
Distributed Scheduling of Unstructured Collective

Communication on the CM-51

Jhy-Chun Wang Tseng-Hui Lin Sanjay Ranka

School of Computer and Information Science

Syracuse University

Syracuse, NY 13244-4100

Email: jcwang/thlin/ranka@top.cis.syr.edu

July 14, 1993

1This work was supported in part by NSF under CCR-9110812 and in part by DARPA under

contract #DABT63-91-C-0028. The contents do not necessarily re
ect the position or the policy

of the United States government and no o�cial endorsement should be inferred.

Abstract

Parallelization of many irregular applications results in unstructured collective communica-

tion. In this paper we present a distributed algorithm for scheduling such communication

on parallel machines. We describe the performance of this algorithm on the CM-5 and show

that the scheduling algorithm has very small overhead and gives a signi�cant improvement

over naive methods.

Index Terms: Active Messages, communication latency, distributed scheduling, interrupt

handler, node contention, personalized communication, unstructured communication.

1 Introduction

Parallelization of many irregular and loosely synchronous problems [1, 3, 7, 9, 14, 16, 17]

result in all-to-many personalized communication. An example of all-to-many personalized

communication is given in Table 1. A \1" in the (i; j) entry represents the fact that processor

Pi needs to communicate to processor Pj . Each message is of di�erent size and each processor

may send a di�erent number of messages. In general, assuming a system with n processors,

Let COM represent the communication matrix. COM(i; j) is equal to a positive integer

m if processor Pi needs to send a message (of m units) to Pj , 0 � i; j � n � 1. In our

example, P0 sends only three messages while P4 sends �ve messages. If we allow processors

to arbitrarily send their outgoing messages, it may happen that at one stage processors P0,

P1, P3, P4 and P6 all try to send messages to processor P2. Since the receiving processor

can typically receive messages from only one processor at a time, one or more of the sending

processors may have to wait for other processors to complete their communication. We use

the term node contention to refer to this situation.

0 1 2 3 4 5 6 7

0 1 1 1

1 1 1 1 1

2 1 1 1 1 1

3 1 1 1 1

4 1 1 1 1 1

5 1 1 1

6 1 1 1 1

7 1 1 1 1

Table 1: An 8 � 8 communication matrix (blank entries imply no communication)

Table 2 shows the impact of node contention on a 32-node CM-5. In these experiments,

processor P31 is the receiving node, and processors Pi, 0 � i < d are sending nodes that each

one of them sends an equal amount of data to P31 simultaneously. We record the time (in

milliseconds) taken by the receiving node (P31) and the maximum, minimum, and average

of the time taken among sending nodes to complete the communication.

The results reveal that when the number of messages sent to the same node (at the

same time) increases, the time each sending node needs to complete sending its message

also increases (the same holds true for the maximum time and minimum1 time among the

1One exception to the time increase is that when all 31 nodes send messages to processor P31. In this

1

d 256 bytes 4096 bytes

recv send recv send

max min ave max min ave

1 0.089 0.131 0.050 0.061 0.516 0.504 0.485 0.488

2 0.125 0.150 0.070 0.081 1.083 1.048 1.023 1.038

4 0.205 0.199 0.098 0.116 2.189 2.124 2.085 2.097

8 0.375 0.298 0.173 0.210 4.693 4.844 4.353 4.502

16 0.731 0.575 0.302 0.394 9.865 10.065 9.155 9.476

31 1.396 1.279 0.151 0.815 19.485 19.544 2.847 15.550

Table 2: The impact of node contention on CM-5

sending processors). Thus it is ine�cient to send more than one message to a particular

node at a given time. These observations suggest that node contention will result in overall

performance degradation.

In this paper we propose a distributed communication scheduling scheme for reducing

node contention. This scheme conducts the scheduling on the
y to reduce the node con-

tention. Each processor maintains a status bit which describes whether the processor is busy

receiving a message. Before sending a message a processor performs a test-and-set operation

to �nd out if the receiving node is busy. The test-and-set operation requires hardware and

software support for message interrupts at the receiving nodes. Further, for the method to be

e�cient, the cost of this operation should be small. In this paper we use Active Messages [6]

for the test-and-set operation.

Our scheduling scheme is distributed in nature and hence is useful even in the cases that

the same communication pattern is used only a few times (or once). In contrast, some of the

algorithms we have developed [11, 12, 13] may be more suitable for the situations that the

same schedule is used a large number of times so that the scheduling cost can be amortized.

We do not address link contention in this paper. A main reason being that the routing is

randomized on the CM-5. It is not possible to statically schedule messages in such a fashion

that link contention can be avoided, although randomization alleviates the problem to a

large extent [13]. We show that compared to naive algorithms, our algorithm can result in

a signi�cant reduction in the total amount of communication cost.

The rest of this paper is organized as follows. Notations, de�nitions, and assumptions

are given in Section 2. Section 3 brie
y describes the di�erent scheduling algorithms we

have developed in other papers. Section 4 presents the distributed scheduling algorithm.

case, since nodes P28, P29, P30, and P31 are in the same 4-node cluster, so the minimum time taken during

this stage is decreased compared with the 16-node case.

2

Section 5 presents experimental results on a 32-node CM-5 and provides a comparison with

other algorithms. Finally, conclusions are given in Section 6.

2 Preliminaries

2.1 Notation and Assumptions

The communication matrix COM is an n � n matrix where n is the number of processors.

COM(i; j) is equal to a positive integer m if processor Pi needs to send a message (of m

units) to Pj, otherwise COM(i; j) = 0, 0 � i; j < n. Thus, row i of COM represents the

sending vector, sendli, of processor Pi, which contains information about the destination

node and the size of outgoing message. Column i of COM represents the receiving vector,

recvli, of processor Pi, which contains information about the source node and the size of

incoming message. The entry sendlji (recvl
j
i) represents the jth entry in the vector sendli

(recvli). Assuming COM(i; j) = m, then sendl
j
i = recvlij = m. We will use sendl and recvl

to represent each processor's sending vector and receiving vector. Several properties of the

communication matrix are important in determining the best scheduling algorithm:

1. Uniformity of message|All messages are of equal size or not. When the messages are

of non-uniform size, reducing the variance of message sizes in the same communication

phase may lead to a reduction in overall communication cost [11].

2. Density of communication matrix|If the communication matrix is nearly dense, then

all processors send data to all other processors. If the communication matrix is sparse,

then every processor sends to only a subset of processors. Our algorithms assume that

the latter is true. There are a number of algorithms for the totally dense cases [2].

3. Static or runtime scheduling|Communication scheduling must be performed statically

or dynamically.

For the reasons mentioned in the previous section, the algorithms described in this paper

does not take link contention into account. We also assume that each processor can send

only one message and receive only one message at a time.

2.2 Active Messages

Active Messages [6] is an asynchronous communication mechanism with the following un-

derlying scheme: each message header contains the address of a user-level handler that is

executed at the receiving node upon message arrival, with the message body as argument(s).

The purpose of the handler is to get the message out of the network and into the current

3

ongoing computation on the receiving node. The handler interrupts the computation imme-

diately upon the arrival of the message and execute to completion. Active Messages are not

bu�ered except as required for network transport, in such case the sending node is blocked

until the message can be injected into the network and the handler executes immediately

upon arrival receiving node.

2.3 CM-5 CMAML

Culler et al. [6] have shown that on the CM-5 (CMAM) sending a single-packet Active Mes-

sages (handler address and 16 bytes of arguments) takes 1.6 �s and receiving such a packet

costs 1.7 �s. We have implemented our algorithms on CM-5 using CMMD and CMAML (the

CMMD active messages layer)[15]. CMAML is the protocol-less transport layer upon which

the higher level CMMD functions are built. CMAML represents an independent implemen-

tation of Active Messages developed by UC Berkeley (the functions of Berkeley CMAM and

CMAML are not interchangeable).

3 Previous Approaches

We have proposed several algorithms in [11, 12, 13] to address the issues of scheduling

unstructured communication on distributed memory machines. In this section we brie
y

describe these algorithms. We assume that each processor only knows its sending vector

sendl. The scheduling algorithms we have developed can be classi�ed into two groups.

1. Algorithms that require the global n� n communication matrix COM .

2. Algorithms that require the receiving vector recvl.

In deriving the n� n communication matrix COM, a concatenation operation [4] can be

performed on the sending vector sendl (of length n) of each processor to derive this matrix at

runtime. On an n-node CM-5, performing a concatenate operation with each node contribut-

ing a message of size n can be completed in O(n2 + � log n) amount of time [4] (assuming

that a communication can be completed in (� +M') time, where � is the communication

latency, M is the message size, and ' represents the inverse of the data transmission rate).

If only the receiving vector recvl is required by each processor, it can either be derived

from the COM|obtained from the concatenate operation. or be generated by the algorithm

described in Figure 1.

Step 2 can be completed in O(n) time on the CM-5. Step 3 is an all-to-many personalized

communication using an asynchronous algorithm (to be described in the next subsection).

Each of the messages is a few bytes long.

4

Generate Recvl()

For all processors Pi, 0 � i � n� 1, in parallel do

1. Set entry sendl maskji = 1 if sendlji > 0, otherwise sendl maskji = 0;

=� sendl mask
j
i = 1 means processor Pi needs to send a message to Pj. �=

2. Parallel vector sum sendl mask and store the results in vector recvl cnt;

=� The parallel vector sum returns an identical vector recvl cnt in each processor. The

number of expected incoming messages for processor Pi, recv cnti, is equal to the value

of the ith entry in vector recvl cnt. �=

3. Use Active Messages to send each active entry sendl
j
i ; 0 � j < n to Pj, and store the

data in Pj 's recvl
i
j. Upon completion, reduce Pj 's counter recv cntj by 1;

4. Wait until the counter recv cnti is equal to 0.

Figure 1: Procedure of generating receiving vector recvl

A comparison of the above two approaches for generating recvl for di�erent number of

nodes on the CM-5 is given in Table 3. The results show that the second approach, is more

e�cient than the global concatenate operation. The global concatenate also needs an O(n2)

temporary bu�er (COM) as compared to O(n) space in the second approach.

3.1 Asynchronous Communication (AC)

The most straightforward approach is to use asynchronous communication. This scheme does

not introduce any scheduling overhead. The asynchronous algorithm is given in Figure 2.

This approach causes no scheduling overhead, and each processor sends messages to their

destinations in a random order. The performance of this scheme will depend on the node

contention. It is suitable for situations when density is small and/or message sizes are small.

3.2 Linear Permutation (LP)

In this algorithm (Figure 3), each processor Pi sends a message to processor P(i�k) and

receives a message from P(i�k), where 0 < k < n. When COM(i; j) = 0, processor Pi will

not send a message to processor Pj (but will receive a message from Pj if COM(j; i) > 0).

The entire communication uses pairwise exchange (j = i� k , i = j � k).

The complexity of this algorithm is O(n) regardless of the number of messages each

processor actually sends/receives. This scheme is typically useful when each processor needs

5

d 32? 128 256

concaty AMz concat AM concat AM

4 6.624x 0.455 106.781 1.397 424.757 2.671

8 6.619 0.548 106.818 1.493 424.922 2.799

16 6.657 0.743 106.666 1.702 424.797 3.066

32 6.626 1.114 106.779 2.114 424.832 3.583

64 - - 106.786 2.896 424.814 4.552

128 - - 106.822 5.123 424.843 6.392

256 - - - - 424.911 11.639

?: A 32-node (128, 256) partition of CM-5,

y: Using global concatenate to generate recvl,

z: Approach based on Active Messages to generate recvl,

x: Cost in milliseconds.

Table 3: Performance comparison of two proposed recvl generating procedures

Asynchronous Send Receive()

For all processors Pi, 0 � i � n� 1, in parallel do

allocate bu�ers and post requests for incoming messages;

sends out all outgoing messages to other processors;

check and con�rm incoming messages from other processors.

Figure 2: Asynchronous communication algorithm

to send a message to a large subset of all the processors involved in the communication. The

algorithm in Figure 3 assumes that the number of processors, n, is a power of 2; it can easily

be extended to the case where n is not a power of 2.

3.3 Scheduling Algorithm that Avoiding Node Contention

This scheduling algorithm (RS N [11]) decomposes the communication matrix into a set of

disjoint partial permutations, pm1; pm2; : : : ; pml, where l is a positive integer, such that if

processor Pi needs to communicate with processor Pj , then there exists a a, 1 � a � l, such

that pmi
a = j. Permutations have the useful property that each node receives at most one

message and sends at most one message (and hence there is no node contention). With the

advent of new routing methods [5, 10], the distance to which a message is sent is becoming

6

Linear Permutation()

For all processors Pi, 0 � i � n� 1, in parallel do

for k = 1 to n-1 do

j = i� k;

if sendlji > 0 then Pi sends a message to Pj ;

if recvl
j
i > 0 then Pi receives a message from Pj ;

endfor

Figure 3: Linear permutation algorithm

relatively less and less important. Thus, assuming no link contention, permutation can be

an e�cient communication primitive despite the fact that the number of hops each message

needs to travel may be di�erent.

The communication proceeds through a number of phases in a loosely synchronous fash-

ion, and each communication phase is free of node contention. The scheduling approach tries

to minimize the number of permutations needed to complete the communication by using

randomization in scheduling process. The RS N algorithm is described in Figure 4, and a

detailed description is in [11].

Assuming each node sends d messages to random destinations and receives d messages

from di�erent sources, we can perform the following approximate analysis [11]:

� The average time complexity for generating a permutation is O(n ln d+ n).

� The number of permutations needed to complete the message-scheduling is bounded

by d+ log d.

When the variance of message sizes in one communication phase is large, if we allow every

processor to completely send its message, then the communication time in each phase may

be upper bounded by the maximum message size in each phase. Although we assume the

communication is executed in a loosely synchronous fashion, processors with small messages

may be idle while waiting for processors with large messages to complete their execution.

In order to eliminate idle time for processors, this approach can be modi�ed to use a

cuto� message size in each communication phase such that processors with small messages

will send their messages completely, while processors with large messages will send only

part of their messages. This scheme uses a heap data structure to order the messages to be

sent within each processor and is shown to be useful in dealing with non-uniform message

sizes [11]. We use the term RS NH to represent this algorithm.

7

Random Scheduling Node()

1. Use the n� n matrix COM to create an n� d matrix CCOM ;

2. For all processors Pi, 0 � i � n� 1, in parallel do

Repeat

(a) Set all entries of vectors Psendl and Precvl to �1;

(b) In each row i of CCOM , try to �nd an active entry CCOM(i; j) = k (0 � k < n)

such that entry COM(i; k) is the only entry picked along row i and column k of

COM in this iteration; /� every processor executes the same program �/

(c) Set Psendl(i) = k and Precvl(k) = i;

(d) Reset CCOM(i; j) to �1;

(e) if (Psendl(i) 6= �1) then Pi sends a message to PPsendl(i);

if (Precvl(i) 6= �1) then Pi receives a message from PPrecvl(i);

Until all messages are sent

Figure 4: RS N Algorithm: Random scheduling avoiding node contention

4 Distributed Random Scheduling which Avoids Node

Contention (DRS N)

In contrast to RS Ns algorithms described in previous section, the DRS N approach does not

create a schedule table. This scheme conducts the scheduling on the
y to reduce the node

contention. Each processor maintains a status bit which describes whether the node is busy

receiving a message. Before sending a message a node performs a test and set operation to

�nd out if the receiving node is busy. If it is, the sending node will try another node using

the same procedure. This approach guarantees that each processor will receive at most one

message (excluding the test-and-set messages) at a time.

We use Active Messages to perform the test-and-set operation. Each processor has a

local variable busy lock initially set to FREE. When one processor's inquiry arrives, the

receiving processor's computation is interrupted and the corresponding handler is executed.

If the processor that sent the inquiry receives a FREE signal, it will send the required

message; when the sending process is completed, the sending processor will send another

Active Message with handler to reset the receiving processor's busy lock to FREE so that

it can receive messages from other processors. This process is continued on each processor

8

Random Scheduling ActiveMessages()

1. Generate Recvl(sendl, recvl);

2. For all processor Pi, 0 � i � n� 1, in parallel do

(a) Pre-allocate receiving bu�ers according to receiving vector recvl;

(b) Repeat

i. Select a destination node from sending vector sendl, use Active Messages to

test-and-set destination node's busy lock;

ii. If the destination node is free to receive message,

A. Send message to the destination node;

B. Upon completion, reset destination node's busy lock to free;

C. Reset the corresponding entry in sending vector sendl;

Until sending vector sendl is empty

(c) Wait until all incoming messages arrive at their proper bu�ers.

Figure 5: DRS N algorithm

until each processor has sent all its outgoing messages (and every processor has received all

its incoming messages).

The DRS N algorithm is given in Figure 5. In Step 2(b)i, a delay can be introduced so

that a processor will wait a variable amount of time before it retries an inquiry on the same

processor. This will, in general, reduce the number of inquiries.

5 Experimental Results

We have implemented our algorithms on a 32-node CM-5. In this section, we describe the

test data sets used in the evaluation. The data sets for our experiments can be classi�ed

into the following categories:

1. This test set contains several subgroups, each of which has 50 di�erent communication

matrices with the same value of d. In each matrix, every row and every column have

approximately d active entries (d is equal to 4; 8; 16; 24; and 31, respectively). The

procedure we use to generate these test sets is described in [11].

9

(3
D

)P
rin

t |
|

te
c.

4.
pl

t |
|

JU
NK

Figure 6: The unstructured grid used for our simulations

The messages in one communication phase are of equal size. The message length used

in this test set is equal to msg unit, which is ranged from 24 bytes to 217 bytes.

2. This test set is similar to the previous one, except that the message sizes are non-

uniform, where the size is equal to COM(i; j) multiplied by msg unit. The di�erent

values of msg unit used in this test set are 2k for 4 � k � 13.

3. This test set contains communication matrices generated by graph partitioning algo-

rithms [8]; the samples represent
uid dynamics simulations of a part of an airplane

(Figure 6) with di�erent granularities (2800-point, 9428-point, and 53961-point). In

order to observe the algorithm's performance with di�erent message sizes, we have

multiplied the matrices in this test set by a variable msg unit. The di�erent values of

msg unit used for our experiments are 2k for 4 � k � 11.

In the test set 3, the number of messages sent (or received) by each node is uneven. For

example, for the 2800-point sample we have the following parameters:

10

1. The maximum number of messages sent by any processor = 15.

2. The minimum number of messages sent by any processor = 3.

3. The average number of messages sent by any processor = 9.25.

4. The maximum length of all messages = 36 units.

5. The minimum length of all messages = 1 unit.

6. The average length of all messages = 14.2 units.

The corresponding values for the 9428-point sample are 16, 3, 10.5, 99, 1, 32.04; and for

the 53961-point sample they are 18, 6, 10.81, 276, 1, 93.21, respectively.

11

5.1 Results and Discussion

5.1.1 Uniform Distribution with Uniform Message Sizes

Table 4 and Figure 7 show the results of test set 1. If the same schedule is used a large

number of times such that the scheduling cost can be amortized, RS N is superior to other

algorithms [11].

If the same schedule can be used only once, AC is the best algorithm for small sized

messages, while RS N is preferable for large sized messages. LP has good performance when

each processor sends messages to a large subset of processors involved. For medium sized

messages, DRS N algorithm is the best.

5.1.2 Uniform Distribution with Non-Uniform Message Sizes

Table 5 and Figure 8 show the results of test set 2. With the non-uniform message sizes in

this test set, the results of RS NH show that it is worth the e�ort to reduce the variance of

message sizes in one communication phase. However, that comes with a cost of maintaining

heap structures in the communication matrix COM [11]. The relative performance of the

algorithms is similar to the one described in the previous section. However, if the schedule

is used only once, then DRS N seems to be the best option for a large range of messages.

5.1.3 Airfoil Mesh

Table 6 and Figure 9 show the results of test set 3. In this test set, DRS N performs better

than RS N and has results close to the performance of RS NH. If the same schedule is used

only once, DRS N is the best choice for a large range of messages.

6 Conclusions

In this paper we have developed a distributed communication scheduling algorithm to reduce

node contention. In contrast to centralized scheduling algorithms [11], the DRS N has a small

scheduling cost. This feature makes it useful in situations that the same communication

pattern is used only a small number of times (or only once).

One issue we have not addressed in this paper is how to reduce the number of inquiries.

Each processor must send one or more inquiries to another processor before it succeeds to

send data. Each inquiry interrupts the receiving node's computing and forces the processor

to execute the Active Messages handler. A good approach would reduce the number of

inquiries and also reduce idle time for each processor between the reception of two messages

from di�erent processors. One solution is to insert a delay function that will wait for a certain

amount of time (long enough for the receiving node to complete its current incoming message)

12

before allowing a processor to send another inquiry to the same processor. This feature can

be added to our algorithm. However, our experiments suggest that the improvement achieved

is small and the optimal delay is dependent on the particular instant of the communication

pattern.

Acknowledgments

We wish to thank Raja Das, Joel Saltz, and DimitriMavriplis at ICASE and Nashat Mansour

for the illustration in Figure 6 and for the corresponding communication matrices.

References

[1] E. Anderson and Y. Saad. Solving sparse triangular linear systems on parallel comput-

ers. International Journal of High Speed Computing, 1(1):pp. 73{95, 1989.

[2] I. Angus, G. Fox, J. Kim, and D. Walker. Solving Problems on Concurrent Processors,

volume 2. Prentice Hall, Englewood Cli�s, NJ, 1990.

[3] D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley. An experimental study

of methods for parallel preconditioned krylov methods. In Proceedings of the 1988

Hypercube Multiprocessor Conference, pages pp. 1698{1711, Pasadena, CA, January

1988.

[4] Zeki Bozkus, Sanjay Ranka, and Geo�rey C. Fox. Benchmarking the cm-5 multicom-

puter. In Proceedings of the Frontiers of Massively Parallel Computation, 1992. To

appear.

[5] Willian J. Dally and Chuck L. Seitz. Deadlock-free message routing in multiprocessor

interconnection networks. IEEE Trans. on Computers, 36(5):pp. 547{553, May 1987.

[6] T.V. Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active messages: a

mechanism for integrated communication and computation. In Proceedings of the 19th

International Symposium on Computer Architecture, Gold Coast, Australia, May 1992.

ACM Press.

[7] P.C. Liewer and V.K. Decyk. A general concurrent algorithm for plasma particle-in-cell

simulation codes. Journal of Computational Physics, 2:pp. 302{322, 1985.

[8] Nashat Mansour. Parallel Genetic Algorithms with Application to Load Balancing for

Parallel Computing. PhD thesis, Syracuse University, Syracuse, NY 13244, 1992.

13

[9] D.J. Mavriplis. Three dimensional unstructured multigrid for the euler equations. In

AIAA 10th Computational Fluid Dynamics Conference, June 1991. Paper 91-1549cp.

[10] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques in direct

networks. IEEE Computer, 26(2):pp. 62{76, February 1993.

[11] Sanjay Ranka and Jhy-Chun Wang. Static and runtime scheduling of unstructured

communication. International Journal of Computing Systems in Engineering, 1993. To

appear.

[12] Sanjay Ranka, Jhy-Chun Wang, and Geo�rey C. Fox. Static and runtime algorithms for

all-to-many personalized communications on permutation networks. In Proceedings of

the 1992 International Conference on Parallel and Distributed Systems, pages pp. 211{

218, HsinChu, Taiwan, December 1992.

[13] Sanjay Ranka, Jhy-Chun Wang, and Manoj Kumar. Personalized communication avoid-

ing node contention on distributed memory systems. In Proceedings of the 1993 Inter-

national Conference on Parallel Processing, St. Charles, IL, August 1993. To appear.

[14] Y. Saad. Communication complexity of the gaussian elimination algorithm on multi-

processors. Linear Algebra Application, 77:pp. 315{340, 1986.

[15] Thinking Machines Corporation, Cambridge, MA. CMMD Reference Manual, version

3.0 edition, December 1992.

[16] D.W. Walker. Characterizing the parallel performance of a large-scale, particle-in-cell

plasma simulation code. Concurrency: Practice and Experience, 1990.

[17] D.L. Whitaker, D.C. Slack, and R.W. Walters. Solution algorithms for the two-

dimensional euler equations on unstructured meshes. In Proceedings AIAA 28th

Aerospace Sciences Meeting, Reno, Nevada, January 1990.

14

d msg size AC LP RS N DRS N

comm?

16 2.065 3.410 1.679 2.994

512 3.539 4.415 2.480 3.743

1024 4.819 5.547 3.192 4.505

4 2048 7.388 7.738 4.365 5.911

4096 12.368 12.118 6.911 8.764

32768 79.343 77.439 44.317 49.391

131072 286.952 272.649 164.951 174.290

comp� 0 0.119 1.572 -

permy - 31 5.54 -

comm

16 6.585 7.788 6.072 10.416

256 11.317 9.136 7.728 11.750

512 14.997 10.850 9.072 13.262

16 1024 21.796 13.982 11.589 16.187

2048 35.014 19.517 15.702 21.315

4096 61.103 31.016 24.749 31.697

131072 3236.886 1421.718 1105.936 1169.099

comp 0 0.129 6.267 -

perm - 31 18.56 -

comm

16 16.558 8.934 11.335 23.563

128 23.297 9.745 12.918 24.847

256 28.944 11.111 14.678 26.226

31 512 36.995 13.684 17.252 29.158

1024 53.933 17.581 21.929 35.054

16384 505.558 131.647 154.408 194.999

131072 11409.862 1980.108 2388.292 2765.645

comp 0 0.138 12.857 -

perm - 31 34.2 -

?: Communication cost, in milliseconds;

�: Scheduling cost, in milliseconds;

y: Number of communication phases needed.

Table 4: Experimental Results for uniform message sizes on a 32-node CM5

15

0

75

150

225

300

0 32768 65536 98304 131072

Time
(msec)

Msg unit (bytes)

AC 3

33333333
3
3
3

3

3

3

LP +

+++++++++
+

+

+

+

+

RS N 2

222222222
2
2

2

2

2

DRS N �

���������
�
�

�

�

�

(density d = 4)

0

900

1800

2700

3600

0 32768 65536 98304 131072

Time
(msec)

Msg unit (bytes)

AC 3

3333333333
3

3

3

3

LP +

++++++++++ + +
+

+
RS N 2

2222222222 2 2
2

2
DRS N �

���������� � �
�

�

(density d = 16)

0

3000

6000

9000

12000

0 32768 65536 98304 131072

Time
(msec)

Msg unit (bytes)

AC 3

3333333333
3

3

3

3

LP +

++++++++++ + +
+

+

RS N 2

2222222222 2 2
2

2

DRS N �

���������� � �
�

�

(density d = 31)

Figure 7: Communication cost for uniform message sizes on a 32-node CM-5

16

d msg unit AC LP RS N DRS N RS NH

comm?

32 3.619 4.577 2.613 3.827 2.571

64 4.954 5.862 3.409 4.632 3.331

256 12.689 13.477 8.392 9.891 8.113

4 1024 42.846 46.208 29.550 30.601 28.209

2048 81.316 87.027 56.625 56.750 53.990

4096 155.872 165.550 110.546 106.924 105.026

comp� 0 0.118 1.572 - 6.316

permy - 31 5.54 - 5.66

comm

16 11.234 9.804 7.948 11.960 7.852

32 14.727 11.603 9.473 13.523 9.136

128 34.214 21.628 18.381 22.194 16.961

16 512 108.618 66.060 55.899 58.828 49.703

2048 371.240 250.002 207.397 196.709 183.184

4096 865.381 953.548 406.768 468.583 359.516

comp 0 0.128 6.325 - 43.358

perm - 31 18.56 - 19.1

comm

16 28.366 12.533 15.077 26.541 14.729

64 50.627 20.128 23.576 35.462 22.100

256 132.293 52.541 58.326 70.255 51.424

31 1024 482.330 200.451 206.937 209.073 177.053

2048 1668.837 396.685 400.478 579.559 342.341

4096 4577.956 1298.740 1342.152 1481.374 1231.085

comp 0 0.137 12.912 - 122.033

perm - 31 34.2 - 34.56

?: Communication cost, in milliseconds;

�: Scheduling cost, in milliseconds;

y: Number of communication phases needed.

Table 5: Experimental Results for non-uniform message sizes on a 32-node CM5. The

minimummessage size in each level ismsg unit bytes, and the maximumsize is 32�msg unit

bytes.

17

0

40

80

120

160

0 1024 2048 3072 4096

Time
(msec)

Msg unit

AC 3

3333
3
3

3

3

3

LP +

++++
+

+

+

+

+

RS N 2

2222
2
2

2

2

2

DRS N �

����
�
�

�

�

�

RS NH 4

44444
4

4

4

4

(density d = 4)

0

250

500

750

1000

0 1024 2048 3072 4096

Time
(msec)

Msg unit

AC 3

3333
3
3

3

3

3

LP +

+++++
+

+

+

+

RS N 2

22222
2

2

2

2 DRS N �

�����
�

�

�

�

RS NH 4

44444
4

4

4

4

(density d = 16)

0

1000

2000

3000

4000

5000

0 1024 2048 3072 4096

Time
(msec)

Msg unit

AC 3

33333
3

3

3

3

LP +

+++++ + + +

+

RS N 2

22222 2 2
2

2

DRS N �

����� � �
�

�
RS NH 4

444444 4 4

4

(density d = 31)

Figure 8: Communication cost for non-uniform message sizes on a 32-node CM-5

18

points msg unit AC LP RS N DRS N RS NH

comm?

16 7.297 6.796 6.349 8.750 7.122

32 8.825 8.007 7.204 9.628 7.803

64 11.929 10.099 8.962 11.198 9.290

128 18.047 13.810 12.456 14.302 12.143

2800 256 29.597 21.663 19.485 20.212 17.799

512 53.111 38.904 34.011 32.315 29.253

1024 97.933 74.094 64.044 58.028 53.717

2048 184.354 141.512 119.301 106.379 100.708

comp� 0 0.148 7.954 - 27.211

permy - 31 15.15 - 19.65

comm

16 10.392 9.157 8.266 10.712 9.182

32 14.597 11.631 10.414 12.781 10.991

64 22.538 16.407 14.981 16.624 14.601

9428 128 37.867 26.516 24.067 24.243 21.710

256 68.371 47.555 42.762 40.115 36.715

512 128.381 90.137 81.079 70.539 68.232

1024 234.905 171.527 152.494 131.186 127.600

comp 0 0.149 8.945 - 34.946

perm - 31 16.45 - 22.5

comm

16 19.104 15.419 14.109 16.791 14.965

32 30.835 24.117 21.693 23.839 21.037

53961 64 53.607 42.560 37.050 37.310 33.671

128 100.113 79.964 69.197 65.144 59.847

256 179.254 153.044 130.772 118.193 110.744

comp 0 0.149 9.754 - 37.272

perm - 31 18.05 - 26.4

?: Communication cost, in milliseconds;

�: Scheduling cost, in milliseconds;

y: Number of communication phases needed.

Table 6: Experimental Results for airfoil mesh simulations on a 32-node CM5. The

minimum message size in each level is msg unit bytes, and the maximum size is

36 (99; and 276 for each di�erent points; respectively)�msg unit bytes.

19

0

40

80

120

160

200

0 512 1024 1536 2048

Time
(msec)

Msg unit

AC 3

333
3
3

3

3

3

LP +

++++
+

+

+

+

RS N 2

2222
2

2

2

2

DRS N �

����
�

�

�

�

RS NH 4

4444
4

4

4

4

(2800-point)

0

50

100

150

200

250

0 256 512 768 1024

Time
(msec)

Msg unit

AC 3

33
3
3

3

3

3

LP +

+++
+

+

+

+

RS N 2

222
2

2

2

2

DRS N �

���
�

�

�

�

RS NH 4

444
4

4

4

4

(9428-point)

0

40

80

120

160

0 64 128 192 256

Time
(msec)

Msg unit

AC 3

3
3

3

3

3

LP +

+
+

+

+

+

RS N 2

2
2

2

2

2

DRS N �

�
�

�

�

�

RS NH 4

44
4

4

4

(53961-point)

Figure 9: Communication cost for airfoil mesh simulation on a 32-node CM-5

20

