
Integrating Multiple Programming Paradigms

on Connection Machine CM5

in a Data
ow-based Software Environment (draft)

Gang Cheng, Geo�rey C. Fox and Kim Mills

Northeast Parallel Architectures Center

Syracuse University, Syracuse, NY 13244

Abstract

By viewing di�erent parallel programming paradigms as essential heterogeneous

approaches in mapping \real-world" problems to parallel systems, we discuss method-

ologies in integrating multiple programming models on a Connection Machine CM5. In

a data
ow based integration model built in a visualization software AVS, we demon-

strate a simple, e�ective and modular way to couple sequential, data-parallel and ex-

plicit message-passing modules into an integrated programming environment on the

CM5.

1 Introduction

One of the major issues in parallel processing concerns about homogeneous versus

heterogeneous at both software and hardware levels. In parallel software development,

currently there are two mainstream approaches to deal with this issue. One is to attempt

to hide the heterogeneity of architectures from the programmer. This approach usually

employs software technology, especially advanced compiler techniques, to present users with

a homogeneous, high level programming model. This methodology leads to highly portable

programs across multi-platforms with di�erent architectures and programming models and

greatly simpli�es programming on parallel machines, while among its drawbacks are hard

to obtain most e�cient programs for a general application on a particular machine, and the

extremely complex compiler design. Among examples of this approach are the FortranD

project under development at the Northeast Parallel Architectures Center at Syracuse

University and Rice University[11], various automatic tools, and the e�orts of HPF[13]

and the emerging MPI message passing standard[7]. The other approach acknowledges the

heterogeneity at both software and hardware levels, by extending existing programming

languages and software environments into parallel environments best exploiting the high

performance of underlying architectures. The advantage of the latter approach is the

resultant highly e�cient programs and an open software environment most 
exible to be

able to support an integrated heterogeneous processing environment which we will discuss

in this paper.

While the �rst approach is promising(attractive) and represents a major direction in

parallel programming language development, we believe that the future of high performance

computing lies in the integration of existing and emerging architectures and technologies

into a heterogeneous networked computing environment, to be able to solve general

1



2 Cheng, Fox and Mills

classes of applications with various requirements in scienti�c computation, communication,

programming models, hierarchy memory, I/O, data processing and visualization. Another

advantage of this approach is in the adopting of existing programs where only those

computationally intensive components need to be rewritten to run on supercomputers.

This is especially important in porting a large existing application system when a signi�cant

proportion of the sequential code are those \interface or management codes", i.e. codes

do not perform any real scienti�c computational tasks but simply manage the system and

various computing resources, such as standard I/O, initiation, graphical user interface,

system control interface, OS or �le system interface and networking interface, to name a

few. This heterogeneous approach, together with our view of parallel software as a mapping

process between two complex systems - problems and parallel computers[10], would require

integration methodologies and tools to facilitate multiple parallel programming models in

an uni�ed environment. System integration is expected to play a critical role in parallel

software development and applications.

In this paper, we discuss issues in integrating programs written in di�erent program-

ming paradigms and languages on a MIMD machine Connection Machine CM5. Using a

data
ow-based integration model built in a commercially available software Application

Visualization System(AVS) to a case study of an atomspheric advection modeling applica-

tion, we demonstrate a simple, e�ective and modular way to seamlessly couple sequential,

data parallel and explicit message-passing parallel modules into an uni�ed programming

environment on CM5.

2 Multi-paradigm Parallel Programming Environments

2.1 Multi-paradigm Programming in Mapping Problem Domain to Par-

allel System

For this article, we shall consider that a programming paradigm is a model or an approach

employed in solving a programming problem with a restricted set of concepts. Programming

paradigms either induce or are induced by a class of languages, the programming

environments that these languages are supported in, and the software engineering discipline

one uses to produce systems within these environment. Typically, each class places di�erent

requirements on its associated programming environment[12].

On existing parallel systems, there are two dominant parallel programming paradigms:

1. Data parallel, in which more or less the same operations is performed on many

data elements by many processors simultaneously. Data parallel program exploits

parallelism in proportion to the quantity of data involved hence o�ers the highest

potential for concurrency. Data parallel program is also easy to write, understand

and debug.

2. Explicit message passing which allows two or more operations to be performed

simultaneously. Message passing paradigm allows programmer to have maximum


exibility and control in exploiting domain decomposition and control decomposition

of the application problem so that maximum e�ciency utilizing a MPP hardware can

be achieved by carefully design of explicit message passing parallel algorithms. It

allows the processing nodes to synchronize as frequently or infrequently as required

for a given application. A message-passing program is free to arbitrarily distribute

program tasks and data among the nodes as necessary, using synchronization and data

communication between nodes when it is necessary. This arbitrary load-balancing of

tasks and data makes message-passing particularly useful for applications that require



Integrating Multiple Programming Paradigms on CM5 3

dynamic allocation of tasks and data.

Like the trade-o� among various conventional programming languages, expressiveness

and e�ciency are two major factors featuring parallel programming models and it is even

more remarkable because the driving force using a parallel computer is the e�ciency, and

programming on parallel machines tends to be more di�cult and less portable. The

programming languages for massively parallel processors must go beyond conventional

languages in expressivity and cost/performance. Unfortunately, unlike on sequential

machines and due to e�ciency consideration on a particular SIMD/MIMD architecture

with an unique interconnection topology, most parallel systems support only one single

programming model, i.e. either data parallel or message passing. Given a targeted machine

and an application problem, usually a decision must be made to choose which parallelism

to solve the problem, early before looking into the problem, let alone at the implementation

stage. This is unnecessary and should be avoided, as mostly for a large application problem

some components may be well suited to data parallel, while others to message passing

paradigm. We should exploit the parallelisms at each level of computations. There has

been long debt in parallel community and industry on the issue of data-parallel versus

message-passing programming, as well as SIMD versus MIMD machines.

As studied in [10], by viewing "real-world" problem and parallel computers both as

complex systems, the fundamental issue in solving problems on a parallel computer becomes

whether we can easily and e�ciently map a problem structure to a particular parallel

architecture. A general mapping followed by a computer simulation typically consists of

several mapping stages (shown in Fig. 1). In this paper, we are interested in the software

environment and programming models used to e�ectively map a large application onto a

massively parallel system.

Parallel systems are built to solve large scale computationally intensive applications(e.g.,

"grand-challange" problems). The broad range of HPCC applications may embody a rich

diversity of program structures. It is anticipated that no one parallel programming model

will satisfy all needs. Data parallel, task parallel, and object parallel have all found

applicability to end user problems[21, 15]. A useful parallel programing environment

for MPPs must incorporate semantic constructs for delineating program parallelism,

identifying locality and specifying data set partioning, as well as the normal requirements

in conventional software engineering. It will have to permit user accessibility to a mix

of parallelism models, either by incorporating them into a single schema or by providing

means for a single application to use di�erent languages or di�erent parallelism models

for separate parts of a user problem. In either case, a parallel software system will of

necessity support interoperability among independently derived program modules, perhaps

even running on separate computers in a distributed heterogeneous computing environment.

This is especially important for irregular and dynamic problems, and for multidiciplinary

applications, as it is often inevitable in those applications to require coordination or

composition of multiple paradigms programming, e.g., high-level data-parallel and low level

explicit message passing, considering the complex of problem structures to be expressed and

solved by the software environment. [9] gives such an example of multi-model earth system

in which an ocean model and an atmosphere model are loosely coupled each other.

While the homogenous approach emphasizes a virtual programming model due largely

to portability consideration, and high-level and low-level software are used in a strict

successive manner in the mapping as shown in Fig. 1, it is most likely that a large

application problem would require programming models of di�erent abstraction levels to be

used in a hybrid fashion. For instance, Fig. 2 gives another picture of how subtasks of an





Integrating Multiple Programming Paradigms on CM5 5

application task can be mapped to a parallel system in a single mapping stage by multiple

programming models.

A problem task may consist of subtasks requiring a set of computing services such as

parallel computation/communication, parallel database management, parallel or sequential

I/O, real-time visualization, sequential event-driven graphical user interface, networking

interface, etc. This mapping process will require not only a "universal architecture" of the

parallel computer to be able to e�ciently support multiple programming models, it also

requires a software environment to be capable of supporting task-level computation and

communication and integrating di�erent programming paradigms in a single framework.

Software integration techniques are clearly required in interfacing data and control 
ows

among components(modules) of di�erent programming models in this single mapping

process.

CM5 is one of a few today's parallel computers which support both data parallel and

explicit message passing programming models. We choose it to evaluate the methodologies

of multi-paradigm integration in this paper. However, we believe that many of the issues

discussed here are also applicable to the programming integration in a heterogeneous

computing environment in which multiple parallel systems are connected by high-speed

LAN and/or WAN networks.

2.2 Multi-paradigm Programming

In this section, we �rst examine integration techniques of multi-paradigm programming on a

sequential machine and then discuss brie
y corresponding implementation on a Connection

Machine CM5.

On a conventional uniprocessor machine, multi-paradigm integration can be in general

divided into following four classes, based on the interface of how one paradigm is combined

in the others:

1. Full integration | a single language has constructs supporting multiple programming

paradigms. The transfer of program control and data among di�erent language

components at runtime are implicitly arranged by the compiler. The semantics

of interfacing di�erent paradigms is built in the language speci�cation. Usually,

a programming language evolves along this line, with a single paradigm at initial

stage and new language components added in as applications grow and di�erent

paradigms are required. The evolvement of C++ from C(which in turn is evolved from

Pascal), which now integrates imperative, modular and object-oriented programming

paradigms, can be thought as an example of this category. Another example can be

found in [5] in which functional and logic programming paradigms are integrated

in a uni�ed system. Among this approach in parallel programming language,

compositional C++(CC++)[2] and FortranM[8] are examples attempted to integrate

in a single language framework di�erent paradigms of parallel programming such as

data parallel, task-parallel and object-parallel paradigms, imperative and declarative

programming, shared memory and message-based programs.

This approach provides the most 
exible and e�cient hybrid integration of multiple

models. However, new languages have to be developed and complex semantics of inter-

facing the multiple programming paradigms in a new language is usually inevitable.

On a MIMD parallel system like CM5, because data-parallel and message-passing

paradigms have dramatic implementation and performance di�erences in data map-

ping/processor allocation, task decomposition and execution synchronization, and



6 Cheng, Fox and Mills

require unique semantics inherently in both the programming language and under-

lying system architecture, this integration approach may incur interface overhead

and unexpected complex semantics thus seems not feasible on a distributed-memory

machine.

The current CM programming environment provides some restricted ways to support

this kind of integration, mostly through specialized library routines which encapsulate

optimized implementation details of the functions provided. As an example, the CM

Fortran Utility Library provides convenient access from CM Fortran to the capabilities

of lower-level CM software. The purpose is typically to achieve functionality or

performance beyond what is currently available from the compiler. CM Fortran

programmers can use the library procedures in situations where one is normally

tempted to make explicit calls to lower-level software. The utility procedures take

CM Fortran array names and other CM Fortran data objects as arguments so that

there is no need to convert CM Fortran objects into the data types by lower-level

software. The CM Fortran Utility Library provides procedures for inquires, random

number generation, dynamic array allocation, interprocessor and local data motion,

and parallel I/O[23].

2. Embedded integration | master-slave style. The interface is a built-in construct

(or convention) in a master language to allow seamless invocation of subrou-

tines(functions) written in a slave language. No global data can be shared directly by

both languages, even they have the same addressing memory. Data transfer among

modules in master and slave languages is identical to that in a single language and is

carried out by passing pointers to the same shared memory so that there is no data

copy cost. Separate compilations of di�erent languages are required and their object

�les are �nally linearly linked together. The executable program runs as a single

process. This approach provides a simple, coherent yet e�cient way to support the

integration at language level. Among examples of this approach are interlanguage

calls on most conventional platforms, such as from C calling Fotran77 or assembly,

or vice visa. This is the common approach on most SIMD and MIMD machines to

support integration of parallel programming in host sequential languages, such as on

CM5 calling CMfortran, C* or CMMD message passing primitives from Fortran77 or

C.

In order to exploit the special high-performance hardware arithmetic accelerator

(called vector unit) in each processing node(PN) of the CM5 system, current CM5

programming software provides some limited way to mix data-parallel paradigm

in message-passing program. Explicit message passing CMMD programs can be

written in data parallel programming languages CMFortran and C*, in which case

the programs use both the microprocessor and the vector units of a PN, with serial

arrays stored in the microprocessor and parallel arrays in the VU memory. It can

thus take advantage of the VUs for high-speed 
oating-point computations. Parallel

arrays can be passed as arguments to CMMD message passing primitives in much the

same way as serial arrays. Within this integration model, data parallel operations

are con�ned in a \node-level" while the overall program is in explicit message-passing

paradigm.

If adopting this approach on a CM5, an ideal integrated program would be as

follows: Executed as a single process on the control processor(CP) of the CM5,



Integrating Multiple Programming Paradigms on CM5 7

the main program in Fortran77 (or C) would �rst act as a host sequential program

in the CMMD host/node programming model and starts a CMMD node program

by enabling and broadcasting some data to the node program which is written in

Fortran77, C or even CMfortran(node-level data-parallel), then this host program

invokes another subroutine written in CMFortran (or C*). After the control is back

to the main program from the CMFortran subroutine, it collects the results sent from

the node CMMD program and �nally ends. Before and after enabling the CMMD

node program or invoking the CMFortran subroutine, there can be any other non-

parallel computing subroutines in the sequential host program. Technically, however,

this approach would pose signi�cant di�culties on the complier(linker) as it is now

the compiler's responsibility, as opposed to that of a third party daemon or the OS

in the process-based approach described below, to manage the time-sharing of CM5's

PNs and internal networks among the CMFortran subroutine and the CMMD node

program.

3. Loosely coupled integration | process-based integration. Di�erent individual

program modules written in same or di�erent languages are complied and linked

separately, while their executables run concurrently as multiple processes time-sharing

a CPU. Message passing among program processes is normally via socket-based

interprocess communication(IPC) though if two modules share a host it is common

to use shared memory to optimize the communication. Runtime process control is

coordinated by a supervising manager(or called daemon) or the operating system.

Currently most windowing systems and networking applications follow this approach,

for instance, the client-server model popularly used in networking programming.

On the host machine of a parallel system, IPC-based systems provide an open en-

vironment for the parallel programming software to be naturally migrated into the

conventional software environement in which software such as concurrent operating

system, networking, graphics, I/O, and sequential programming languages have been

well-established for many years. This process-based approach also opens great oppor-

tunities to construct a \metacomputer" via a networked environment[18]. Depending

on the way(protocal) to facilitate the IPC, such as data exchange, management of

bu�ers and sockets, process control and synchronization, an integration system of

this kind can be quite di�erent. For example, PVM[20], a process-based general

message-passing system, provides a set of user interface primitives that may be incor-

porated into existing procedural languages. PVM primitives exist for the invocation

of processes, message transmission and reception, broadcasting, synchronization via

barriers, mutual exclusion, and shared memory. Processes in PVM may be initiated

by synchronously or asynchronously, and may be conditioned upon the initialization

or termination of another process, or upon the availability of data values. The PVM

constructs therefore permit the most appropriate programming paradigm and lan-

guage to be used for each individual component of a parallel system. In our work, we

use another process-based system, AVS[24], which was primarily used for visualiza-

tion applications. We will demonstrate in later sections the advantages of the AVS's

data
ow IPC model in facilitating data-parallel and message-passing programming

paradigms on CM5.

4. Not-at-all integration | non-interactive style. Data passing and sharing among

di�erent programmodules, usually stand-alone executables, are carried out at (UNIX)



8 Cheng, Fox and Mills

operating system level through shell scripts, pipes, intermediate data �les, and other

pre- or post- processing techniques. This is the usual way for an application to

collectively use the (parallel) computing services when it does not require their

programing tasks to run in an interactive way.

2.3 Parallel Programming on Connection Machine CM5

Detailed description about CM5 architecture and software system can be found in [22]

and related CM5 documents from TMC. In this section, we brie
y outline existing parallel

programming environment on CM5.

The CM5 system combines the features of SIMD and MIMD designs, integrating them

into a single parallel architecture. The unique feature of CM5 provides us the alternatives

to exploit both paradigms in the parallel programming environment.

The CM5 architecture is designed to support especially well the data parallel which

implies a relatively synchronous parallel programming featuring a single conceptual thread

of control and a global approach to data layout and I/O, in which arrays of data are laid

out across all processors, and all elements are computed upon simultaneously, by their

respective processors. Although the conceptual model itself is completely synchronous,

in practice processors may execute asynchronously any operations that are independent

of other processors, such as conditional operations on locally stored data. The CM5

data parallel compilers take full responsibility and advantage of this freedom to exploit

the MIMD hardware capabilities of the CM5. Currently, CM5 supports data parallel

Fortran(CMfortran), data parallel C(C*) and data parallel Lisp(*Lisp) programming

languages.

Explicit message passing model is extended from the data parallel model on CM5, by

using a package of macros and runtime primitives called CMMD supporting MIMD style

low level communications operations. Programs that use CMMD typically operate in a

SPMD(single program multiple data) style in that each processing node of the CM5 runs

an independent copy of a single program and manages its own computations and data

layout, and communication between nodes is handled by calls to CMMD message passing

primitives. The message passing programs can be written in Fortran 77, CMFortran, C,

C++, C* and an assembly language DPEAC.

As shown in Fig. 3, each processing node(PN) is a general-purpose computer that can

fetch and interpret its own instruction stream, execute arithmetic and logical instructions,

calculate memory address, and perform interprocessor communication. All PNs can perform

independent tasks or collaborate on a single problem. A control processor(CP) is similar

to a standard high-end workstation acting as a partition manager to communicate with

the rest of CM5 system through the Control Network and Data Network. CMOST, a

parallel timesharing operating system enhanced from the UNIX, runs on the CP to make

all CM5 resource allocation and swapping decisions, as well as most system calls for process

execution, memory management, I/O and access from/to local networks. The Control

Network provides tightly coupled communication services. Optimized for fast response and

low latency, its functions include synchronizing the PNs, broadcasting data to every node,

combining a value from every node to produce a single result, and computing certain parallel

pre�x operation. The Data Network provides loosely coupled communication services.

Optimized for high bandwidth, it provide point-to-point data delivery. A data parallel

or CMMD message passing process running on the CP plus the nodes is a single process

time-sharing the CM5 system with other processes.



Integrating Multiple Programming Paradigms on CM5 9

3 AVS - A Data
ow Based Integration Tool for Multi-paradigm Pro-

gramming on CM5

3.1 The Application Visualization System

AVS[1] is a widely available commercial visualization environment based on a data
ow

model for scienti�c data visualization and process control. It incorporates visualization,

graphics, visual programming, process management and networking into a single compre-

hensive visualization application software and development environment. We are most

interested in its software integration capability in this article.

The AVS data
ow is a model of parallel computation in which a 
ow network of

autonomous processes compute by passing data along arcs that interconnect them by

input/output ports. Each module/process �res autonomously as soon as all the inputs

it requires arrive on its input ports. It then produces a value that 
ows on its output

port(s) and thus triggers further computations. The AVS 
ow networks are built from a

menu of modules by using a direct-manipulation visual programming interface.

Both process control and data transfer among processes in AVS are in a modular fashion

and is completely transparent to the programmer. AVS provides a data-channel abstraction

that transparently handles module connectivity and ports type-checking. The module

programmer needs only to de�ne the input and output ports in AVS prede�ned data types

and using a set of AVS routines and micros. Message passing occurs at a high level of data

abstraction and only through the input and output ports. AVS kernel(manager) executes

the 
ow network and supervises the real data transfer which is eventually carried out by

sockets at a lower level.

3.2 A General Parallel Programming Environment on the CM5 with AVS

Although AVS does not provide support for parallel computing within the module, a

speci�c module may use machine/language speci�c features to achieve such parallelism as

data parallel or explicit message passing. Using the modular process management in AVS

and time-sharing CMOST on the CP and CM5's parallel programming software, we can

naturally combine programs in data-parallel, message passing and sequential programming

languages available on CM5 into a single process-based software system. An AVS/CM

process would be a module or a set of modules written in the same language/paradigm. A

typical parallel process will have two distinct portions in the code:

1. AVS/CM interface part { Sequential code in Fortran77, C or C++ to coordinate data


ow and control 
ow between AVS kernel and the CM parallel system. It consists

of codes declaring the AVS module's input/output ports and (graphical) parameters,

packing serial data received from other AVS modules or by sequential subroutines in

the same module into parallel data. e.g., transfer serial arrays into data parallel arrays

or decompose/load block data onto each processing node, or vice visa, sequential I/O,

or a host program for the CMMD host/node programming model.

2. CM computation part { Data parallel subroutines in CMFortran or C*, or CMMD

node programs in Fortran77, C or C++ to perform main calculations requiring

intensive computation and communication.

Multiple modules can either be compiled and linked individually into separate exe-

cutables(processes) or they can be linked into a single executable. Modules in di�erent

processes must communicate data through the CP under the supervise of the AVS kernel.

If the modules are written in di�erent paradigms, they are in di�erent processes. If both

modules are in the same process on the CM5, only a pointer needs to be passed, therefore,



10 Cheng, Fox and Mills

modules written in the same paradigm can be grouped in a single process and data transfer

among them has no communication (data-movement) cost.

AVS provides a su�ciently high level way to integrate both data parallel and

message passing programming paradigms into a single environment on CM5, so that the

programmers have the freedom to choose either parallel programming fashion to solve their

problem, independently or in a mixed way. Other advantages using this integration system

include:

1. Modularity and template-oriented | Programs are constructed by using explicitly

declared communication channels to plug together program processes. A process can

encapsulate common data decomposition, manipulation and internal communication,

and the programming paradigm inherent in the code. The modular approach of AVS

also lends itself well to software sharing, module reuse, extensibility and 
exibility.

2. Module reusability | CM5 data parallel or message passing codes and algorithms are

modularly developed and compiled once, and can then be reused inde�nitely in a plug-

and-play mode in a variety of diverse scienti�c applications. Because the interfaces

between modules are well de�ned, modules developed at di�erent computer sites, by

di�erent developers and in di�erent paradigms may be freely shared. Modules created

for one application can be readily be used to another similar application with little

or no change.

3. Flexibility and extensibility for rapid prototyping | At �rst stage of an application

development, programers can concentrate on task decomposition, parallel algorithm

design and performance improvement, totally ignore system integration issues. They

may write their own modules in their favorite programming paradigm and language

binding. The programs are then migrated to the AVS environment by simply

attaching and linking the AVS interface code, while the main parallel algorithms

can be untouched.

4. Hierarchy parallelism | At top of the task levels decomposition of problem domain,

modules that are connected in the data
ow programming paradigm have the potential

to run concurrently or in a pipelined way. At this coarse grained process level,

functional parallelism can also be achieved such that graphical interface, sequential

and parallel I/O, remote networking access and the decomposed task computation can

be carried out concurrently by di�erent components of the CM5 supercomputer. The

second level of the hierarchy is the hybrid data parallelism in data parallel modules

and control parallelism in explicit message passing modules. At the bottom level

parallelism can be thought as that inherented in the piplelined processing hardware

such as the vector units in the CM5.

5. Safety | Operations on channels are restricted so as to guarantee deterministic

execution. Channels are strongly typed, so a compiler can check for correct usage.

This is a general parallel programing environment which can allow sequential with

parallel, data-parallel and explicit message passing programming, concurrent and pipeline,

and control parallelism and functional parallelism. Running in an interactive environment,

it gives the user maximum control over the optimization of heterogeneous resources and

capabilities of a high performance computing system.



Integrating Multiple Programming Paradigms on CM5 11

3.3 Performance Consideration in the Process-based Integration

The process-based integration system o�ers many advantages for high performance com-

puting in terms of multi-paradigm programming, software re-use and modularity. For such

a system to be e�ective, attention needs to be given to several key performance issues. The

current coarse-grain data
ow system su�ers from the problem of ine�ciency in terms of

data-movement overhead and memory usage. First, since scienti�c data sets are inevitably

very large and the data 
ows between any two processes have to be through the sequential

pipeline on the serial host computer, data transfer between the host machine(i.e. CP) where

running AVS kernel and the parallel processing nodes(PNs) can be very costly. This may

cause a long start-up time to �ll up a pipeline and also cause delayed error detection if an

error occurs in the data set being transferred. Secondly, because each module is bu�ering

its entire data on the input and output ports and all the intermediate data have to reside in

memory, the total memory requirement on the host can be very large. Continuous swapping

of running processes by the operating system can make this situation even worse.

In addition, there are other limitations in the current AVS system. It provides

very limited support to dynamic modi�cation of 
ow network, e.g., the processes and

their communication requirements are changing with time { processes can be created

or destroyed, communication pattern will move at run-time[19]. It is also di�cult in

AVS to perform a round-way data
ow computation, i.e., output data of a down-stream

module is used as input to a up-stream module. We have to use CMMD host/node

programming model for the AVS/CM module, thus sacri�ce certain advantages in the

hostless programming.

Performance of these systems on massively parallel machines will in large part depend

upon the systems' capability to support high bandwidth and low latency for data transfer

between a host machine and all the node processors, and the way how a problem's tasks

are decomposed. The task granularity must be restricted in a coarse-grained domain and

the task partitioning should be carefully evaluated to consider the balance of each module's

computation time and process communication time. System software is needed to support

high-bandwidth parallel I/O and shared memory segments between processes. For example,

the CM/AVS system under development at Thinking Machines would greatly reduce the

process-level data-movement overhead in the AVS integration environment[16, 14]. In

CM/AVS, CM5 shared-memory regions are used to exchange data, if they are in the same

CM5 partition, or they exchange data directly over the routine network via CM-domain

socket, if they are in di�erent partition. They may communicate with serial modules on

a workstation over the fastest available network connecting the various components, using

parallel sockets.

4 A Case Study | Comparison of Numerical Advection Models

In the previous work, we have demonstrated the use of AVS in two real-world applications,

a stock option pricing modeling[3] and an electromagnetic scattering simulation[4], both in

the context of scienti�c visualization and also, more broadly, as an attractive environment

for software integration in high performance distributed computing. Those work motivated

us to explore further the AVS's capability of system integration for HPCC applications such

as GIS[6], four-dimensional data assimilation and environmental modeling, in particular,

the methodology to support multi-paradigm parallel programming as described in this

paper. In this section, we use a simple case study to demonstrate the feasibility to integrate

CMFortran and CMMD modules on a CM5 in the proposed AVS environment. This is not



a HPCC application but it allows us to evaluate all the technical and system issues involved

in the integration.

In 
uid dynamics, the simple one-dimensional advection equation (1) with constant

positive velocity serves as a basic model for the shape-conserving movement of an initial

distribution of 
uid volume toward positive x. Since the analytic solution is known in this

simple case, numerical approximations to the advective process can be critically evaluated

on fundamental properties such as accuracies, stabilities, coordinate systems and computer

time and memory requirements.

@�

@t
+ u

@�

@x
= 0(1)

where � is the 
uid velocity and u is the mixing ratio � � C/� in which C is the

constituent density and � the density of the 
uid.

Our case study is to create a prototype interactive computing/visualization environment

in which a couple of 1D advection models are purposely implemented in di�erent

programming paradigms on CM5 and the results can be graphically compared with through

a graphical user interface.



Integrating Multiple Programming Paradigms on CM5 13

Fig. 5. A graphical user interface of the integrated system

We choose from [17] �ve numerical advection algorithms with di�erent di�usion,

dispersion and monotonicity properties. They are `Donor-cell', `Partial donor-cell', `van

Leer', `Hain' and `Lax-Wendro�', named after the authors of the algorithms. 'Donor-cell'

is then implemented in CMFortran and `van Leer' in CMMD, while the rest models are in

Fortran77. All the \AVS/CM interface part" codes are written in C.

To demonstrate the system's integration capability on a heterogeneous architectures,

we purposely run the AVS kernel on a IBM RS/6000, the `Hain' module on a DEC5000 and

the `Lax-Wendro�' on a SUN4, while the data-parallel `Donor-cell', the message-passing

`van Leer' and the sequential `Partial donor-cell' module are running on a 32-node CM5.

The system con�guration is shown in Fig. 4.

Fig. 5 is a screen dumped picture showing the system parameter control panel(left),

model output windows(top) and the 
ow network(bottom). The 
ow-chart-like diagram is

the process con�guration built by the AVS visual programming interface Network Editor, in

which 'Advection Interface' is a system control module for model input parameters steering

and the 'graph viewer' is an AVS system module for model graphical output and both run

on the same machine as the AVS kernel. The other modules correspond to the respective

advection models.

This prototype environment has the following features:

1. User interactive control of the modeling. Before or during a modeling run, the user



14 Cheng, Fox and Mills

can graphically choose advection models, set model parameters including execution

modes (single step, continuous, pause, abort, or stop), displaying time steps, the total

number of grid points and time steps.

2. Graphical output of the model results. The user can decide the displaying pattern,

such as line, area, bar, and other graphics parameters such as title, color, etc.

3. Easy and 
exible to include other advection models. It can be easily extended

to add in other old/new models with varying velocity �elds, multidimensions and

non-rectangular coordinated systems or with sequential, data parallel or message

passing implementations. All the models can be transparently con�gurated to run in

a distributed computing environment.

5 Conclusion

The purpose of this experiment in integrating multi-paradigm programming is to provide

programmers with a rich and attractive programming environment with which choice of

high and low level programming models can be made upon problem structures, as well as

particular machine architectures, to facilitate a gradual and eventually e�cient mapping

from problems to parallel systems. In the case multiple programming languages are

required, this environment supports a seamless and modular way to interface the data

and control transfer among processes in di�erent languages.

With its visual programming interface, modular program structure, data
ow based

execution, interactive visualization functionality and its open system characteristics, a

process-based integration software like AVS provides an excellent framework to facilitate

integration of various system components required by a large, multidiciplanary applications,

including integration of sophisticated interactive visualization, database management,

heterogeneous networking, massively parallel processing and real-time decision making,

as well as a useful tool for software development and project planning. We believe that

with the adoption of HPCC technologies into industry applications, system integration will

play an ever-growing important role in parallel software development and system design.

Acknowledgment: We are grateful to Ricky Rood of NASA/Goddard who made the

original advection codes available to us.

References

[1] Advanced Visual Systems Inc. AVS 4.0 Developer's Guide and User's Guide, May 1992.

[2] K. M. Chandy, C. Kesselman, Compositional C++: Compositional Parallel Programing,
Technical Report, California Institute of Technology, 1992.

[3] G. Cheng, K. Mills and G. Fox, An Interactive Visualization Environment for Financial
Modeling on Heterogeneous Computing Systems, in Proc. of the 6th SIAM Conference on

Parallel Processing for Scienti�c Computing, R. F. Sincovec, eds., SIAM, Norfolk, VA, March

1993.

[4] G. Cheng, Y. Lu, G.C. Fox, K. Mills and T. Haupt, An Interactive Remote Visualization
Environment for an Electromagnetic Scattering Simulation on a High Performance Computing
System, Technical Report, SCCS-467, to appear in Proc. of Supercomputing `93, Portland,

OR, Nov.,1993.

[5] G. Cheng, and Y. Zhang, A Functional + Logic Programming Language in Interpretation-
Compilation Implementation, Lisp And Symbolic Computation: An International Journal,

Vol. 5, No. 3, 1992, pp. 133-156.



Integrating Multiple Programming Paradigms on CM5 15

[6] G. Cheng, C. Faigle, G. C. Fox, W. Fumanski, B. Li, and K. Mills, Exploring AVS for HPDC
Software Integration: Case Studies Towards Parallel Support for GIS, Proc. of the 2nd AVS

Conference AVS'93, Lake Buena Vista, FL, May 1993.

[7] Document for a Standard Message-Passing Interface (draft), May 28, 1993.

[8] I. Foster and K. M. Chandy, Fortran M: A Language for Modular Parallel Programming,
Preprint MCS-P237-0992, Mathematics and Computer Science Division, Argonne National

Laboratory, Argonne, Ill., 1992.

[9] I. Foster, Fortran M as a language for building earth system models, Preprint MCS-P345-0193,

Argonne National Laboratory, and Proc. 5th ECMWF Workshop on Parallel Processing in

Meteorology, ECMWF, Reading, U.K., 1992.

[10] G. C. Fox, Parallel Computers and Complex Systems, Complex Systems '92: From Biology

to Computation, Inaugural Australian National Conference on Complex Systems, December

1992. Editors: Bossomaier, David G. Green. CRPC-TR92266

[11] G. C. Fox, S. Hiranadani, K. Kennedy, C. Koelbel, U. Kremer, C-W Tseng, and M-Y Wu,

Fortran D Language Speci�cation, Syracuse Center for Computational Science-42c, Rice COMP

TR90-141, 37 pps, 1991.

[12] B. Hailpern,Multi-Paradigm Languages, IEEE Software, Vol. 3, No. 1 (1986), 54-66.

[13] High Performance Fortran Language Speci�cation, High Performance Fortran Forum, May,

1993, Version 1.0, 184 pp., Rice University, Houston, Texas.

[14] M. F. Krogh and C. D. Hansen, Visualization on Massively Parallel Computers using CM/AVS,
Proc. of the 2nd AVS Conference AVS'93, Lake Buena Vista, FL, May 1993.

[15] K. Mills and G. C. Fox, HPCC Application Development and Technology Transfer to Industry,
to appear in the Postproceedings of the New Frontier: A Workshop on Future Directions of

Massively Parallel Processing, IEEE Computer Society Press, Los Alamitos, CA, July 1993.

[16] G. Oberbrunner, Parallel Networking and Visualization on the Connection Machine CM-5,
the Symposium on High Performance Distributed Computing HPDC-1, September, 1992, pp.

78-84, Syracuse, NY.

[17] R. B. Rood, Numerical Advection Algorithms and Their Role in Atmospheric Transport and
Chemistry Models, Review of Geophysics, Vol. 25, No. 1, pp. 71-100, February, 1987.

[18] L. L. Smarr and C. E. Catlett, Metacomputing, Communication of the ACM, Vol. 35, No.6,

June, 1992, pp. 45-52.

[19] P. A. Suhler, J. Biswas, K. M. Korner and J. Browne, TDFL: A Task-Level Data
ow Language,
Journal of Parallel and Distributed Computing 9, 103-115(1990).

[20] V. Sunderam, PVM: A Framework for Parallel Distributed Computing, Concurrency: practice
and experience, 2(4), Dec. 1990.

[21] System Software and Tools for High Performance Computing Environments, Final report of

the Workshop on System Software and Tools for High Performance Computing Environments,

Pasadena, California, April 14-16, 1992. (225p.)

[22] Thinking Machines Corporation, The Connection Machine CM-5 Technical Summary, Techni-
cal Report, Cambridge, MA, October 1991.

[23] Thinking Machines Corporation, CM Fortran Utility Library Reference Manual, Technical

Report, Cambridge, MA, January 1993.

[24] C. Upson, T. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz and A.

van Dam, The Application Visualization System: A Computational Environment for Scienti�c
Visualization, IEEE Computer Graphics and Applications, July, 1989.


