m unit) to Pj , 0 � i; j � n � 1. Our algorithms decompose

the communication matrix COM into a set of partial permutations, pm1
; pm

2
; � � � ; pml, l is a

positive integer, such that if COM(i; j) = m then there exists a k, 1 � k � l, that pmk
i = j.

The communication matrix of Table 1 may be decomposed into following permutations:

pm
1 = (6; 7; 0; 1; 2; 3; 4; 5);

pm
2 = (2; 3; 6; 5; 7; 4; 0; 1);

pm
3 = (�; 0; 1; 2; 3; 7;�; 4);

pm
4 = (1; 2; 3; 4; 5;�; 7; 6); and

pm
5 = (�;�; 4;�; 6;�; 2;�);

where in each permutation, every processor sends at most one message and receives at most

one message.

Assuming that the processors perform their operation in a synchronous fashion, the time

taken to complete a permutation depends on the largest message in the permutation. Since

the message sizes in one permutation may vary widely, we develop several schemes to reduce

the variance of message size within one permutation. This is done by splitting large messages

into smaller pieces, each of which is sent in di�erent phases.

With the advent of new routing methods [8, 18, 23], the distance to which a message
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C This is a simpli�ed sweep over edges of a mesh. A 
ux across a

C mesh edge is calculated. Calculation of the 
ux involves

C 
ow variables stored in array x. The 
ux is accumulated to array y.

do i = 1; N

S1 n1 = nde(i; 1)

S2 n2 = nde(i; 2)

S3 flux = f(x(n1); x(n2))

S4 y(n1) = y(n1) + flux

S5 y(n2) = y(n2)� flux

end do

Figure 1: Code representing a simple explicit unstructured 
uid calculation

P0 P2
P6

P4

P1 P3 P5 P7

Figure 2: The partitioning of irregular mesh
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is sent is becoming relatively less and less important. Thus assuming no link contention,

permutation is an e�cient collective communication primitive. For an architecture like the

CM-5, the data transfer rate seems to be bounded by the speed at which data can be sent or

received by any processor [5]. Thus, if a particular processor receives more than one message

or has to send out more than one message in one phase then the time would be lower bounded

by the time required to remove the messages from the network by the processor receiving

the maximum amount of data.

Clearly, this is not going to be the case for all architectures. The paths of two messages

may have a common link. This may sequentialize the transfer of the two messages (specially

for machines that use circuit switching routing). Assuming that routing is static in nature

(i.e., the path to send a message from one node to another node can be predetermined)

one can build partial permutations which satisfy the property that no two messages interact.

However, this would depend on the topology and the routing methodology and would increase

the cost of obtaining a good schedule.

In this paper, we have not addressed link contention. One of the main reasons is that

on CM-5 the routing is randomized. It is not easy to statically schedule messages in a

fashion that link contention can be avoided (of course randomization alleviates the problem

to some extent). On a 32 node CM-5, we generated 5000 random permutations in which

each processor sends and receives a message of 1K bytes. Over 99.5% (4979 out of 5000)

of the permutations were within 5% of the average cost (over 5000 random permutations)

(Figure 4). Thus, the variation of time required for di�erent random permutations (in which

each node sends a data to a random, but di�erent node) is very small on a 32 node CM-5.

The algorithms developed in this paper can be extended to the architectures where link

contention is an important issue by decomposing into partial permutation which avoid link

contention. The cost of these algorithms would depend on the topology as well as the routing

method.

We show that our algorithms are inexpensive enough to be suitable for static as well

as runtime scheduling. If the number of times the same communication schedule is used is

large (which happens for a large class of problems [6]), the fractional cost of the scheduling

algorithm is quite small. Further, compared to the naive algorithms, our algorithm can result

in signi�cant reduction in the total amount of communication.

The rest of the paper is organized as follows. Section 2 gives the notation and assumptions

made for developing our message scheduling algorithms, and an overview of CM-5. Section

3 presents a simple asynchronous communication algorithm. Section 4 develops algorithms

that will avoid node contention and discusses their time complexity. Section 5 proposes

approaches to reduce the message size variance in each permutation. Section 6 presents

experimental results for a 32 node CM-5. Finally, conclusions are given in Section 7.
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2 Preliminaries

A n�n communication matrix COM can be decomposed into a set of communication phases,

cp
k, 1 � k � l, l is a positive integer, such that

COM(i; j) = m; m > 0 ) 9!k; 1 � k � l; cp
k
i = j :

We de�ne the kth communication phase as:

cp
k
i = j; i = 0; 1; : : : ; n� 1; and 0 � j < n

if processor Pi need to send message to processor Pj at the kth phase, otherwise cpki = �1.

Thus, node contention can be formally de�ned as:

9k; 1 � k � l; cp
k
i1
= j1 and cp

k
i2
= j2 ) i1 6= i2 and j1 = j2 6= �1 ;

where i1; i2 = 0; 1; : : : ; n� 1 and 0 � j1; j2 < n:

A partial permutation pm
k is a communication phase that,

pm
k
i1
= j1 and pm

k
i2
= j2; i1; i2 = 0; 1; : : : ; n� 1 and 0 � j1; j2 < n ;

i1 = i2 , j1 = j2 :

pm
k
i = �1 if Pi does not send out message at this permutation.

Since permutation has the useful property that every processor sends at most one message

and receives at most one message, it will not cause any node contention. In this paper, we

will use permutation as our underlying communication scheme.

2.1 System Overview: CM-5

This section gives a brief overview of the CM-5 system which we used to conduct our exper-

iments. The CM-5 is available in con�guration of 32 to 1024 processing nodes, each node is

a SPARC microprocessor with 32M bytes of memory and optional vector units. The node

operates at 33 MHz and is rated at 22 Mips and 5 MFlops. When equipped with vector

units, each node of the machine is rated at 128 Mips (peak) and 128 MFlops (peak).

The CM-5 internal networks include two components: data network and control network.

It has a separate diagnostics network to detect and isolate errors throughout the system.

The data network provides high performance data communications among all system

components. The network has a peak bandwidth of 5M bytes/sec for node to node commu-

nication. However, if the destination is within the same cluster of 4 or 16, it can give a peak

bandwidth of 20M bytes/sec and 10M bytes/sec, respectively [5]. Figure 3 shows the data

network with 16 nodes.

The control network handles operations that require the cooperation of many or all

processors. It accelerates cooperative operations such as broadcast and integer reduction,

and system management operations such as error reporting.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3: CM-5 data network with 16 nodes
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Figure 4: Communication cost distribution for 5000 permutation samples with message of

length 1K bytes on a 32 node CM-5
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Figure 5: Communication cost distribution for 5000 permutation samples with message of

length 256K bytes on a 32 node CM-5

2.2 Cost of Random Permutations

We randomly generate 2 test sets each containing 5000 random permutations. The sizes of the

message used in each of these permutations are 1K bytes and 256K bytes, respectively. The

communication cost distribution (in terms of average communication cost) is given in Figure

4 and 5. The results depict that for most cases the communication cost is within �10%

of average cost (the average communication costs for message of size 1K bytes and 256K

bytes are 0.543 milliseconds and 62.923 milliseconds, respectively). Thus the performance

of our algorithms, which use permutation as the underlying communication scheme, are not

signi�cantly a�ected by a given sequence of permutation instances. The bandwidth achieved

for these permutations is approximately 4M bytes/sec which is close to the peak bandwidth

of 5M bytes per second provided by the underlying hardware for long distance messages.

There are some permutations for which the performance is expected to be better than

random permutations. One such class of permutations is when processor Pi exchanges mes-

sages with processor Pi�dist
1, 0 � i < n and dist = 1; 2; 4; 8; 16. Each permutation represents

a communication pattern where processors communicate with processors within cluster of

2, 4, 8, 16, and 32, respectively. The results for these permutations are given in Table 2.

These results show that for these specialized permutations, in which every processor sends

a message to another processor within the same group of 8 nodes, take approximately 25%

less time over random permutations. Our algorithms do not try to exploit these special per-

mutations. However, we believe that our algorithms can be modi�ed to exploit these special

cases.

1� represents bitwise exclusive OR operator.
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dist 1 2 4 8 16 ave

comm 47.136 47.143 47.320 62.582 68.006 62.923

� comm: communication cost in milliseconds.

�� ave: average communication cost of 5000 randomly generated permutation samples.

Table 2: Communication cost for permutations with message of length 256K bytes within

di�erent cluster sizes

2.3 Notation and Assumptions

2.3.1 Notation

The communication matrix COM is a n � n matrix where n is the number of processors.

COM(i; j) is equal to a positive integerm if processor Pi needs to send a message (of m unit)

to Pj, otherwise COM(i; j) = 0, 0 � i; j < n. Thus, row i of COM represents the sending

vector of processor Pi, which contains information about destination and size of di�erent

messages.

We categorize the scheduling algorithms into several di�erent categories:

1. Uniformity of the message - All messages are of equal size or not. In this paper we

assume that messages are of non-uniform size. In case the messages are of the same

size, the algorithms developed in [20] have considerably smaller scheduling overhead.

2. Density of communication matrix - If the communication matrix is nearly dense then

all processors send data to all other processors. If the communication matrix is sparse

then every processor sends to only a few processors. Most of the algorithms developed

in this paper assume that the latter is true. There are a number of algorithms for the

totally dense cases [2, 12].

3. Static or runtime scheduling - The communication scheduling has to be performed

statically or dynamically.

2.3.2 Assumptions

For the reasons mentioned in the previous section, the algorithms described in this paper do

not take link contention into account. We also make the following assumptions for developing

our algorithms and their complexity analysis.

1. All permutations can be completed in (� + M') time, where � is the communica-

tion latency, M is the maximum size of any message sent in one permutation, and '

represents the inverse of the data transmission rate.
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Asynchronous Send Receive()

For all processor Pi, 0 � i � n� 1, in parallel do

allocate bu�ers and post requests for incoming messages;

sends out all outgoing messages to other processors;

check and con�rm incoming messages from other processors.

Figure 6: Asynchronous Communication Algorithm

2. In case the communication is sparse, all nodes send and receive approximately equal

number of messages. Let density d represent the number of messages sent and/or

received by every processor.

3. We assume that each processor can only send/receive one message at a time. If the

density is d then at least d permutations are required to send all the messages.

3 Asynchronous Communication (AC)

The most straightforward approach is using asynchronous communication. The algorithm is

divided into three phases:

1. each processor �rst post requests for incoming messages (this operation will pre-allocate

bu�ers for those messages).

2. each processor sends out all of its outgoing messages to other processors.

3. each processor checks and con�rms incoming messages (some of them may already

arrived at its receiving bu�er(s)) from other processors.

During the send-receive process, the sender processor does not need to wait for a com-

pletion signal from the receiver processor, so it can keep sending outgoing messages till they

are all done. This naive approach is expected to perform well when the density d is small.

The asynchronous algorithm is given in Figure 6.

The worst case time complexity of this algorithm is di�cult to analyze as it will depend on

the congestion and contention on the nodes and the network. Also, each processor may only

have limited space of message bu�ers. In such cases, when the system bu�er space is fully

occupied by uncon�rmed messages, further messages will be blocked at sender processors

side. The over
ow may block processors from doing further processing (include receiving

messages) because processors are waiting for other processors to consume and empty their

bu�er to receive new incoming messages. This situation may never resolve and a dead lock

may occur among processors.
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In case the sources of incoming messages are not known in advance or there is no bu�er

space available for pre-allocation, we may replace the post-send-con�rm operation by send-

detect-receive operation, where we use busy waiting to detect incoming messages and copy

them into the application bu�er. Bu�er copying is very costly and should be, in general,

avoided. The experimental results described in this paper use the approach given in Figure

6.

4 Methods Avoiding Node Contention

Our scheduling algorithms assume the availability of a global communication matrix COM .

A concatenation operation [5] can be performed on the sending vector (of length n) of each

processor to derive this matrix at runtime. For a n node CM-5, performing a concatenate

operation with each node contributing a message of size n is e�cient and can be completed

in O(n2 + � log n) amount of time [5]. Concatenate operation has e�cient implementation

on other architectures like hypercubes and meshes [2, 19]. In case that the communication

matrix COM is sparse in nature, i:e: each processor will send and receive d messages (in a

system with n processors, d < n), one can reduce the total time to O(dn+ � log n) by using

a sparse representation for the sending vector. In such a case, the communication matrix

would be a n� d matrix such that each row is a sparse representation of the corresponding

sending vector (we will discuss the details later).

4.1 Linear Permutation (LP)

In this algorithm (Figure 7), each processor Pi sends a message to processor P(i�k) and

receives a message from P(i�k), where 0 < k < n. When COM(i; j) = 0, processor Pi will

not send message to processor Pj (but will receive message from Pj if COM(j; i) > 0). The

entire communication uses pairwise exchange (j = i� k , i = j � k). A simple variation of

LP is that each processor Pi sends a message to processor P(i+k) mod n and receives a message

from P(i�k) mod n, where 0 < k < n. The experimental results show that, for the CM-5, the

former approach performs slightly better.

This algorithm assumes that the number of processors, n, is a power of 2. One can easily

extend this algorithm when n is not a power of 2.

4.2 Random Scheduling using Heaps (RS NH)

During the communication scheduling, the worst case time complexity to access each entry

of COM is O(n2). In order to reduce this overhead, the �rst step of this algorithm is to

compress the COM into a n�d matrix CCOM by a simple compressing procedure (Appendix

A). This procedure will improve the worst case time to access each active element (of CCOM)

to O(dn).
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Linear Permutation()

For all processor Pi, 0 � i � n� 1, in parallel do

for k = 1 to n-1 do

j = i� k;

if COM(i; j) > 0 then Pi sends a message to Pj ;

if COM(j; i) > 0 then Pi receives a message from Pj ;

endfor

Figure 7: Linear Permutation Algorithm

If we perform this compression statically, the time complexity is O(n(n + d)) = O(n2).

When performing this operation at runtime each processor compacts one row, and then all

processors participate in a concatenate operation to combine individual rows into a n � d

matrix. The cost of this parallel scheme is O(n+(dn+ � log n)) = O(dn+ � log n) (assuming

the concatenate operation can be completed in O(dn + � log n) time).

The vector prt is used as a pointer whose elements point to the maximum number of

positive columns in each row of CCOM. In order to schedule the communication in such a

way that each processor will try to send out larger messages �rst, we sort the active entries in

CCOM by message size. A heap (denoted by heapk in row k) is embedded such that the root

entry CCOM(k; 0) contains the largest message size among all the entries in row k. Three

heap procedures are needed in the algorithm: Heap Extract Max() returns the location of the

entry with largest message size within a heap; Heap Remove() removes the speci�ed entry

from the heap; and Heap Insert() inserts an entry into the heap. Each of these procedures

can be completed in O(log d) time [11].

The vectors send and receive are used to record the destination of each outgoing message

and the source of each incoming message in one permutation, respectively. send(i) = j

denotes processor Pi needs to send a message to processor Pj, and receive(j) = i denotes

processor Pj will receive a message from processor Pi. These two vectors are initialized to -1

at the beginning of each iteration. We assume that CCOM(i; j) = �1 if this entry doesn't

contain active information. After the compressing procedure, the �rst d columns of each row

may contain active entries. When searching for a available entry along row i, the �rst column

j with CCOM(i; j) = k and receive(k) = �1 will be chosen. We then set send(i) = k and

receive(k) = i. Since the messages are non-uniform, the message sizes in one permutation

may vary in a wide range. If we allow every processor to completely send its message, then

the communication time in each step is upper bounded by the maximummessage size in each

step (Although, RS NH is executed in a loosely synchronous fashion, processors with smaller

messages may be idle while waiting for processors with largest message to complete). In order

to eliminate processors' idle time, we will introduce several approaches in next section to

choose a reasonable message size in each communication phase such that processors with

11



RS NH()

1. Use matrix COM to create a n� d matrix CCOM ;

2. In each row k, 0 � k < n, build a heap heapk based on the entries CCOM(k; j)'s

corresponding message size, where 0 � j < d;

3. Generate Permutations().

Figure 8: Random Scheduling using Heaps (RS NH) Algorithm

small messages will send their messages completely, while processors with large messages

will only send part of their messages.

The RS NH algorithm is described in Figure 8.

Step 1 takes O(n2) time to complete sequentially. When used at runtime, each processor

creates one row of CCOM , then all processors participate in a concatenate operation. The

time required for this step is O(dn+� log n). The time required for step 2 is O(dn). Step 3.1

takes O(n) time. Step 3.3 requires a sort operation (we use merge sort in our experiments,

which has a time complexity of O(n log n)). This sort operation can be approximated by

using a histogram based approach to reduce the scheduling time.

The time required for communication in step 3.4 is O(� +'M
k
thresh) time (where Mk

thresh

is the most e�cient message size at permutation pmk. We develop methods to choose the

value of Mk
thresh in the next section). Step 3.5 takes O(n log d) time to complete.

We are interested in evaluating the average time complexity of step 3.2 and the average

number of iterations to complete step 3. These steps re
ect on the time spent on the

scheduling algorithm. The algorithm in Figure 9 can be decomposed into two stages. The

�rst stage only performs the scheduling required for all the communication phases. The

second stage performs all the necessary communication. For ease of explanation, we have

combined these two stages.

The analysis of the complexity of this step is very di�cult as it depends on several pa-

rameters (n, d, sizes of di�erent messages, destinations of di�erent messages). Further, the

number of messages to be sent (and received by every processor) may be di�erent at inter-

mediate stages, even though this value may be the same for all nodes before the beginning

of �rst stage.

In the following we make simplifying assumptions to get an estimate for the complexity

of our algorithms. Wherever possible, we support our assumptions based on the simulation

results. This analysis assumes that all messages are of equal size. We also assume that at

the beginning of each outer loop (of step 3.2), the value d (number of active entries) in each

row is approximately equal and the destinations to which each node has to send data are

random (between 1 and n).

12



Generate Permutations()

For all processor Pi, 0 � i � n� 1, in parallel do

Repeat

1. Set vectors send = receive = �1;

2. x = random(1..n);

for y = 0 to n-1 do

i = (x+ y) mod n; j = 0; S = �;

while (send(i) = -1 AND j � prt(i)) do

k = CCOM(i; l), where l = Heap Extract Max (heapi);

if (receive(k) = -1) then;

send(i) = k; receive(k) = i;

endif

S = S [ CCOM(i; l); Heap Remove(heapi,l); j = j + 1;

endwhile

For all entries, CCOM(i; k), in S (except the last one), Heap Insert(heapi;Mik);

/* Mik is CCOM(i; k)'s corresponding message size */

endfor

3. Mthresh = Decide Size();

4. if (send(i) 6= -1) then Pi sends a message, no bigger than Mthresh, to Psend(i);

if (receive(i) 6= -1) then Pi receives a message from Preceive(i);

5. For each row k which sent a complete message at this iteration, decreases prt(k) by

1; For each row l which only sent partial message, add the remainder of the message

back to its proper location in heapl;

Until all messages are sent.

Figure 9: Procedure Generate Permutations()

13



With these assumptions, it can be shown that the number of iterations the while loop in

step 3.2 is executed is proportional to O(n ln d + n) [20]. Each heap operation in step 3.2

will require O(log d) time. Thus the complexity of step 3.2 is O(n log2 d).

To �nd out the number of times the outer loop is executed, we also need to �nd out

the number of entries CCOM(i; j) being consumed in one iteration, i:e: the number of

entries CCOM(i; j) being reset to -1 in one iteration. It can be shown that with the above

assumptions, if every processor in one permutation sends a complete message, then the

expected number of entries CCOM(i; j) consumed in one iteration is at least n� n

d+1
. The

analysis is given in [20]. For completeness, we present the analysis in Appendix B.

The maximummessage size allowed to be sent in one iteration is Mthresh (each iteration

may have di�erent value ofMthresh, which is decided by the function Decide Size()). Suppose

only k messages are smaller than Mthresh, then (n � k) partial messages (with remaining

message sizes) are put back in the heap. Thus the expected number of entries consumed is

at least k � n
d+1

. In following sections we use � = k
n
.

We denote d
� as the expected average number of active entries in each row after one

iteration of scheduling. Assuming the original number of entries in each row be d, we have

d
� =

1

n
(nd � (k �

n

d+ 1
))

= d �
k

n
+

1

d+ 1

= d� �+
1

d + 1
(1)

It is di�cult to analyze the number of messages in each row at the next step. We are

interested in �nding out the number of partial permutations generated by the algorithm.

Clearly � should be set such that � > 1
d+1

. We use d� as the new value of d at the next step.

This assumption is made for all future steps. Assume Yi be the expected number of useful

entries remained at each row after the ith iteration. Then choosing a m such that

m =
d

2�
+

1

�2
(2)

would reduce Ym to d

2
(analysis is given in Appendix C). The proof assumes (1 + d

2
)� � 1.

We can calculate the expected number of iterations needed to complete the scheduling.

According to Equation 2, the number of iterations is upper bounded by

(
d

2�
+

1

�2
) + (

d

4�
+

1

�2
) + � � �+ (

1

�
+

1

�2
)

=
1

�
(
d

2
+
d

4
+ � � �+ 1) +

1

�2
log d

�
d

�
+

log d

�2
(3)
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Figure 10: Number of heap operations / n versus d
�
ln d

The above analysis is based on the assumption of equal number of messages in each row

at the beginning and end of every round. With the analysis presented above, we conclude

the following about the average time complexity of the RS NH algorithm (assuming a �xed

value �):

� Time for compressing COM into CCOM: O(n2) in the sequential program and O(dn+

� log n) in the parallelized version;

� Time for building heaps embedding in CCOM: O(dn);

� Expected time for performing the scheduling: O(( d
�
+ logd

�2
) � (n log2 d)), which is ap-

proximately O( d
�
(n log2 d));

� Time for sorting one permutation by message sizes: O(n log n) for merge sort. Sorting

can be approximated by histograming to reduce the complexity to O(n).

The number of heap operations in Step 3.2 was measured for di�erent values of n and �

for randomly generated communication matrices (Appendix D). We have plotted number of

heap operations / n against d ln d
�

in Figure 10. The experimental results support our analysis.

In this simulation we used uniform message sizes , in each permutation, we arbitrary picked

up n(1��) messages and put them (entire messages) back in the heap. In contrast, RS NH

is basically applied to non-uniform message sizes applications, messages in one permutation

were sorted by size, and partial of larger messages (according to �) were put back in the

heap. Since the simulation is focused on the number of heap operations needed, the use of

uniform message sizes does not a�ect the result.
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Our simulation results show that by the time d is close to 1, the number of entries left

in each row are uneven, and the degree of unevenness increases as � is away from 1. This

e�ect is ampli�ed for large values of n. In order to reduce the impact of unevenness, one

can propose a two-phase scheduling approach: using the original approach presented above

during the process that d� is reduced from original d to a small value (we use maxf2; d
16
g in

this paper). The number of iterations, based on our analysis, is

(
d

2�
+

1

�2
) + (

d

4�
+

1

�2
) + � � �+ (

1

16�
+

1

�2
)

=
15

16

d

�
+

4

�2
;

When d
� is small, it would be more suitable to reset � to 1, i:e: completely sent out every

message in one permutation, thus reducing d
� from small d to 0 will take d

16
+ log( d

16
)

permutations [20]. Thus, the number of permutations to complete the scheduling, using the

modi�ed algorithm, is

(
15

16

d

�
+

4

�2
) + (

d

16
+ log(

d

16
)) (4)

Table 3 and 4 show the comparison of equations (3), (4), number of permutations gener-

ated by RS NH with resetting �, and number of permutations generated by RS NH without

resetting. These results reveal that without resetting � to 1 when d
� is reduced to small

value, for a system with 512 nodes, it may take as many as 15 extra iterations to complete

the scheduling in comparison with algorithms which reset �. In Table 4, for � = 0:75 and

d = 512, the di�erence between d1 and resetting � (or d2 and no resetting) is approximate 30

permutations, this is because the calculation of d1 and d2 assumes that the average density

in each row after one iteration is about the same, while in experiments the average density

in each row after one iteration may vary in some range. In section 5, we propose several

approaches to decide the value � (we will use the resetting scheme in all of our approaches).

5 Approaches for Evaluating �

When the message sizes in one permutation is non-uniform, the communication time is

bounded by the maximummessage size in that permutation (because the RS NH is a loosely

synchronous communication pattern), while other processors with smaller message size are

idle. A suitable value of � needs to be found to decide the threshold for message size to be

sent in one permutation.

In function Decide Size(), the �rst step is to sort all the sending message by their size.

There are several schemes which can be used to decide on an appropriate value of �.

5.1 Fixed �

This is the most straightforward approach, � is �xed throughout the entire scheduling. This

approach requires running the application program several times with di�erent value of �
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� d d
y
1 d

z
2 resetting � no resetting

0.75000 4 8.89 10.36 6.62 8.46

0.75000 8 16.00 16.61 13.52 15.34

0.75000 16 28.44 28.11 26.00 27.78

0.75000 32 51.56 50.11 48.86 50.84

0.93750 4 6.54 6.80 6.02 6.42

0.93750 8 11.95 12.05 11.02 11.42

0.93750 16 21.62 21.55 20.34 20.72

0.93750 32 39.82 39.55 37.76 38.00

0.96875 4 6.26 6.38 5.72 6.12

0.96875 8 11.45 11.50 10.54 10.96

0.96875 16 20.78 20.75 19.38 19.72

0.96875 32 38.36 38.23 35.90 36.24

y: d1 =
d

�
+ log d

�2
; z: d2 = (15

16
d

�
+ 4

�2
) + ( d

16
+ log( d

16
)).

Table 3: Scheduling on 32 nodes system

� d d1 d2 resetting � no resetting

0.75000 64 96.00 93.11 99.86 103.22

0.75000 128 183.11 178.11 189.26 194.86

0.75000 256 355.56 347.11 364.42 374.20

0.75000 512 698.67 684.11 712.26 728.74

0.93750 64 75.09 74.55 77.10 77.88

0.93750 128 144.50 143.55 148.04 149.44

0.93750 256 282.17 280.55 288.12 290.58

0.93750 512 556.37 553.55 566.62 570.38

0.96875 64 72.46 72.20 73.84 74.16

0.96875 128 139.59 139.13 142.02 142.78

0.96875 256 272.78 272.00 277.08 277.88

0.96875 512 538.11 536.75 546.40 547.34

Table 4: Scheduling on 512 nodes system
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in order to �nd out the best value. If this algorithm needs to be executed at runtime,

each processor can begin with a di�erent � to schedule the communication. The processor

with minimum estimated communication time will send the schedule generated to other

processors. This can then be used by all processors to carry out the communication. The

runtime approach will require an estimation function. We are currently developing methods

for estimating the total communication cost for a given schedule.

5.2 � Proportional to d

In this approach, the value � is proportional to the value of d� at current stage. For example,

� can be set as 0:8d�, where d� is the average number of active entries in each row at current

stage. The implementation of this scheme is similar to 'Fixed �' approach.

5.3 Incremental Approach

From Equation 1, we know that

d
� = d+

1

d + 1
� �; � �

1

d+ 1

which can be rewritten as

d(�) = d +
1

d+ 1
� �

In Figure 11, when value � increases by4�, the message size will increase by4M , which

will a�ect the communication cost in the following categories:

� Since the maximummessage size is increased by 4M , the cost of this extra communi-

cation = 4M � ';

� The additional utilization of bandwidth = (1 � �) �4M � ';

� Additional cost due to increase in set up cost = d
0(�) �4�� � .

Thus we should choose � +4� instead of � if

(1� �)�4M � ' � 4M � '+ d
0(�)�4�� �

where d0(�) = �1, we have

4M � �' � 4�� �

� �
4��

4M'
(5)

The above analysis is under the assumption that all permutations are completed syn-

chronously. Clearly this is not the case in the RS NH algorithm given in Figure 9, in which

some processors may begin the next permutation while other processors are still executing

the current permutation.
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6 Experimental Results

We have implemented our algorithms on a 32 node CM-5. In this section, we describe the

di�erent versions of our algorithms tested and di�erent data sets used for their evaluation.

6.1 Algorithms

In our experiments, we used the following algorithms:

1. AC: The Asynchronous Communication algorithm.

2. LP: The Linear Permutation algorithm.

3. RS N: This is essentially the same as RS NH algorithm assuming that all the messages

are of equal size (and hence there is no need to maintain any heaps).

4. RS NH+MS: The RS NH algorithmwith Incremental Approach. Let �k = �0+k�
1
n
,

where �0 = 0:75 and 0 � k � 0:25. We de�ne

Gaink =
4�

�k
�
�

'
�4Mk

� is chosen to be �k such that the following sum is maximized.

k�1X
i=0

Gaini :

The additional complexity of this step is O(n) per iteration.
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5. RS NH+BJ: It is a variation of the algorithm RS NH+MS. The value of � is chosen

to be �k such that

Gaink = max
0�j�n

4

fGainjg

The additional complexity of this step is O(n) per iteration.

We will use RS NH to represent the better result of the two algorithms, RS NH+MS

or RS NH+BJ, whenever there is no ambiguity.

6. RS NH+�xed: The RS NH algorithm with �xed value of �. We have experimented

following � values: 3
4
;
7
8
;
15
16
;
31
32
, and 1.0. For each instance, we use the best perfor-

mance among di�erent values of � to represent the performance (including number of

permutations, scheduling cost, and communication cost) of this algorithm.

7. RS N+sort: This algorithm is same as RS N except the fact that we sort the active

entries in each row of CCOM by message size at the beginning of the scheduling

algorithm (we only sort the rows once, and do not make an e�ort to maintain the sort

sequences during the scheduling). This approach will tend to make the largest message

in each row being scheduled in the earlier phases.

8. RS NH+(� = 1): This scheme is equivalent to the RS NH+�xed with � = 1 through-

out the scheduling. We maintain the heap structures during the process, and let the

messages in every permutation be completely sent out (i:e: there is no message splitting

operations).

All the algorithms are executed in a loosely synchronous fashion. We did not explicitly

use global synchronization to enforce synchronization between communication stages in any

of the algorithms proposed above.

6.2 Data Sets

The data sets for our experiments can be classi�ed into three categories:

1. The �rst test set contains two subgroups, each one has 50 di�erent communication

matrices. In each matrix, every row and every column have approximately d active

entries (we select d = 8 and d = 16 in the two subgroups, respectively). The procedure

we use to generate these test sets is described in Appendix D.

The message lengths used in our test is COM(i; j) multiplied by the variable msg unit

to study the e�ect of message size on each algorithm. The di�erent values of msg unit

used for our experiments is 2k for 4 � k � 13.

2. The second test set (skewed distribution) contains samples with skewed size distribu-

tion. Three information arrays can be used to represent the samples' characteristics:

dist[5] = f1; 2; 4; 8; 17g, dense[5] = f1; 2; 4; 8; 16g, and length[5] = f16; 8; 4; 2; 1g. The
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rows of COM are grouped into �ve sets. Set k (1 � k � 5) can be characterized

by dist[k], dense[k], and length[k]. dist[i] = number of rows in the set i; dense[i] =

number of active entries in a row belonging to the set i; and length[i] = length of each

message in the set i. The motivation of this test set is to observe the case where a few

processors have a small amount of large messages, while other processors have a bulk

of small messages. The total amount of data to be sent by every processor is equal.

3. The third test set contains communication matrices generated by graph partitioning

algorithms [15]; the samples represent 
uid dynamics simulations of a part of a airplane

(Figure 12) with di�erent granularities (2800-point, 3681-point, 9428-point, and 53961-

point). We will only present the results of 2800-point and 53961-point samples. In order

to observe the algorithms' performance with di�erent message sizes, we have multiplied

the matrices in this test set by a variable msg unit. The di�erent values of msg unit

used for our experiments is 2k for 4 � k � 13.

In the third test set, the number of messages sent (or received) by each node is uneven.

For example, for the 2800-point sample we have the following parameters:

1. The maximum number of messages sent by any processor = 15.

2. The minimum number of messages sent by any processor = 3.

3. The average number of messages sent by any processor = 9.25.

4. The maximum length of all messages = 36 msg units.

5. The minimum length of all messages = 1 msg units.

6. The average length of all messages = 14.2 msg units.

The corresponding values for the 53961-point sample are 18, 6, 10.81, 276, 1, 93.21

respectively.

6.3 Results and Discussion

The scheduling costs of various algorithms does not include the time for the following oper-

ations

1. Time to compress COM into CCOM (RS Ns and RS NHs, which will take O(n2) time

in the sequential mode and O(dn + � log n) time in the parallelized version).

2. Time to sort CCOM at the beginning of scheduling for RS N+sort, which will take

O(nd log d) time in the sequential mode and O(dn) time in the parallelized version.

3. Time to create heaps in CCOM at the beginning of scheduling (RS NHs), which will

take O(nd) time in the sequential mode as well as in the parallel version.
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Figure 12: The unstructured grid used for our simulations
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d
compress

comp

heap

comp

sort

comp

4 0.206 0.108 0.445

8 0.087 0.095 0.855

16 0.037 0.075 1.435

24 0.023 0.065 1.575

Table 5: Compress, heap, and sorting overhead in terms of corresponding scheduling cost

for sequential execution

The main reasons for not including these timings are that they would be di�erent in the

static (sequential) and runtime ( parallel) version. Although the time complexity of some

of these ignored operations looks very high, we should point out that these operations are

only executed once during the scheduling. So the constant values in front of the complexity

terms are very small when compared with the complexity terms in front of the scheduling

cost.

Clearly, one could add these costs to the costs given in this section to get a more accurate

estimate of the total cost. Table 5 suggests that the exclusion of most of the above operations

a�ect the total cost only by a small fraction. The sort portion of RS N+sort is expensive.

However, our experimental results (in the later sections) reveal that this method does not

provide any improvement over RS N in terms of the total cost of communication (RS N has

a signi�cantly lower scheduling cost).

6.3.1 Uniform Distribution

Table 6 and Figure 13 show the results of d = 8. Results show that RS N outperforms AC

and LP by a big margin. RS N+sort does not provide improvement over RS N. The di�erent

variations of RS NHs have very similar results, all of them providing a considerable improve-

ment over RS N. This clearly shows the usefulness of heap structures and thresholding to

reduce the variance of messages in one permutation.

Table 7 and Figure 14 show the results of d = 16. The results are similar to that of

d = 8, but the di�erences between each di�erent algorithms become prominent. Thus, when

the density or message size increases, the RS NH algorithms are the algorithms of choice.

Figure 15 shows that maintaining heaps (which are used in RS NHs) is expensive. The

overhead fraction of RS N is less than 0.25 for messages of size 16K on a 32 node CM-5 [20].

The overhead of RS NH remains high when the message size is less than 16K (msg unit =

29); it becomes negligible for larger messages. This overhead computation is based on the

assumption that the same schedule is used only once. In most applications the same schedule

will be utilized many times, hence the fractional cost would be considerably lower (inversely

proportional to the number of times the same schedule is used). In such cases, all our

algorithms are also suitable for runtime scheduling.
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Msg AC LP RS N RS N RS NH RS NH RS NH

unit +sort +BJ +MS +(� = 1)

comm�

16 3.820 7.943 3.380 4.066 3.473 3.839 3.777

64 8.124 11.463 5.455 6.370 5.440 5.879 5.901

256 24.873 26.771 15.101 16.840 14.409 15.176 15.291

1024 89.027 83.063 57.825 59.436 54.020 53.744 54.560

2048 163.600 152.639 112.984 115.733 107.056 105.464 106.576

4096 301.681 282.814 222.201 225.684 209.728 207.420 209.661

8196 830.939 967.832 592.921 656.096 507.086 467.793 519.234

compy 0 0.091 3.211 3.245 16.307 16.872 10.1

# itersz 0 31.0 10.1 10.22 11.04 11.2 10.14

�: the total communication cost in milliseconds.

y: the scheduling cost in milliseconds.

z: number of iterations (permutations) to complete the scheduling.

Table 6: Experimental results for density d = 8, the minimum message size in each level is

Msg unit bytes, and the maximum size is 32�Msg unit bytes.

6.3.2 Skewed Distribution

In the second test set, all messages to be sent by one processor is same. This characteristics

make RS NH+(� = 1) useless. This is because the heap structure will keep the active entries

in each row in a very similar order. This should, in general, make the probability to �nd a

entry in each row non-random and result in more permutations and larger communication

cost. Our experimental results support this fact.

The rows with larger messages have smaller amount of messages, and the rows with the

smallest messages have the largest number of messages, which in turn will dominate the num-

ber of permutations needed. Thus, the splitting of large messages should even the message

sizes in one permutation without signi�cantly increasing the number of permutations.

Table 8 and Figure 16 show the results of the second test set. As expected, the RS NH+(� =

1) has similar performance as RS N. While RS NH+MS (which tends to select a small value

of � and splits a larger number of big messages into smaller ones as compared to RS NH+BJ)

and RS NH+�xed have clear improvements over other approaches.

6.3.3 Airfoil Mesh

Table 9 and Figure 17 and Table 10 and Figure 18 show the results for a 2800-point and

53961-point sample respectively. The results for both samples have similar behavior as

the �rst test set, which reveal that even if the number of messages in each row is non-

uniform, our algorithms maintain their characteristics and performance. The RS NHs are

superior when the msg unit becomes large, which in turn means that it is worth the extra
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Msg AC LP RS N RS N RS NH RS NH RS NH

unit +sort +BJ +MS +(� = 1)

comm�

16 8.178 9.514 6.408 7.653 6.404 7.050 7.126

64 17.780 16.112 10.494 12.152 10.184 10.959 11.212

256 52.173 43.161 29.385 32.330 27.304 28.607 29.121

1024 176.308 144.127 112.133 114.414 102.022 101.869 103.660

2048 311.054 270.140 222.023 224.392 201.459 199.639 202.816

4096 819.440 971.286 588.601 601.386 409.684 396.460 400.644

8196 2916.056 2851.732 1609.473 1633.950 1342.151 1309.655 1310.013

comp 0 0.091 6.57 6.62 43.943 45.403 31.502

# iters 0 31.0 18.56 18.52 19.66 19.8 18.8

Table 7: Experimental results for density d = 16, the minimum message size in each level is

Msg unit bytes, and the maximum size is 32�Msg unit bytes.

e�ort (of using heap and message breaking) to reduce the variance of message sizes in each

permutation. These results also show the comparison of �xed � and variable � (incremental

approach). The observation reveal that both methods have comparable performance. So for

static applications (which can be pre-run to �nd the best value of �), a �ne tuned �xed �

may be as good as (or even better than) the dynamic �s found during the scheduling. One

can potentially run the algorithms for di�erent values of � in parallel and choose the best

one. However, it is di�cult to estimate the actual performance (with varying �) and choose

the best value of �.

6.4 Discussion

It is hard to make generalizations on which algorithms are better based on the limited

number of experimental results presented above. In general, the scheduling costs vary in the

following manner.

cost(AC) � cost(LP ) � cost(RS Ns) �� cost(RS NHs);

while the communication cost vary in the inverse fashion

cost(RS NHs) � cost(RS Ns) � cost(LP ) � cost(AC)

Clearly, depending on the structure of communication matrix and the number of times a

particular schedule is used, one method may be superior to another. However, if the number

of times the same schedule is utilized is large, RS NH (with variable �) seems to be a better

approach (specially if the scheduling has to be performed at runtime).
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Msg AC LP RS N RS N RS NH RS NH RS NH RS NH

unit +sort +BJ +MS +(� = 1) +�xed

comm�

16 5.893 9.049 6.673 6.711 8.127 10.111 6.722 6.485

64 8.231 10.066 7.490 7.552 9.002 11.052 7.494 7.398

256 15.841 15.938 12.911 12.928 13.416 15.705 12.876 12.279

1024 44.761 40.159 36.977 36.741 33.456 36.655 36.513 32.722

4096 154.052 134.647 132.543 131.628 114.109 119.861 130.678 114.365

8192 273.867 254.734 259.216 258.201 221.488 225.053 256.154 221.661

16384 813.610 904.941 949.817 1003.330 661.086 707.041 967.669 598.615

comp 0 0.097 7.678 8.84 39.561 43.41 21.77 34.451

# iters 0 31.0 20.1 20.2 24.0 31.7 20.4 21.45

Table 8: Experimental results for test set 2, the minimum message size in each level is

Msg unit bytes, and the maximum size is 16�Msg unit bytes.

7 Conclusion

In this paper, we have developed several algorithms for scheduling all-to-many personalized

communication with non-uniform message sizes. The performance of asynchronous commu-

nication algorithm (AC) depends on the network congestion. The memory requirements of

this algorithm is large. This algorithm is only suitable for small message sizes. The linear

permutation algorithm is very straightforward, it introduces little computation overhead,

but it needs to go through same number of communication phases (n�1) even if the density

d is small.

The RS NH algorithms are found to be very useful in handling non-uniform messages.

The use of a heap structure so that the bigger messages will be scheduled earlier, and the

decomposition of large messages into smaller messages give a signi�cant reduction of the

total time required for communication.

We have proposed three approaches to decide the value � (the number of complete mes-

sages sent out in every phase of communication), the �rst two require pre-running for several

�xed values of �, while the third one chooses the value on-the-
y. The experimental results

have shown that our algorithms perform well with arti�cially generated samples as well as

samples from an actual application.

Another advantage of our algorithms as compared to the other algorithms is the fact

that once the schedule is completed, communication can potentially be overlapped with

computation, i:e: computation on a packet received in previous phase can be carried out

while the communication of the current phase is being carried. It is also worth noting that

due to the compaction, nearly all processors receive data packets (of nearly equal size). If

any computation needs to be performed using incoming data and it is proportional to the

size of the packet, it should lead to good load balance.
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Msg AC LP RS N RS N RS NH RS NH RS NH RS NH

unit +sort +BJ +MS +(� = 1) +�xed

comm�

16 5.340 8.959 5.595 5.632 6.206 7.272 5.624 5.409

64 9.674 11.991 7.879 7.837 8.287 9.284 7.717 7.606

256 25.870 26.322 19.502 18.986 17.849 18.607 17.690 17.274

512 47.209 44.454 35.147 34.045 30.961 31.365 31.247 30.076

1024 86.679 79.324 65.342 63.657 57.431 57.582 57.224 55.537

2048 165.237 146.995 125.460 119.634 109.692 108.972 110.711 104.951

4096 297.637 283.917 232.721 225.080 205.231 208.906 209.687 197.226

comp 0 0.097 5.052 5.03 23.578 29.38 14.523 22.137

# iters 0 31.0 15.15 15.2 15.95 19.65 15.45 15.55

Table 9: Experimental results for test set 3: 2800-point, the minimum message size in each

level is 2 �Msg unit bytes, and the maximum size is 36 �Msg unit bytes.

There is a large amount of literature on how to partition the task graph so as to minimize

the communication cost. Many of these methods are iterative in nature, [15, 22] are a few

of them (The reader is referred to [15] for a complete list). After a particular threshold any

improvement in partitioning is expensive. For problems which require runtime partitioning,

it is critical that this partitioning be completed extremely fast. For such problems, the gains

provided by e�ective communication scheduling may far outperform the gains by spending

the same amount of time on achieving a better partitioning.

For di�erent applications, the kind of communication patterns used are di�erent. It

is unclear which methods will be better than others for speci�c class of communication

patterns. However, we do believe the methods which avoid node contention and reduce the

size variance in each permutation can signi�cantly reduce the total time of communication.

Choosing the best method among the variety of algorithms presented in this paper will

depend on the underlying architecture, the type of communication patterns, and whether

the scheduling has to be performed statically or at runtime.

One of the issues which we have not addressed in this paper is link contention. On the

CM-5, link contention does not a�ect the communication cost of the schedules generated

by our algorithms. We are currently developing algorithms for architectures on which link

contention is an important issue.
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Msg AC LP RS N RS N RS NH RS NH RS NH RS NH

unit +sort +BJ +MS +(� = 1) +�xed

comm�

16 16.103 17.941 12.907 12.718 12.895 14.920 11.700 12.253

32 26.826 27.349 20.965 20.619 19.512 21.536 18.532 18.950

64 48.367 46.552 37.662 36.642 33.479 35.513 32.599 32.771

128 87.700 80.769 69.874 67.731 61.605 63.126 60.816 60.148

256 163.598 149.746 135.387 129.456 116.832 118.149 115.609 113.558

512 300.644 280.240 256.659 250.574 224.406 228.418 225.190 219.322

comp 0 0.097 6.059 6.024 30.358 40.231 19.245 28.396

# iters 0 31.0 18.05 18.15 20.05 26.4 18.15 20.05

Table 10: Experimental results cost for test set 3: 53961-point, the minimum message size

in each level is Msg unit bytes, and the maximum size is 276 �Msg unit bytes.

Appendix A: Procedure for Compressing COM

for i = 0 to n-1 do

k = �1

for j = 0 to n-1 do

if COM(i,j) > 0 then

k = k + 1;

CCOM(i; k) = j;

endif

endfor

prt(i) = k;

endfor

Appendix B

For a system with n nodes and the number of active entries in each row of CCOM is equal

to d, in RS NH step 3.2, the probability of success in �nding an available entry in each row

of CCOM is

S = 12 + 1 + � � � + 1 + (1 � (
d

n
)d) + (1� (

d+ 1

n
)d) + � � �+ (1� (

n� 1

n
)d)

= n�
1

nd

n�1X
i=d

i
d

2there are d rows which would �nd an available entry with probability 1
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� n �
1

nd

Z n

d
x
d
dx

= n �
n

d + 1
+

d

d + 1
(
d

n
)d

� n �
n

d + 1

Thus the expected number of entries in CCOM which can be sent in one iteration is at

least n� n

d+1
.

Appendix C

Assume Yi be the expected value of the average number of useful entries remaining in each

row after the ith iteration. Then

Y0 = d

Y1 = Y0 � �+
1

Y0 + 1

Y2 = Y1 � �+
1

Y1 + 1
...

Ym = Ym�1 � �+
1

Ym�1 + 1

Summing all of these statements together, we have

Ym = d�m�+ (
1

Y0 + 1
+

1

Y1 + 1
+ � � �+

1

Ym�1 + 1
)

Ym � d �m�+
m

Ym + 1

We are interested in �nding the number of iterations needed to reduce Ym to d
2
.

d

2
� d�m�+

m

d

2
+ 1

m �
d

2�
(

1

1� 1

(1+ d

2
)�

)

Assuming that (1 + d

2
)� > 1,

m �
d

2�
(1 +

1

(1 + d

2
)�
)

=
d

2�
+

d

(d + 2)�2

If d is large, the second term at RHS can be reduced to 1
�2
, then choosing a m that

m =
d

2�
+

1

�2

would reduce Ym to d

2
.
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Appendix D: Random COM Generator

for i = 0 to d-1 do

k = i;

for j = 0 to n-1 do

COM(j,k) = 1; k = (k + 1) mod n;

endfor

endfor

for i = 0 to ManyTimes do

loc1 = random() mod n; loc2 = random() mod n;

switch row loc1 with row loc2;

(or switch column loc1 with column loc2);

endfor

Msg Range = n

for i = 0 to n-1 do

for j = 0 to n-1 do

if (COM(i,j) = 1) then

COM(i,j) = random() mod Msg Range;
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