
NICE: Non-uniform Irregular Communication

Exchange on Distributed Memory Systems1

Jhy-Chun Wang Tseng-Hui Lin Sanjay Ranka

School of Computer and Information Science

Syracuse University

Syracuse, NY 13244-4100

Email: jcwang/thlin/ranka@top.cis.syr.edu

1This work was supported in part by NSF under CCR-9110812 and in part by DARPA under

contract #DABT63-91-C-0028. The contents do not necessarily reect the position or the policy

of the United States government and no o�cial endorsement should be inferred.

Abstract

A communication package, Non-uniform Irregular Communication Exchange (NICE), is de-

signed to help users in scheduling message-passing requests on distributed-memorymachines.

This package schedules a batch of messages into a set of partial permutations and provides

communication primitives to carry out the communication. The NICE primitives are fo-

cused on generating communication schedules to minimize node contention and also link

contention.

Index Terms: Communication scheduling, distributed-memory systems, irregular com-

munication, message-passing, runtime support.

1 Introduction

For distributed-memory parallel computers, load balancing and reduction of communication

are two important operations for achieving a good performance. It is important to map

a program such that the total execution time is minimized; the mapping typically can be

performed statically or dynamically. For most regular and synchronous problems, this map-

ping can be performed at the time of compilation by giving directives in the language (such

as High Performance Fortran) to decompose the data and its corresponding computations.

This usually results in regular collective communication between processors. Many such

primitives have been developed in the literature [1, 9].

Mapping of irregular problems (such as unstructured �nite element grid) tends to result

in unstructured communication patterns, such that each processor needs to send messages,

with no obvious patterns, to some number of processors. Further, for a large class of such

problems, the same schedule is used many of times. Thus, it may be feasible to perform the

scheduling of communication at runtime, if the e�ective gains from using such a schedule are

greater than the cost of �nding it.

We have developed scheduling algorithms that decompose a communication matrix (rep-

resenting an all-to-many communication in which each node sends di�erent messages to a

subset of processors) into a set of disjoint partial permutations, pm1; pm2; : : : ; pml, l, a pos-

itive integer, such that if processor Pi needs to communicate with processor Pj , then there

exists a a, 1 � a � l, so that pmi
a = j. Permutations have the useful property that each node

receives at most one message and sends at most one message (and hence there is no node

contention). With the advent of new routing methods [5, 8], the distance to which a message

is sent is becoming relatively less and less important. Thus, assuming no link contention,

permutation can be an e�cient communication primitive despite the fact that the number

of hops each message needs to travel may be di�erent.

Thus communication proceeds through a number of phases in a loosely synchronous

fashion, and each communication phase is free of node contention and/or link contention.

Another problem needs to be addressed: In one communication phase, processors with small

messages may be idle while waiting for processors with large messages to complete their

work. In this case, the largest message in one communication phase may dominate the

communication cost.

We introduce methods to reduce the variance of message sizes within one permutation.

Large messages can be split into smaller pieces such that the variance of message sizes within

one permutation can be minimized, and each of these split pieces is sent in di�erent phases.

We studied several tradeo�s in \increase in number of phases" versus \cost of non-uniformity

of message sizes in one communication phase."

We have carefully studied the node contention and link contention properties of several

MPP machines (e.g., the CM-5, iPSC/860, and Intel Touchstone Delta) from the above

1

perspective and, using the schemes we developed, performed extensive experiments on these

machines, The results show that these methods can signi�cantly reduce the communication

cost over naive methods. For most cases the cost of scheduling is small enough that it can

be performed at runtime.

The NICE (Non-uniform Irregular Communication Exchange) package is a set of prim-

itives that takes an input user program's communication request and returns a scheduling

table (each node program gets its own table) that contains information concerning incom-

ing messages. It also creates a communication phase table (CPT), a list structure with

each block containing information of one permutation. Thus, if the same batch of commu-

nication requests is required again, the schedule table can be reused. NICE also provides

communication primitives that are used to take the CPT as input and carry out the required

communication.

The NICE primitives are speci�cally aimed to deal with unstructured communication.

Several scheduling schemes can be implemented in the NICE package. Depending on the

cost of generating the communication schedule and the number of times a schedule needs to

be used, one scheduling algorithm may be preferable to another.

In this paper, notations, de�nitions, and general communication properties used through-

out are given in Section 2. Section 3 describes the scheduling schemes used in the NICE

package. Section 4 presents an overview of the NICE package, and Section 5 describes the use

of NICE primitives in one application. Experimental results on the CM-5 and iPSC/860 are

given in Section 6, while Section 7 discusses the relative comparison of di�erent scheduling

methods. Finally, conclusions are given in Section 8.

2 Preliminaries

In order to minimize the cost of communication on distributed-memory machines, the fol-

lowing factors must be addressed:

1. node contention, where two or more nodes each try to send one message to the same

node in one communication phase.

2. link contention, where two or more messages, in the same communication phase, inter-

act with each other due to shared communication link(s).

Figure 1 shows examples of (a) node contention and (b) link contention. In (a), P1; P3; P5;

and P7 all try to send messages to P4 in the same communication phase. For machines that

can only send/receive a limited number of messages, this situation will cause some processors

to delay sending their messages. In (b), P3 sends a message to P8, while P4 sends a message

to P5 in the same communication phase. As observed, both communication pairs use the

communication link edge45, which will cause communication delay.

2

(a) (b)

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

Figure 1: Examples of: (a) node contention; (b) link contention

For systems that can receive only one (or a limited number of) message(s) at a time,

node contention may cause delay for some of the sending nodes. Link contention will cause

a di�erent degree of impact for di�erent routing strategies [8]. (It will cause severe commu-

nication degradation in machines using circuit-switching, message-routing strategy [8, 10].)

Bandwidth utilization, which is related to link contention to some degree, is another issue

that should be taken care of in order to achieve e�cient communication.

2.1 Notations and De�nitions

We �rst give the formal de�nition of node contention and link contention. In this paper, the

terms \node" and \processor" are used interchangeably.

On a system with n processors, we de�ne the communication matrix COM as an n � n

matrix, and COM(i; j) is equal to a positive integer m if processor Pi needs to send a

message (of size m unit) to Pj, 0 � i; j < n. Otherwise, COM(i; j) = 0. Thus, row i of

COM represents the destination vector of processor Pi, which contains information about

the destination and size of di�erent messages. The n � n communication matrix COM can

be decomposed into a set of communication phases (cpk, 1 � k � l, l, a positive integer)

such that

COM(i; j) = m; m > 0) 9!k; 1 � k � l; cp
i
k = j :

We de�ne the kth communication phase as

cp
i
k = j; i = 0; 1; : : : ; n� 1; and 0 � j < n

if processor Pi needs to send a message to processor Pj at the k
th phase, otherwise cpik = �1.

Thus, node contention can be formally de�ned as

9k; 1 � k � l; cp
i1
k = j1 and cp

i2
k = j2) i1 6= i2 and j1 = j2 6= �1 ;

3

where i1; i2 = 0; 1; : : : ; n� 1 and 0 � j1; j2 < n:

A partial permutation pmk is a communication phase that

pm
i1
k = j1 and pm

i2
k = j2; i1; i2 = 0; 1; : : : ; n� 1 and 0 � j1; j2 < n ;

i1 = i2 , j1 = j2 ;

pm
i
k = �1 if Pi does not send a message at this permutation.

Since permutation has the useful property that every processor both sends and receives

at most one message, it will not cause any node contention.

The methods developed to reduce link contention assume a static routing algorithm, i.e.,

based on the source and destination nodes, we can determine the path that will be used for

routing. Let edgeij represent the direct communication link (if one exists) between processors

Pi and Pj . Let pathijk represent the set of links that Pi will use in the kth permutation in

order to send a message to Pj ,

path
ij

k = fedgeim1
; edgem1m2

; : : : ; edgemxjg :

If pmi
k = j = �1, then path

ij
k = �.

We de�ne the term link contention as:

9k; 1 � k � l; pm
i1
k = j1 and pm

i2
k = j2; i1; i2 = 0; 1; : : : ; n� 1 and 0 � j1; j2 < n ;

) i1 6= i2 and path
i1j1
k \ path

i2j2
k 6= � :

Thus, a communication scheduling that avoids node/link contention is a scheduling such

that,

8k; 1 � k � l; pm
i1
k = j1 and pm

i2
k = j2; i1; i2 = 0; 1; : : : ; n� 1 and 0 � j1; j2 < n ;

i1 6= i2) path
i1j1
k \ path

i2j2
k = � :

2.2 Random Permutation as a Collective Communication Prim-

itive

On a 32-node CM-5, we generated 5,000 random permutations in which each processor sends

and receives a message of 1K bytes. Over 99.5% (4,979 out of 5,000) of the permutations were

within 5% of the average cost (Figure 2). Thus, the variation of time required for di�erent

random permutations (in which each node sends data to a random, but di�erent node) is very

small on a 32-node CM-5. With this observation, the performance of proposed approaches

in NICE, which uses random permutation as the underlying communication scheme, are not

signi�cantly a�ected by a given sequence of permutation instances.

4

0

900

1800

2700

3600

0.4 0.6 0.8 1 1.2 1.4 1.6

samples

comm

comm ave

dist32

Figure 2: Communication cost distribution for 5,000 permutation samples with message of

length 1K bytes on a 32-node CM-5

Figure 3 shows the results of 5,000 random permutations on a 32-node iPSC/860 and

reveals that even under the inuence of link contention|iPSC/860 uses a circuit-switching

routing algorithm that will create some degree of link contention|random permutation can

still provide reasonably good performance.

3 Proposed Approaches

The NICE provides several communication scheduling schemes to deal with a wide range of

communication patterns. Those schemes have been intensively studied in [10, 11] where their

ability to reduce communication cost is shown. Following is a summary of the scheduling

schemes implemented in the NICE.

3.1 Asynchronous Communication (AC)

The most straightforward approach is to use asynchronous communication. This scheme

does not introduce any scheduling overhead. The algorithm is divided into three phases:

1. Each processor �rst posts requests for incoming messages (this operation will pre-

allocate bu�ers for those messages).

2. Each processor sends all outgoing messages to other processors.

3. Each processor checks and con�rms incoming messages (some may already have arrived

at its receiving bu�er(s)) from other processors.

5

0

400

800

1200

1600

0.4 0.6 0.8 1 1.2 1.4 1.6

samples

comm

comm ave

dist32

Figure 3: Communication cost distribution for 5,000 permutation samples with message of

length 1K bytes on a 32-node iPSC/860

Asynchronous Send Receive()

For all processors Pi, 0 � i � n� 1, in parallel do

allocate bu�ers and post requests for incoming messages;

sends out all outgoing messages to other processors;

check and con�rm incoming messages from other processors.

Figure 4: Asynchronous communication algorithm

During the send-receive process, the sender processor does not need to wait for a completion

signal from the receiver processor in order to continue sending outgoing messages until they

have all been sent. This naive approach is expected to perform well when the density, d, is

small. The asynchronous algorithm is given in Figure 4.

The worst-case time complexity of this algorithm is di�cult to analyze, as it will depend

on the congestion and contention on the nodes and the network. Also, each processor may

have only limited space for message bu�ers. In such cases, when the system's bu�er space

is fully occupied by uncon�rmed messages, further messages will be blocked at the sender

processor's side. This overow may block processors from doing further processing (including

receiving messages), because processors are waiting for other processors to consume and

empty their bu�ers in order to receive new incoming messages. The situation may never be

resolved and a deadlock may occur among the processors.

This approach causes no scheduling overhead, and each processor sends out messages

to their destinations without particular order. The performance of this scheme will depend

6

Linear Permutation()

For all processors Pi, 0 � i � n� 1, in parallel do

for k = 1 to n-1 do

j = i� k;

if COM(i; j) > 0 then Pi sends a message to Pj ;

if COM(j; i) > 0 then Pi receives a message from Pj ;

endfor

Figure 5: Linear permutation algorithm

on the congestion and contention on the nodes and network. It is basically suitable for

situations where communication tra�c is light and/or message sizes are small.

3.2 Linear Permutation (LP)

In this algorithm (Figure 5), each processor Pi sends a message to processor P(i�k) and

receives a message from P(i�k), where 0 < k < n. When COM(i; j) = 0, processor Pi will

not send a message to processor Pj (but will receive a message from Pj if COM(j; i) > 0).

The entire communication uses pairwise exchange (j = i� k , i = j � k).

The complexity of this algorithm is O(n) regardless of the number of messages each

processor actually sends/receives. This scheme is typically useful when every processor

needs to communicate with all (or nearly all) other processors. The algorithm, in Figure 5,

assumes that the number of processors, n, is a power of 2. However, it can be easily extended

when n is not a power of 2.

3.3 Random Scheduling Avoiding Node Contention (RS N)

During communication scheduling, the worst-case time complexity to access each entry of

COM is O(n2). In order to reduce this overhead, the �rst step of this algorithm is to

compress the COM into an n � d matrix CCOM by a simple compressing procedure [10].

This procedure will improve the worst-case time to access each active element (of CCOM)

to O(dn).

If we perform this compression statically, the time complexity is O(n(n + d)) = O(n2).

When performing this operation at runtime, each processor compacts one row, and then all

processors participate in a concatenate operation to combine individual rows into an n � d

matrix. The cost of this parallel scheme is O(n+(dn+ � log n)) = O(dn+ � log n) (assuming

the concatenate operation can be completed in O(dn + � log n) time).

7

The vector prt is used as a pointer whose elements point to the maximum number of

positive columns in each row of CCOM. The vectors send and receive are used to record

the destination of each outgoing message and the source of each incoming message in one

permutation, respectively; send(i) = j denotes that processor Pi needs to send a message

to processor Pj, and receive(j) = i denotes that processor Pj will receive a message from

processor Pi. These two vectors are initialized to �1 at the beginning of each iteration. We

assume that CCOM(i; j) = �1 if this entry doesn't contain active information. After the

compressing procedure, the �rst d columns of each row may contain active entries. When

searching for an available entry along row i, the �rst column j with CCOM(i; j) = k and

receive(k) = �1 will be chosen. We then set send(i) = k and receive(k) = i.

The RS N algorithm [10] is described in Figure 6.

Assuming that each node sends d messages to random destinations and receives d mes-

sages from di�erent sources, one can perform the following approximate analysis [10]:

� The average time complexity for generating a permutation in one iteration is O(n ln d+

n).

� The expected number of iterations needed to complete the entire message-scheduling

is d+ log d.

The intent of this approach is to minimize the number of permutations needed to complete

the communication while avoiding any node contention. The scheduling overhead of this

scheme and its extensions is higher than LP, but the scheduling cost can be amortized over

several utilizations, as the same schedule may be used repeatedly.

We also include three extended scheduling schemes that will avoid link contention and/or

reduce the variance of message sizes in one permutation.

RS NL: This approach avoids node contention as well as link contention and is extremely

useful when the underlying message passing is done using circuit-switching [10]. It

may also a�ect the utilization of bandwidth for machines using other message routing

strategies.

RS NH: When the variance of message sizes in one communication phase is large, if we

allow every processor to completely send its message, then the communication time in

each phase may be upper bounded by the maximum message size in each phase. We

assume that each communication phase is executed in a loosely synchronous fashion.

This alleviates the problem to some extent. However, if the variance of message size is

large, processors with small messages may still be idle while waiting for processors with

large messages to complete their execution. In order to reduce idle time for processors,

this approach chooses a reasonable message size in each communication phase such that

8

Random Scheduling Node()

1. Use matrix COM to create an n� d matrix CCOM ;

2. For all processors Pi, 0 � i � n� 1, in parallel do

Repeat

(a) Set vectors send = receive = �1;

(b) x = random(1::n);

for y = 0 to n� 1 do

i = (x+ y) mod n; j = 0;

while (send(i) = �1 AND j � prt(i)) do

k = CCOM(i; j);

if (receive(k) = �1) then

send(i) = k; receive(k) = i;

CCOM(i; j) = CCOM(i; prt(i));

CCOM(i; prt(i)) = �1;

prt(i) = prt(i)� 1;

endif

j = j + 1;

endwhile

endfor

(c) if (send(i) 6= �1) then Pi sends a message to Psend(i);

if (receive(i) 6= �1) then Pi receives a message from Preceive(i);

Until all messages are sent

Figure 6: RS N Algorithm: Random scheduling avoiding node contention

9

P

P

P

0

n-1

1

4 12

8 4

32 16

8

4 12

4

32 16

Figure 7: The concatenation of destination vectors

processors with small messages will send their messages completely, while processors

with large messages will send only part of their messages. This scheme is shown to be

useful in dealing with communication patterns with non-uniform message sizes [10].

RS NLH: This scheme is similar to RS NH, but it also takes link contention into consid-

eration, which is important for machines using circuit-switching.

Each of the approaches described above have their corresponding primitives in the NICE,

which we will introduce in the next section.

4 An Overview of NICE Package

The NICE primitives can be classi�ed into two groups. The �rst group, scheduling primitives,

works on concatenating destination vectors (of each processor) into a global communication

matrix COM, and then decomposes the matrix into a set of permutations and returns a

scheduling table to the user program. The second group, communication primitives, takes

the returned scheduling table as input, then carries out the communication.

4.1 Scheduling Primitives

The scheduling primitives take as input the destination vectors of all processors and con-

catenates them into a communication matrix (Figure 7).

As mentioned in Section 3, each scheduling scheme may be suitable for a particular

class of communication patterns. Besides the destination vector, the scheduling primitives

will also take as input a parameter indicating which scheduling scheme should be applied.

Users currently need to specify the scheduling scheme they prefer when they call the NICE

package. We are working on developing an evaluation subsystem that will provide users with

information about the relative performance and cost of these scheduling schemes. Users can

10

struct NICE Comm Phase f /� communication phase table �/

int s partner, s len, s o�set; /� information of outgoing messages �/

int r partner, r len, r o�set; /� information of incoming messages �/

NICE comm phase �next; /� pointer to next CPT block �/

g;

typedef struct NICE Comm Phase NICE comm phase;

Figure 8: The data structure of communication phase table (CPT)

use the information to decide upon the correct scheduling scheme. The �nal goal of this

evaluation subsystem is to be able to automatically choose the most suitable scheduling

scheme. Thus, making this decision process transparent to user programs.

The scheduling primitives will return to the user program a scheduling table that contains

a (source) vector that stores information about the source and size of di�erent incoming

messages, as well as a pointer to a CPT that speci�es the communication operations for

each phase.

Since the same scheduling table may be used many times (which is the case in nested

iterative computations), the scheduling table can be kept and reused as often as needed. The

NICE package also provides a function for releasing the table space if the table is no longer

needed [12].

4.2 Communication Primitives

The NICE assumes that the user program has packed the outgoing messages (of each proces-

sor) in such a way that each processor has a vector of pointers in which each element points

to one outgoing message bu�er. The length of each bu�er is equal to its corresponding

entry in the destination vector. The user program is also expected to pre-allocate incoming

message bu�ers according to the source vector returned in the scheduling table (which also

has a pointer to the communication phase table (CPT)). The data structure of the CPT is

given in Figure 8.

In each communication phase, s partner (r partner) speci�es the destination (source) of

outgoing (incoming) message, s len (r len) speci�es the length of the outgoing (incoming)

message, and s o�set (r o�set) speci�es the location of the outgoing (incoming) message at

its corresponding message bu�er. The NICE communication primitives use this information

to conduct the communication.

The s len and s o�set (r len and r o�set) are particularly important when the scheduling

11

Figure 9: The data structure of send/receive vectors

scheme RS NH (or RS NLH) is used. As mentioned in Section 3.3, RS NH and RS NLH

employ measures to reduce the variance of message size within one communication phase,

thus some of the larger messages are split into pieces, and each piece is sent at a di�erent

phase. The s len and s o�set (r len and r o�set) are used to store these pieces of information,

thus the communication primitives know the length of each message piece and its location

in the bu�er.

When the user program calls the communication primitives, it needs to pre-allocate the

sending and receiving message bu�ers and pass them as parameters to NICE along with the

CPT. The structure of these message bu�ers is given by a nested pointer structure as the

one shown in Figure 9.

5 Using NICE Primitives in Unstructured Applica-

tions

In this section, we present a simple example (from examples discussed in [4]) to demonstrate

the use of NICE primitives.

A static single-phase computation consists of a single concurrent computational phase,

which may be executed repeatedly without change [4]. Examples of static single-phase

computations, which are iterative solvers using sparse matrix-vector multiplications, can be

found in [13]. Examples of explicit unstructured mesh uids calculations can be found in [14].

Figure 10 depicts a schematic outline of a kernel from a uid dynamics simulation that

represents a loop that sweeps over the edges of a mesh. The kernel is based on an algo-

rithm that maps a computational domain with irregular polygons. The area and shape of

the polygons are determined by heuristic algorithms designed to ensure that the govern-

ing partial di�erential equation is solved with an approximately equal accuracy throughout

the computational domain. The data structures used in solving this problem represent a

12

/� This is a simpli�ed sweep over edges of a mesh. A ux across a mesh edge is calculated.

Calculation of the ux involves ow variables stored in array x. The ux is accumulated to

array y. �/

For i = 1 to N

1. v1 = y old(node(i; 1))

v2 = y old(node(i; 2)

2. Calculating ux: ux = F (x(v1); x(v2))

3. y(node(i; 1)) = y(node(i; 1)) + ux

y(node(i; 2)) = y(node(i; 2))� ux

Endfor

Figure 10: Outline of a uid dynamic simulation sweeping over unstructured mesh

bidirectional graph where vertices represent polygons and edges represent adjacency of the

polygons. Sweeping over the polygons is accomplished by traversing the edges of this graph.

In Figure 10, the indices of the two vertices connected by the ith graph edge are denoted

by node(i; 1) and node(i; 2). The computation of ux terms requires y old(node(i; 1)) and

y old(node(i; 2)). In Step 3, ux is added to y(node(i; 1)) and is subtracted from y(node(i; 2)).

No matter how we partition loop iterations and data, the structure of this problem requires

accessing o�-processor elements of y and y old. On distributed-memory machines, it is

ine�cient to fetch individual o�-processor data because of high communication startup la-

tency. Several o�-processor fetches can be combined together by using runtime inspectors [6].

NICE primitives can then be used to e�ciently schedule the communication and to fetch

o�-processor data. Note that the scheduling tables can be reused as long as the same set of

o�-processor accesses is used, i.e., the array node is not changed.

6 Experimental Results

We have implemented the NICE package on the CM-5 as well as on the iPSC/860. In

this section we show the experimental results of NICE primitives on a 32-node CM-5 and a

64-node iPSC/860. The data sets used in the experiment can be classi�ed in two categories:

1. This test set contains several subgroups, each having 50 di�erent communication ma-

trices. In one matrix, every row and every column has approximately d entries with

13

(3
D

)P
rin

t |
|

te
c.

4.
pl

t |
|

JU
NK

Figure 11: The unstructured grid used for our experiments

positive integer. The procedure we use to generate these test sets is described in [10].

The message lengths used in our test is COM(i; j) multiplied by the variable msg unit

in order to study the e�ect of message size on each scheme.

2. This test set contains communication matrices generated by graph-partitioning algo-

rithms [7]; the samples represent uid dynamics simulations of a part of an airplane

(Figure 11) with di�erent granularities (2800-point, 9428-point, and 53961-point). In

order to observe the NICE primitives' performances with di�erent message sizes, we

multiplied the matrices in this test set by a variable msg unit. In contrast to test set 1,

the number of messages sent (or received) by each node is uneven in this test set.

Figure 12 shows that the use of RS NH (which splits large messages into small pieces to

reduce the variance of message size in one communication phase) can signi�cantly improve

the performance. RS NH and RS NLH are useful only when the message sizes are non-

uniform. When all messages in one communication phase are of equal size, other schemes

should be used as they have smaller scheduling overhead. When the number of messages

sent (and received) are large, LP performs better than other approaches (Figure 13). LP

14

uses pairwise exchange in each communication phase. This can be exploited in machines

like iPSC/860 [2, 3] in which a bidirectional communication can be achieved if the sender

and receiver are synchronized. The synchronization typically can be achieved only if the

communication occurs in pairs.

Figure 14 show the results of test set 2. In this test set, RS NH performs better than

other algorithms on a 32-node CM-5. Another important observation in this test set is that

even in the cases where the number of messages sent/received by each processor varies in a

wide range, our algorithms still maintain their characteristics and performance. Figure 15

provides similar results on a 64-node iPSC/860, which demonstrates that the schemes used

in NICE can be suitable for a variety of architectures.

7 Choosing the Best Scheduling Algorithm

The following parameters are important in choosing the best scheduling algorithm for a given

communication matrix:

1. Scheduling cost, S

2. Number of times the same schedule is utilized, R

3. Communication cost generated, C

The average time required for communication of one concurrent iteration of an irregular

problem depends on the amortized cost of scheduling, A (S divided by R) and C. Minimiza-

tion of the total time requires minimization of A+ C.

If scheduling is done statically (not at runtime), then S can be assumed to be zero.

Choosing the best algorithm thus requires estimates of the various costs. Each of these costs

depends on the type of machine used, the topology, and the routing algorithm used.

Based on the experiments we conducted, the scheduling cost, in general, varies in the

following manner:

S cost(AC) � S cost(LP) � S cost(RS N) � S cost(RS NL) � S cost(RS NHs) ;

while the communication cost varies in the inverse fashion:

C cost(RS NHs) � C cost(RS NL) � C cost(RS N) � C cost(LP) � C cost(AC) :

Figures 16 and 17 show the di�erent regions for which each of the schemes is useful on

a 32-node CM-5 and a 64-node iPSC/860. Assuming that the scheduling cost is negligible

(i.e., the scheduling is performed statically or the scheduling is done at runtime and it is

15

used a large number of times). Choosing between di�erent RS Ns depends on the underlying

network [10, 11].

Currently, the choice of scheduling scheme has to be provided by user program. We are

developing an expert system to choose the best approach automatically, making the decision

process transparent to user programs.

8 Conclusions

There is a large class of scienti�c problems that require irregular collective communication.

The minimization of the communication cost of such problems is an important issue in

achieving good performance and scalability. We have designed the Non-uniform Irregular

Communication Exchange (NICE) package, which includes several schemes for dealing with a

variety of irregular communication patterns. This package is currently available for the CM-

5 and the IPSC/860. We are working on extending the package to run on other distributed

memory machines (e.g., the Intel Touchstone Delta). Most of our scheduling schemes are

sequential in nature. We are currently investigating parallelization of these methods.

References

[1] I. Angus, G. Fox, J. Kim, and D. Walker. Solving Problems on Concurrent Processors,

volume 2. Prentice Hall, Englewood Cli�s, NJ, 1990.

[2] Shahid H. Bokhari. Complete exchange on the ipsc/860. Technical Report NASA

Contractor Report: ICASE Report No. 91-4, NASA Langley Research Center, January

1991.

[3] Shahid H. Bokhari. Multiphase complete exchange on a circuit switched hypercube.

Technical Report NASA Contractor Report: ICASE Report No. 91-5, NASA Langley

Research Center, January 1991.

[4] Alok Choudhary, Geo�rey C. Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel,

Sanjay Ranka, and Joel Saltz. Software support for irregular and loosely synchronous

problems. In Proceedings of the Conference on High Performance Computing for Flight

Vehicles, 1992. To appear.

[5] Willian J. Dally and Chuck L. Seitz. Deadlock-free message routing in multiprocessor

interconnection networks. IEEE Trans. on Computers, 36(5):pp. 547{553, May 1987.

[6] R. Das, R. Ponnusamy, J. Saltz, and D. Mavriplis. Distributed memory compiler meth-

ods for irregular problems|data copy reuse and runtime partitioning. In J. Saltz and

16

P. Mehrotra, editors, Compilers and Runtime Software for Scalable Multiprocessors.

Elsevier, Amsterdam, The Netherlands, 1991. To appear.

[7] Nashat Mansour. Parallel Genetic Algorithms with Application to Load Balancing for

Parallel Computing. PhD thesis, Syracuse University, Syracuse, NY 13244, 1992.

[8] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques in direct

networks. IEEE Computer, 26(2):pp. 62{76, February 1993.

[9] Sanjay Ranka and Sartaj Sahni. Hypercube Algorithms with Applications to Image

Processing and Pattern Recognition. Springer-Verlag, 1990.

[10] Sanjay Ranka and Jhy-Chun Wang. Static and runtime scheduling of unstructured com-

munication. In Proceedings of the 2nd Symposium on Parallel Computational Methods

for Large Scale Structure Analysis and Design, Norfolk, VA, February 1993. To appear.

[11] Sanjay Ranka, Jhy-Chun Wang, and Manoj Kumar. All-to-many personalized com-

munication on distributed memory machines. In Proceedings of the 1993 International

Conference on Parallel Processing, St. Charles, IL, August 1993. To appear.

[12] Sanjay Ranka, Jhy-Chun Wang, and Tseng-Hui Lin. A manual for the nice runtime

primitives, version 1.0. Technical Report SU-CIS-93, Syracuse University, March 1993.

[13] Y. Saad. Communication complexity of the gaussian elimination algorithm on multi-

processors. Linear Algebra Application, 77:pp. 315{340, 1986.

[14] D.L. Whitaker, D.C. Slack, and R.W. Walters. Solution algorithms for the two-

dimensional euler equations on unstructured meshes. In Proceedings AIAA 28th

Aerospace Sciences Meeting, Reno, Nevada, January 1990.

17

0

90

180

270

360

0 1024 2048 3072 4096

Time
(msec)

Msg unit

AC 3

3333
3
3

3

3

3

LP +

++++
+

+

+

+

+

RS N 2

2222
2
2

2

2

2

RS NH �

�����
�

�

�

�

(density d = 8)

0

250

500

750

1000

0 1024 2048 3072 4096

Time
(msec)

Msg unit

AC 3

3333
3
3

3

3

3

LP +

+++++
+

+

+

+

RS N 2

22222
2

2

2

2 RS NH �

�����
�

�

�

�

(density d = 16)

Figure 12: Communication cost for non-uniform message sizes on a 32-node CM-5

0

1200

2400

3600

4800

0 512 1024 1536 2048

Time
(msec)

Msg unit

AC 3

333
3
3

3

3

3

LP +

++++
+

+

+

+ RS NL 2

2222
2

2

2

2

RS NLH �

����
�

�

�

�

Figure 13: Communication cost for non-uniform message sizes with density d = 32 on a

64-node iPSC/860

18

0

40

80

120

160

200

0 512 1024 1536 2048

Time
(msec)

Msg unit

AC 3

333
3
3

3

3

3

LP +

++++
+

+

+

+

RS N 2

2222
2

2

2

2

RS NH �

����
�

�

�

�

(2800-point)

0

50

100

150

200

250

0 256 512 768 1024

Time
(msec)

Msg unit

AC 3

33
3
3

3

3

3

LP +

+++
+

+

+

+

RS N 2

222
2

2

2

2

RS NH �

���
�

�

�

�

(9428-point)

Figure 14: Communication cost for airfoil mesh simulation on a 32-node CM-5

0

250

500

750

1000

0 128 256 384 512

Time
(msec)

Msg unit

AC 3

33
3

3

3

3

LP +

++
+

+

+

+

RS NL 2

22
2

2

2

2

RS NLH �

��
�

�

�

�

Figure 15: Communication cost for airfoil mesh simulation (53961-point) on a 64-node

iPSC/860

19

6 8 10 12 14 16

32

16

8

4

24

AC

RS_N(s)
d

CM-5

LP

(2 bytes)XMsg_unit

Figure 16: Regions for which the di�erent algorithms outperform the others (on a 32-node

CM-5)

32

16

8

48

6 8 10 12 14 16

(2 bytes)X

AC

d

iPSC/860

LP

Msg_unit

RS_N(s)

Figure 17: Regions for which the di�erent algorithms outperform the others (on a 64-node

iPSC/860)

20

