
Power Systems Transient Stability - A Grand

Computing Challenge

D. P. Koester, S. Ranka, and G. C. Fox

School of Computer and Information Science and

The Northeast Parallel Architectures Center (NPAC)

Syracuse University

Syracuse, NY 13244-4100

dpk@npac.syr.edu, ranka@top.cis.syr.edu, gcf@npac.syr.edu

NPAC Technical Report - SCCS 549

31 August 1992

Abstract

Real-time or faster-than-real-time power system transient stability simulations will

have signi�cant impact on the future design and operations of both individual elec-

trical utility companies and large interconnected power systems. Su�ciently fast

transient stability simulation implementations may signi�cantly improve power sys-

tem reliability which, in turn, will positively a�ect electrical utility company pro�ts,

environmental impact, and customer satisfaction. Past research into techniques to

enhance the performance of transient stability simulations has included both concur-

rent processing and better algorithms, however, there are still considerable areas for

research into this problem. The scope of real-time or faster-than-real-time transient

stability analysis places this application in the category of being a grand computing

challenge that could bene�t from future tera
op (trillion
oating-point operations

per second) supercomputers. This paper describes various research areas that are

of interest to the computational science academic community that o�er promise to

improve the quality and performance of power system transient stability simulations.

Many of the research areas o�er competitive alternatives for performance improve-

ments; consequently, a parallel transient stability testbed at the Northeast Parallel

Architectures Center (NPAC) at Syracuse University is proposed. We believe that

it is possible to develop scalable transient stability algorithms using both concur-

rent computers and more e�cient algorithms that could o�er speedups of 100 on

32-processor distributed-memory multicomputers when compared to sequential codes

such as the EPRI-Extended Transient/Mid-Term Stability Program. Even greater

speedups would be possible on multicomputers with more processors.

1 Introduction

Transient stability analysis examines the dynamic behavior of a power system for

as much as several seconds following a power
ow disturbance. Transient stability

analysis is concerned with the electrical distribution network, electrical loads, and

the electro-mechanical equations of motion of the interconnected generators [1, 3,

46]. Traditionally, power system transient stability analysis has been performed o�-

line to understand the system's ability to withstand speci�c disturbances and the

system's response characteristics, such as damping of generator oscillations, as a

system returns to normal operations. Such contingency studies were limited to the

system design/upgrade phase in order to ensure robust network design and limited

to operator training exercises in order to assist with robust power system operations

[3].

To date, the computational complexity of transient stability stability problems

have kept them from being run in real-time to support decision making at the time

of a disturbance. If a transient stability program could run in real-time or faster-

than-real-time, then power system control-room operators could be provided with a

detailed view of the scope of cascading failures. This view of the unfolding situa-

tion could assist an operator in understanding the magnitude of the problem and

its rami�cations so that proactive measures could be taken to limit the extent of

the incident. Faster transient stability simulation implementations may signi�cantly

improve power system reliability which in turn will directly or indirectly a�ect:

1. electrical utility company pro�ts

2. environmental impact

3. customer satisfaction

In addition to real-time analysis, there are other areas where transient stability

analysis could become an integral part of daily power system operations:

1. system restoration analysis

2. economic/environmental dispatch

3. expansion planning

1

Real-time or faster-than-real-time transient stability analysis could also be a signi�-

cant bene�t to an operator when a power system is being restored after an outage.

Incorrect decisions concerning the order to switch loads and generator capacity back

on-line could cause recurrences of cascading system failures or even physical damage

to generators, transformers, or power lines. In the near future, economic and envi-

ronmental dispatch will combine with limitations on generation expansion and also

combine with increasing load demand to force electrical power systems to operate

closer to reliable operating margins; consequently, more frequent considerations of

transient stability may be required [5].

It will be shown that computational requirements are a signi�cant problem with

transient stability simulations. The scope of real-time or faster-than-real-time tran-

sient stability analysis places this application in the category of being a grand com-

puting challenge that could bene�t from future tera
op (trillion
oating-point op-

erations per second) supercomputers. Past research into techniques to enhance the

performance of transient stability simulations has included both concurrent process-

ing and better algorithms, however, there are still considerable areas for research into

this problem.

This paper provides background on the power system transient stability problems,

and discusses various techniques available to improve the computational tractability

of the transient stability problem. The goal is to develop e�cient, accurate imple-

mentations of power system simulations that are su�ciently fast to o�er inputs to

interactive operator support routines. Techniques are examined to solve di�erential-

algebraic equations | the computational heart of the transient stability problem.

An examination of previous research reported in the literature has been used to form

the basis of a discussion of relevant numerical research topics for transient stability

analysis. The paper describes plans to develop a parallel transient stability analysis

testbed at the Northeast Parallel Computing Center (NPAC) at Syracuse Univer-

sity to permit a consistent test environment to develop new algorithms and parallel

computing applications as research is performed on this grand computing challenge.

Lastly, estimates of the magnitude of potential speedup in power systems transient

stability simulations are presented.

2

2 Power System Transient Stability Simulations

Transient stability analysis examines the dynamic behavior of power system electrical

distribution networks, electrical loads, and the electro-mechanical equations of motion

of the interconnected generators for as much as several seconds following a disturbance

[1, 3, 46]. Under normal operating conditions, an electrical power system is near

equilibrium, with only minor deviations from true steady-state conditions caused by

small, nearly continuous, changes in the loads. When a short circuit occurs in the

power distribution network, there are signi�cant, nearly instantaneous, changes in

the loads at some generators in the system.

Mechanical controls in the generators react slower than the electromagnetic loads,

so there is the possibility that instead of the power system returning to a steady-

state condition after the disturbance, one or more generators may encounter su�cient

variations in rotational speed that they loose synchronization with the power network

and must be taken o�-line to avoid catastrophic problems. If a generator must be

taken o�-line because it has lost synchronization, there will be a decrease in available

generator capacity and another source of disruption will be injected into the power

system. Cascading system failures can cause wide spread power outages, reduce the

interconnected power grid to islands of power service, and even cause physical damage

to generating equipment [7].

There is a simple mechanical analog to the transient stability problem that will

assist in understanding the nature of the problem. Consider a number of masses, that

represent the electrical generators in a power system, suspended within a network of

elastic strings, that represent the electrical transmission lines. A sudden loss of a

transmission line can be modeled by cutting a string in the steady state network.

The forces in the remaining strings will
uctuate, and the masses will experience

coupled motion that is dependent on the network and the tensions in the strings.

This disturbance may cause two e�ects:

1. The network will settle down into a new steady-state condition where the forces

in the strings represent the electrical voltages in the power system.

2. One or more additional strings could break resulting in a chain reaction that

reduces the network into small isolated groups of weights and strings.

3

A network is transient stable for the fault in question if the system is able to survive

the disturbance and return to steady-state [27].

The reaction of a single generator to variations in its load can be modeled using

ordinary di�erential equations (ODEs):

_y = f(y; z): (1)

However, there are multiple generators supplying power to the network and the gen-

erators are coupled through the power network. The power network can be modeled

by non-linear algebraic equations:

0 = g(y; z); (2)

and this entire system of di�erential-algebraic equations (DAEs) must be solved si-

multaneously (or nearly so). Transient stability analysis is computationally inten-

sive because the large systems of DAEs must be solved at small time increments

to ensure that errors are minimized in the numerical integration of the potentially

computationally-sti� ODEs [41]. The dynamics of each generator are individually

modeled with as few as two and with as many as forty di�erential equations while the

generators are coupled via the algebraic equations that describe the electrical net-

work. This requires the solution of large systems of simultaneous sparse non-linear

equations.

The number of equations required to solve the transient stability DAEs are ex-

tremely large and very sparse. For example, if there are twenty di�erential equations

to describe each generator and two equations to describe the complex voltage/current

at each network bus, then a state-wide or regional interconnected power system with

2000 buses and 300 generators could generate a sparse, irregular system of 10,000 non-

linear algebraic equations that must be solved simultaneously. In this example, the

matrix would be formed by 300 blocks of generator equations along the diagonal with

additional blocks formed from the network equations. After reordering the matrix,

all equations with variables outside of the blocks along the diagonal will be relocated

into narrow borders along the bottom and right side of the matrix. Each generator

equation may have as many as 20 variables, and each network equation would have

only between two and ten variables due to the limited number of transmission lines

at any bus.

4

An example of the block-bordered diagonal matrix for a smaller power system

with only ten generators is depicted in �gure 1. Generator equations occur in the

blocks along the diagonal starting at the upper-left-hand side of the diagram, and

are labeled G1 to G10. The network equations occur in the lower-right-hand side of

the matrix, and in this representation, the network equations have been reordered

into block-bordered-diagonal form according to the natural hierarchy encountered in

electrical power distribution networks. The blocks along the diagonals, in this portion

of the matrix, are independent portions of the network, while the inner borders contain

network equations that depict the interconnections between independent portions of

the electrical network. The outer borders contain equations that relate generator

current to voltages at the buses connected to generators.

There are several levels of inherent hierarchy in a state or regional power network

due to the clustering of loads within power systems, interconnections between load

clusters for system reliability within an electrical utility, and the interconnections

between utilities for added reliability and the inter-utility sale of electricity [22, 31].

A simple two-level hierarchical network and block-bordered diagonal matrix is illus-

trated in �gure 2.

Solutions of simultaneous nonlinear equations are performed using iterative tech-

niques such as Newton's method that require the solution of one or more linear

systems of equations

Ax = b: (3)

The Jacobian matrix used in the Newton method has the same sparsity pattern as the

original matrix. Examples in the literature discuss using time-step sizes that would

require between 12 and 100 time-steps per second of simulation time [10, 25, 33, 34,

35, 47]. Consequently, a real-time or faster-than-real time transient stability analysis

program could require the solution of systems of 10,000 non-linear algebraic equations

a hundred times per second, and each solution of the systems of nonlinear equations

could require multiple solutions of a similar number of linear equations that require

forward reductions and backward substitutions for a number of vectors equal to the

number of linear equations [20].

At this point, it would be desirable to develop estimates of the number of
oating-

point operations required to solve these linear equations, in order to calculate a de-

5

OUTER

BORDER

INNER
BORDER

INNER

BORDER

OUTER

BORDER

0

0

G3

G4

G5

G2

G1

G10

G9

G8

G7

G6

N4

N3

N2

N1

GENERATOR EQUATIONS NETWORK EQUATIONS

Figure 1: Block-Bordered Diagonal Matrix Form Derived from the Power System

Transient Stability Di�erential-Algebraic Equations

6

2 1

3

-- THESE NODES ARE PLACED IN BLOCK 4

AND THE INTERCONNECTIONS ARE

PLACED IN THE BORDERS

1

2

4BORDER

B
O

R
D

E
R

3

Figure 2: Hierarchical Power System Network Mapping to a Block-Bordered Diagonal

Matrix Form

tailed analysis of the potential performance on a target parallel architecture, however,

such an estimate would be highly dependent on the number of equations in the actual

sparse matrix, and the sparsity structure in the matrix [14]. The sparsity structure

can directly a�ect the number of calculations; although there are many techniques

available to reorder a matrix in order to reduce the number of calculations and/or in-

crease the amount of calculations that can be performed concurrently [23]. Estimates

of the number of
oating point operations in the calculations of the transient stability

DAEs will be used in subsequent research as portions of objective functions to deter-

mine optimal parallel processing load balancing, however, without more details on a

speci�c, large interconnected power system in this example, it is not possible to give

more detailed estimates of the number of
oating point operations. Nevertheless, it

is possible to develop estimates of potential algorithmic and concurrent performance

improvements using other approximate techniques based on the amount of overhead

in a concurrent algorithm and the fraction of sequential operations in a concurrent

implementation, using Amdahl's law [32, 37, 38]. Such performance estimates will be

7

discussed later in this paper.

3 Techniques to Speedup Transient Stability Sim-

ulations

At present, techniques available to the computational scientist to either improve the

performance of an application or to make the implementation of a grand computing

challenge problem even feasible fall into two categories:

1. faster hardware

2. more e�cient algorithms

While emphasis is often primarily directed to the application of more computing

power, the development of more e�cient underlying algorithms can also be an e�ec-

tive means to reduce the wall-clock time for a problem as computationally intensive

as transient stability simulations. Meanwhile, when attempting to enhance the per-

formance of an application, a strong synergism exists between faster hardware and

algorithms. In particular, the use of supercomputer hardware requires research into

algorithms that make e�cient use of vector processing or parallel processing archi-

tectures, especially when signi�cant portions of applications are not embarassingly

parallel.

Supercomputer technologies based on scalar or vector processing architectures are

rapidly approaching the physical limitations of circuit size and logic switching speeds;

consequently, concurrent or parallel processing has become the focus for addressing

computational grand challenges [39]. Without a doubt, concurrent processing archi-

tectures will be the basis for the forthcoming tera
op (trillion
oating-point opera-

tions per second) supercomputers. Detailed, accurate, faster-than-real-time transient

stability analysis for state or regional electrical power governing authorities will re-

quire these impressive computing capabilities to be e�ectively harnessed using e�cient

algorithms.

Basic de�nitions of speedup for sequential and concurrent algorithms are required

in order that preliminary estimates of algorithm performance can be developed with-

8

out extensive modeling of algorithms, computer architectures, and particular power

systems.

De�nition 1 (Speedup) Given a single problem with two sequential algorithms

that exhibit execution times of T1 and T2 with T2 < T1, speedup is de�ned as

SA �
T1

T2

: (4)

This simple, intuitive de�nition will be expanded in order to compare the performance

of sequential and concurrent algorithms.

De�nition 2 (Relative Speedup)Given a single problem with a sequential algo-

rithm running on one processor and a concurrent algorithm running on p independent

processors, relative speedup is de�ned as

Sp � fracT1Tp; (5)

where T1 is the time to run the sequential algorithm as a single process and Tp is the

time to run the concurrent algorithm on p processors.

De�nition 3 (Fair Speedup)Given a single problem with a sequential algorithm

and concurrent algorithm running on p independent processors, fair speedup is de�ned

as

Ŝp �
Tseq

Tp

; (6)

where Tseq is the time to run the most e�cient sequential algorithm as a single process

and Tp is the time to run the concurrent algorithm on p processors.

De�nition 4 (Amdahl's Law) Given T1, the time to solve a problem on a single

processor, then Tp can be parameterized in � 2 [0; 1] by

Tp � �T1 + (1 � �)
T1

p
; (7)

where � is the inherently sequential fraction of computations. The aforementioned

estimate of Tp can be used when estimating the relative speedup Sp [37] by

Sp =
p

1 + (p � 1)�
=

1

�+ (1 � �)=p
� S1 � �

�1
: (8)

Amdahl's Law can be used to estimate the maximum potential relative speedup by

taking the inverse of the sequential portion of the parallel problem. According to

9

Amdahl's law, a task with 1% sequential operations could obtain no more than a

speedup of 100, regardless of the number of processors applied to the problem.

De�nition 5 (Overhead-Based Estimates of Speedup) Amdahl's Law gives

one preliminary estimate of the potential speedup in a concurrent algorithm, however,

for some concurrent algorithms, overhead associated with the concurrent algorithm

appears more critical than the inherent percentage of sequential operations in a con-

current algorithm. In these instances, the time for a parallel algorithm can be de�ned

as

Tp �
Tseq

p
(1 + ft): (9)

Consequently, an estimate of fair speedup can be obtained by

Ŝp =
p

1 + ft
: (10)

In this formula ft is the total amount of overhead from numerous sources [16], that

include:

1. nonoptimal algorithm or algorithmic overhead | additional calculations in the

concurrent algorithm that are not present in a sequential algorithm

2. load balancing | speedup is limited by the processing time of the slowest node

3. software overhead | additional calculations that must be replicated at each pro-

cessor, such as additional index calculations

4. communications overhead | idle time for processors as they wait for interpro-

cessor communications that has not been overlapped with calculations

It is not always easy to predict the amount of overhead in a parallel algorithm without

extensive, detailed simulation. This measure of concurrent algorithm performance,

along with Amdahl's law, provide preliminary estimates of potential performance im-

provement when comparing algorithms with di�ering communications properties or

when comparing substantially di�erent concurrent and sequential algorithms.

The two techniques available to the computational scientist to address this prob-

lem can thus be restated as:

1. execute as many instructions as possible concurrently

10

2. reduce the number of instructions to solve the problem

Both of these techniques have been addressed in previous publications on research

into transient stability simulations, nevertheless, signi�cant areas of application de-

pendent research still exist. Numerous papers exist that address the use of vector

or parallel processing architectures for the transient stability problem [2, 8, 10, 12,

13, 15, 25, 33, 34, 35, 40, 41, 44, 47]. Many papers in this �eld addressed theoreti-

cal applications of parallelism within the transient stability problem but o�ered no

implementations [2, 8, 13, 15, 33, 34, 35]. Many recent papers address speci�c nu-

merical analysis techniques and only a few papers have benchmark information from

actual parallel processing hardware, and that hardware is often presently outdated

[10, 25, 47]. Frequently those authors who have developed parallel processing imple-

mentations have relied on optimizing or automatic parallelizing compilers that were

used with existing sequential transient stability software [10, 25, 47].

Meanwhile, algorithmic speedup research has been frequently reported in the IEEE

Transaction on Power Systems, with only a single recent paper addressing the com-

bination of algorithmic speedup in conjunction with parallelism [47]. Some parallel

processing papers have addressed the synergism of algorithms with the computer ar-

chitecture, however, the focus has been generally limited to techniques that permit

parallelism by modifying the precedence when solving the DAEs at the normally

sequential time-steps [2, 10, 33, 34, 35]. This parallel time-domain technique [2] tech-

nique has been widely used because it may have more calculations that can be per-

formed in parallel than would a concurrent version of a sequential transient stability

simulation and this parallel time-domain technique has permitted implementations

that avoid addressing parallel implementations of such algorithms as the direct so-

lution of linear systems of equations [10]. Nevertheless, the parallel time-domain

technique requires signi�cant additional calculations to be performed to enhance par-

allelism.

The example in [2], that illustrates the parallel time-domain technique, requires

nearly 35% more calculations than solving the DAEs for sequential time-steps. These

additional calculations are a result of reordering the lower bi-diagonal matrix that

represents the application of the trapezoidal rule on the entire set of time-steps. Re-

ordering the matrix modi�es the precedence between calculations and causes �llin

11

that is not present in the purely sequential algorithm. Such additional calculations

contribute to algorithmic overhead | or additional calculations that a parallel al-

gorithm must perform that a sequential program does not perform. Any overhead

speci�c to a concurrent implementation of an algorithm decreases the potential ef-

�ciency of that algorithm. For example, when 33% more calculations are required

in a parallel algorithm, according to the overhead based estimate of speedup, the

maximum speedup will be less than (75% � P), where P is the number of processors.

In spite of having to perform signi�cant additional calculations, techniques like this

are one method to utilize more parallel processors at a time. Techniques that require

additional calculations are an ine�cient use of resources if other techniques exist that

can be exploited for parallelism without the requirement for additional calculations.

Additionally, the parallel time-domain technique is inherently limited to using

a low order numerical integration technique, the trapezoidal rule, that may require

shorter time steps and consequently more calculations due to accuracy limitations

[20]. Because the power system transient stability problem primarily involves the

solution of DAEs, additional discussion on DAE solvers will be included in the next

section.

One of the interesting areas for algorithmic speedup in transient stability simu-

lations is the partitioning of the electrical network under test into study and exter-

nal areas that permit larger integration step sizes in external areas. Variable time-

steps can be used because the generator equations are better behaved the further

the electromagnetic distance from the initial fault. Such techniques are reported in

[6, 28, 30, 47], with a discussion of a parallel implementation on an Alliant FX/8

shared-memory multiprocessor being reported in [47]. That article concludes that an

algorithmic speedup of approximately �ve is possible by simply limiting this source of

unnecessary calculations. Signi�cant improvements in both reducing the number of

computer instructions and executing as many instructions in parallel on distributed-

memory multiprocessors for the transient stability problem will require research into

many areas not previously addressed in the state-of-the-art parallel power system

transient stability analysis research described in the literature.

12

4 Di�erential-Algebraic Equation Solvers for Power

System Transient Stability Simulations

A transient stability simulation is composed of three major software components:

1. the user interface

2. the DAE solver, and

3. analytical software to classify network stability.

with the vast majority of machine cycles being utilized by the DAE solver. Numer-

ous general numerical analysis techniques have been addressed in the power systems

literature that can be applied to the solution of the DAEs [13]. This list of techniques

include:

1. iterated timing analysis

2. time-domain parallelism techniques

3. waveform Newton techniques

4. waveform relaxation techniques, and

5. network analysis software similar to that used in"SPICE".

Each of these techniques requires additional numerical analysis techniques such as:

1. numerical integration techniques using the trapezoidal rule

2. solutions of non-linear equations by Newton's methods

3. solutions of non-linear equations by relaxation methods

4. solutions of non-linear equations by Picard iteration

5. solutions of linear equations by direct methods, and

6. solutions of linear equations by iterative methods.

13

There have been several competing recurring general techniques used to solve the

DAEs. [3] describes two techniques for solving the transient stability DAEs that are

indicative of the aforementioned list:

1. the partitioned approach | where at each time step, the generator di�erential

equations are solved independently to obtain estimates of generator and load

currents, then the non-linear algebraic equations are solved to get an improved

update for an estimate of the generator voltages at the sample time.

2. the linearization approach | where the generator equations and network equa-

tions are linearized, according to Newton's method, at a recent point on the

solution trajectory by taking numerical di�erences and the linear algebraic equa-

tions are then solved by appropriate techniques.

The iterated timing analysis is an application of the partitioned approach, while

waveform Newton techniques are an instance of a linearization approach.

These numerical DAE solution techniques have been applied to the transient sta-

bility problem, although, there has been no explicit mention in the power systems

transient stability analysis literature of applications using public domain DAE solvers.

These numerical analysis techniques are based on the following concept: to avoid nu-

merical di�erentiations, instead perform analytical di�erentiations of the given equa-

tions until they can be represented as a system of explicit di�erential equations [21].

The reason for avoiding numerical di�erentiation is to reduce errors when taking

numerical di�erences, and the reduction of errors in the numerical techniques is a

critical factor that yields compound dividends. It is possible that the reduction in

computational errors may permit trade-o�s by permitting a reduction in the number

of required state variables or generator equations, and trade-o�s may be possible that

attempt to keep numerical error constant while permitting an increase in time-step

interval.

DAE solvers from the numerical analysis community often use higher order im-

plicit Runga-Kutta integration techniques that yield more accurate solutions or per-

mit larger time-steps. DAE solvers exist that have been explicitly developed to handle

discontinuities in functions | a condition encountered in transient stability calcula-

tions. Much research is possible to determine the applicability of various DAE solution

techniques to both algorithmic speedup and parallel processing speedup.

14

Only recently has the numerical analysis community provided various public do-

main software packages that utilize specialized techniques for the numerical solution

of initial-value DAE problems [9, 21, 49]. There is the distinct possibility that public

domain DAE solvers could signi�cantly speedup the concurrent solution of the tran-

sient stability di�erential-algebraic equations in a manner similar to a petrochemical

engineering application [37]. There are numerous competing techniques reported in

the literature to solve DAEs:

1. multistep backward di�erentiation formulas (BDF) techniques

2. extrapolation techniques

3. Runga-Kutta techniques, and

4. Rosenbrock techniques.

This list is not intended to be all inclusive, nevertheless, it does illustrate a rich,

untapped source of numerical analysis techniques that could be utilized to improve

the performance of transient stability simulations on parallel architectures.

Various DAE solvers are available from the numerical analysis community, for

example:

1. DASSL | a multistep, backward di�erentiation formulas (BDF) technique [9]

2. LIMEX | an extrapolation technique [9]

3. LSODI | a BDF technique [9]

4. RADAU5 | a multistep, implicit Runga-Kutta (IRK) based technique [21]

5. RODAS | a Rosenbrock technique [21], and

6. SEULEX | an extrapolation technique [21].

These DAE solvers o�er the promise of many bene�ts that can be utilized by par-

allel implementations of transient stability analysis. There are numerous versions of

DASSL that have been designed for speci�c purposes, including a concurrent version,

CDASSL [37], which utilizes a concurrent, direct, non-symmetric sparse matrix solver.

There is also a variant of DASSL, DASRT, that has root �nding capabilities to locate

15

discontinuities when they are su�ciently large that DASSL cannot integrate through

without intervention [24]. Such a capability could be important for transient stability

simulations because some of the physical phenomena involved may be discontinuous

[3]. IRK techniques may o�er potential advantages to the transient stability analysis

of power systems, because the generator ODEs may be sti� equations, with eigen-

values lying close to the imaginary axis [41]. This phenomena requires high order

A-stable or nearly A-stable integration formulas and may bene�t from codes such as

RADAU5 [21].

Rosenbrock methods have advantages over IRK-based methods because they com-

pletely avoid non-linear systems of equations while providing the advantages of accu-

rate solutions with sti� di�erential equations. However, to use Rosenbrock methods,

the DAEs must be of index one and expressible in semi-explicit form [21]. This

technique is implemented in the software RODAS. Extrapolation techniques utilize

linearly implicit Euler methods and can be excellent choices when strict tolerances are

required for implicit index one DAEs. LIMEX and SEULEX are implementations of

this technique [9, 21]. All software discussed above is available through the Internet

[21, 49].

5 Relevant Transient Stability Computational Sci-

ence Research Areas

As stated earlier, there is the distinct possibility that dedicated DAE solvers could

signi�cantly speedup the solution of the equations that model the generators and

power network in a transient stability analysis. The numerous techniques reported

in the literature, illustrate a rich, untapped source of potential research that could

be utilized to improve the performance of transient stability simulations on parallel

architectures. While CDASSL, a concurrent implementation of DASSL has shown

potential in a petrochemical engineering application [37], there have been no reports

in the power systems literature of existing DAE solvers being applied to transient

stability analysis. Research into a combination of algorithmic and parallel processing

speedup based on these existing programs o�ers signi�cant opportunities to improve

the performance of transient stability software. Each of the aforementioned existing

16

programs has some feature that o�ers potential performance improvement. These

performance improvements will be highly correlated to the particular generator and

control equations.

Inherent in any of the aforementioned techniques is the solution of simultane-

ous systems of sparse linear equations. There is extensive research to illustrate

that it is feasible to obtain reasonable parallelism and speedup when solving gen-

eral sparse matrices on state-of-the-art distributed-memory multiprocessors by using

direct techniques [17, 18, 19, 23, 26, 37, 43, 48], as well as by using iterative techniques

[4, 11, 29, 36]. Meanwhile, there appears to be signi�cant structure in sparse matrices

encountered in power system transient stability simulations; that structure can be ex-

ploited for additional parallelism in both the portions of the matrices that represent

the generator equations as well as in the portion of the matrix that represents the

power network. Matrix structure can be used to improve the parallel performance of

either direct or iterative methods. For parallel direct methods, matrix structure can

provide additional parallelism, can reduce �llin, can minimize communications if par-

tial pivoting is required, and can assist in developing an e�cient balance that evenly

distributes processing requirements and reduces interprocessor communications to a

minimum while permitting the remaining communications to occur in a regular pat-

tern. For parallel iterative methods, block-bordered diagonal matrix structure can

speedup preconditioning techniques and the search for an e�cient load balance with

regular communications.

The transient stability DAEs are de�ned by a system of simultaneous equations

that have special form| blocks of generator equations along the diagonals in addition

to the algebraic equations representing the network admittance matrix (�gure 1).

After reordering the matrix, other variables are located in relatively narrow borders of

the matrix [15, 41]. The generator equations naturally fall into distinct blocks on the

diagonal, and the admittance matrix equations can also be placed in block-bordered

diagonal form because power networks are hierarchical by nature. Matrices must be

reordered for maximum parallelism, which includes considerations to minimize �llin

in the sparse matrices | in order to minimize the amount of computations | while

requiring optimum load balancing for the numerous parallel processors.

Signi�cant parallelism is possible in the direct solution of the linear equations

17

encountered in the transient stability DAEs, because of their bordered-block diagonal

form. Portions of the matrix can be reordered into a hierarchical block-bordered

diagonal form and further bene�t from the reduced �llin and reduced interprocessor

communications for parallel implementations. For direct solutions of block-bordered

diagonal matrices, signi�cant parallelism is available in each of the three stages:

1. factorization

2. forward reduction, and

3. backward substitution.

However, a signi�cant portion of the available parallelism in this problem is only

addressable after the network is reordered into bordered-block diagonal form using

either network or graph partitioning techniques. Diagonal blocks can be factorized

independently | with separate blocks being factorized in parallel on separate pro-

cessors or on small groups of processors. The borders are the only portion of the

matrix that will require interprocessor communications, a potential source of com-

munications overhead. Meanwhile, parallel forward reduction and parallel backward

substitution can be e�cient only for matrices with block-bordered diagonal form.

Independent processors can work on separate portions of the matrix, with communi-

cations required only for elements in the borders. Forward reduction and backward

substitution are generally considered to be sequential processes [17, 18, 19], how-

ever, the signi�cant parallelism in these stages for transient stability simulations are

a direct result of exploiting the matrix structure.

There are other research areas available in the parallel direct solution of systems

of linear equations. After a matrix is reordered, there still is research possible to de-

termine the most e�cient mapping of data to particular processors and to determine

whether fan-in or fan-out algorithms for the direct solution of systems of linear equa-

tions would be the most e�cient for the parallel architecture of interest. Meanwhile,

the balance of both calculations and communications is of continual concern.

In addition to the numerous research opportunities available with direct linear

equation solvers, iterative methods exist for the solution of the linear equations.

Implementation characteristics and numerical properties of iterative systems di�er

signi�cantly from direct techniques to solve systems of linear equations. Conjugate

18

gradient methods and waveform relaxation are potential choices for iterative tech-

niques. Iterative methods do not generate �llin and are not limited by synchroniza-

tion in parallel implementations due to precedence in the calculations, however, there

is no upper bound on the number of iterations required to converge to a desired

accuracy. Convergence is primarily determined by the numerical behavior of the par-

ticular problem and the initial values | a set of guesses to start the calculations.

Preconditioning techniques are often required to rede�ne ill-behaved matrices into

more tractable ones that require signi�cantly less iterations; previous solutions may

make good initial guesses because of the small time-steps required to solve the sti�

di�erential equations. Nevertheless, the sti� equations often have a rapid transient

phase that could minimize the e�ectiveness of previous solutions as initial guesses in

iterative techniques.

At present, we believe that direct methods o�er the best possible choice for the

solution of the non-linear equations inherent in the DAEs. Direct methods are robust

and have well-de�ned processing times, which is important in real-time or faster-than-

real-time software. Due to the fundamental di�erences in parallel implementations

and the numerical properties of direct and iterative techniques to solve systems of lin-

ear equations, there are numerous research opportunities available to determine the

most applicable technique to solve the systems of linear equations for an implementa-

tion of the power system transient stability analysis software on a particular parallel

architecture. Also, there exists the possibility of developing hybrid techniques that

utilize direct techniques to solve portions of the matrix, then use iterative techniques

to update the solutions. This technique could be especially e�ective for symmetric

portions of the matrix that could utilize parallel Choleski factorization to reduce the

number of calculations.

Another research area is to combine load balancing with variable time step tech-

niques when generators are partitioned into near and far groups that reside inside the

study area where signi�cant disturbances will be encountered and outside the study

area where generators will encounter only minor disturbances. There has been some

discussion of dynamic partitioning algorithms for parallel transient stability analysis

in [47], where this technique has been implemented on a shared-memory multiproces-

sor, without detailed discussion of the required load balancing algorithm required to

19

consider the potentially unbalanced communications that would be encountered on

distributed-memory multiprocessors.

Real-time or faster-than-real-time power system transient stability simulations

will require signi�cant research that may require optimizing algorithms using some

or all of the aforementioned techniques to produce a scalable, architecture-dependent

implementation. Scalable implementations permit an increase in speedup, and a

corresponding decrease in wall-clock time, as the parallel algorithms are run on sim-

ilar parallel computer architectures with greater numbers of processors. Meanwhile,

power system transient stability simulations may be dependent on architecture par-

ticulars | for example, distributed-memory multiprocessors with e�cient broadcast

communications may bene�t from sparse matrix solvers that use fan-out techniques,

while other distributed-memory multiprocessors may bene�t more from fan-in sparse

matrix techniques.

Some state-of-the-art distributed-memory multiprocessors can utilize Active Mes-

sages [45] that:

1. minimize communications overhead and

2. allow communication to overlap computation.

Active Messages are implemented on the nCube 2 and CM-5 using a split-phase

shared-memory extension to C, Split-C. [45] claims that order of magnitude improve-

ments in message send-overhead is possible for short messages. This low overhead

rate makes small messages very attractive, which is not usually the case with normal

inter-processor communications models with high message start-up times. [45] also

claims that matrix multiplication using Active Messages achieves 95% of peak per-

formance on large nCube 2 con�gurations. Similar performance should be obtainable

on the CM-5. In addition to the decrease in communications time, Active Messages

foster the overlapping of communication and computation. For fan-out sparse ma-

trix factorization, this is achieved by sending results as soon as they are calculated.

Likewise for fan-in factorization, data for the next row is obtained while updating an

entry. Active Messages have the potential to signi�cantly improve the performance of

parallel sparse matrix solvers, which in turn, has the potential to signi�cantly improve

the performance of power systems transient stability simulations. Consequently, Ac-

20

tive Messages is a signi�cant transient stability research area that must be examined

further.

There is also research potential in examining the bene�ts of using standards-based,

reusable parallel-processing software such as Toolbox [37, 38]. Toolbox contains both

numerical analysis software and high-level communications software that abstract

away architecture dependencies. Numerical analysis algorithms are often a signi�cant

portion of applications software, and Toolbox provides a library of optimized versions

of numerical analysis software for rapid development of e�cient concurrent applica-

tions. CDASSL is an example of concurrent numerical analysis software presently

available in Toolbox. CDASSL uses direct methods for solving the sparse matrices,

although, it has not been optimized for the hierarchical network structures inherent

in power system problems. In addition, CDASSL may have di�culties with the large

discontinuities in power system problems, so other DAE solvers must be researched

for this application. Nevertheless, the communications software in Toolbox can sim-

plify implementation of new numerical analysis software, that in turn can be added

to future releases of Toolbox.

The communications package in Toolbox is called Zipcode, and it has high-level

commands for communications operations that are optimized for particular architec-

tures. All Toolbox user-application software is written using the Zipcode communi-

cations routines that have similar, but optimally implemented, communications com-

mands to simplify the migration of parallel algorithms and concurrent computer code

between dissimilar architectures. Toolbox is presently implemented on the Thinking

Machines Corporation CM-5, BBN TC2000, and Intel hypercubes. It will soon be

modi�ed to run on the nCube 2.

There is academic interest at NPAC in performing computational science research

on the power system transient stability problem because of its stature as a compu-

tational grand challenge. Thus, there is a need to have a parallel computing testbed

at NPAC that can be used to compare the performance of parallel transient stability

algorithm implementations and determine whether or not the algorithms maintain

su�cient accuracy to give comparable answers to known test systems [42]. We are

not interested in developing new transient stability models, but in developing faster

algorithms using a broad range of computational science techniques and faster parallel

21

implementations using algorithms that obtain the most from parallel architectures.

We are currently developing a Power System Transient Stability Testbed at NPAC,

based on available software such as the EPRI-Extended Transient/Mid-Term Stability

Program (ETMSP) or the PTI-Power System Simulation/E Program (PSS/E). The

�rst target architectures for this testbed are the 32 node Thinking Machines Corpora-

tion CM5 and the 32 node nCube 2 presently available at NPAC. While the generator

equations from these software packages are of primary interest to the NPAC testbed,

the implementation of software that interprets the results will permit comparisons of

the e�cacy of new algorithms with benchmark results available in [42].

6 Estimates of Potential Speedup

The numerical analysis techniques proposed in this paper have the potential to be

the basis for power system transient stability simulations that exhibit substantial

speedup when compared to both present sequential programs and those parallel im-

plementations developed for distributed-memory multiprocessors. In order to esti-

mate potential speedup for power system transient stability simulations, estimates

of the percentage of sequential calculations and concurrent overhead will be used as

input respectively to Amdahl's law and overhead based estimates of speedup. The

de�nitions for these estimators of speedup are in de�nition four and �ve.

The source of most sequential operations in the parallel algorithm will be a result

of precedence in the direct solution of linear equations when solving the DAEs. If

the matrix is reordered into block-bordered diagonal form, there will be signi�cant

reduction in the precedence in operations and a signi�cant increase in the amount of

available parallelism in the algorithm. We estimate that it should be possible to limit

the amount of solely sequential operations to less than 5%, so, according to Amdahl's

Law a maximum relative speedup of 20 could be possible for a concurrent transient

stability algorithm. This estimate does not include speedup due to better transient

stability algorithms. Even if the performance of dynamic partitioning algorithms are

less than the speedup of �ve encountered in [47], there is the possibility of substantial

speedup when combining better algorithms and concurrent processing. This is a very

coarse estimate of potential performance that only considers sequential portions of

22

the algorithm.

Fair speedup is a often a more realistic estimator of potential performance im-

provement than relative speedup because fair speedup accounts for more factors that

are involved with the development of parallel algorithms. Thus, estimates of poten-

tial speedup based on examining overhead in the algorithm can produce a much more

realistic estimate of potential performance than does Amdahl's law. The research op-

portunities discussed in this paper could experience any of the four types of overhead

listed in De�nition 5. Often research into parallel algorithms is an attempt to examine

the trade-o�s between various sources of overhead, in order to minimize the aggregate

overhead. Examples of overhead in the proposed research areas are presented below.

The parallel time-domain method [2] is an example of algorithmic overhead, or

additional calculations that are performed in a parallel implementation that are not

required in a sequential implementation. These additional calculations can signi�-

cantly reduce potential speedup. The methods to solve the power system transient

stability DAEs proposed in this paper require no additional calculations for the par-

allel versus sequential algorithms. This removes a signi�cant source of potential

overhead that erodes potential performance. Meanwhile, the proposal to examine

dynamic partitioning techniques does introduce a source of algorithmic overhead. In

a real-time parallel implementation, it would be required to examine load-balancing

in real-time to minimize load balance overhead. Such calculations are not required

in sequential algorithms. Meanwhile, the power systems under study are generally

quite constant, so some work on load balancing for pre-chosen fault locations can be

performed in advance to minimize the impact on real-time calculations.

The block-bordered diagonal form of the sparse matrix can simplify the distribu-

tion of data to processors in such a manner as to minimize communications overhead

for either direct or iterative techniques to solve the sparse linear systems, even if

partial pivoting is required in the direct solutions or in the preconditioning step for

iterative solutions. There should be limited interprocessor communications required

in the factorization of the block-bordered matrix until the narrow borders are factored.

Likewise, some communications would be required for the forward reduction and back-

ward substitution phases for the variables in the borders, however, there should be no

communications required for these operations in other portions of block-bordered di-

23

agonal matrices. Consequently, the amount of interprocessor communications should

be minimal, while required communications should be performed in a regular manner

to minimize bottlenecks and should be overlapped with calculations when ever possi-

ble. Active Messages is presently available for parallel software developers to overlap

communications with calculations using Split-C [45].

The remaining form of overhead, parallel software overhead, should be minimal

as long as the granularity of calculations per processor is reasonably large. Conse-

quently, the total amount of overhead in a concurrent transient stability simulation

should be minimal. While there is no way to estimate the amount of overhead exactly

without detailed simulations of the various algorithms or by actually implementing

the algorithms, preliminary estimates of speedup can be developed using parametric

values of overhead. We believe that aggregate overhead should be less than 20% for

well-constructed concurrent algorithms. This will yield potential speedups of (p=1:2),

or greater than 26 for 32 processors. [47] reported a speedup of �ve for a transient

stability dynamic partitioning algorithm on a shared-memory multiprocessor. Assum-

ing that there will be 20% greater overhead for a distributed-memory multiprocessor

implementation of the dynamic partitioning algorithm, it may be possible to obtain

total speedups of as much as 100 for 32 processors when combining algorithmic and

concurrent speedup. For larger multicomputers with as many as 1024 processors, it

may be possible to get nearly thousand-fold speedup for power system simulations as

long as the system modeled is su�ciently large. In general, only state or regional con-

trolling authorities would have su�ciently large power system networks to e�ciently

use such large processors. If signi�cant numbers of processors are utilized for each

independent block in the block-bordered diagonal matrix, communications overhead

could increase sharply and a�ect these estimates.

In concluding this discussion of potential speedup for advanced implementations

of transient stability simulations, there are areas where speedup may be obtained by

simply utilizing the advanced features of distributed-memory multiprocessors. Most

notably, a sequential power system transient stability simulation is so large that only

small portions of the data can be stored in cache or other very fast memory at any

time. Partitioning the problem into smaller pieces on multiple processors many permit

signi�cantly more, and possibly all, data to be available in cache or fast memory. Due

24

to the size of the data structures in a sequential implementation, there will be many

cache misses, which slow processing as data in the cache is swapped out for new data

that is required in the present stage of processing. By placing the data onto multiple

processors, cache misses can be minimized, o�ering signi�cant unseen bene�ts to

speedup the calculations.

7 Conclusions

A recent IEEE committee report [41] by a task force of the Computer and Analytical

Methods Subcommittee of the Power Systems Engineering Committee states that

Except for those analytical procedures that require repeat solutions, like

contingency analysis, there are no obvious parallelism inherent in the

mathematical structure of power systems problems,

We believe that this view of parallelism in power systems problems illustrates the need

for closer coordination with the computational science research community. There

are problems in other disciplines that illustrate the existence of parallelism in the

solutions of di�erential-algebraic equations, the central component of the transient

stability problem. The critical point is the granularity where parallelism exists and

the level of sophisticated techniques that are required to extract that parallelism for

particular parallel processing hardware.

Various computational science research topics for the transient stability problem

have been proposed in this paper. The goal of this paper has been to describe vari-

ous research areas where the computational science academic community can interact

with the power systems engineering community to improve the quality and perfor-

mance of power systems transient stability analysis simulations. Speedups of over

1000 appear possible for large multiprocessors simulating the transient stability of

large interconnected power systems, while speedups of over 100 appear reasonable for

individual medium-sized power utility companies. Real-time or faster-than-real-time

transient stability simulations will require both highly parallel computers and better

overall algorithms to get the computational speedup required for this grand comput-

ing challenge, but the bene�ts of improved system reliability should yield substantial

25

payo�s for electrical utility company pro�ts, environmental impact, and customer

satisfaction,

Acknowledgment: We thank Ernst Hairer, Alan Hindmarsh, Alvin Leung,

Nancy McCracken, Linda Petzold, and Tony Skjellum for their assistance in preparing

this paper.

26

References

[1] M. M. Adibi, P. M. Hirsch, and J. A. Jordan, Jr. Solution methods for transient

and dynamic stability. Proceedings of the IEEE, 62(7):951{958, July 1974.

[2] F. L. Alvarado. Parallel solution of transient problems by trapezoidal integra-

tion. IEEE Transactions on Power Apparatus and Systems, PAS-98(3):1080{

1090, May/June 1979.

[3] P. M. Anderson and B. Dembart. Computational aspects of transient stability

analysis. In A. M. Erisman, K. W. Neves, and M. H. Dwarakanath, editors,

Electrical Power Problems: The Mathematical Challenge, pages 159{189. SIAM,

Philadelphia, 1980.

[4] C. Aykanat, F. �Ozg�uner, F. Ercal, and P. Sadayappan. Iterative algorithms

for solution of large sparse systems of linear equations on hypercubes. IEEE

Transactions on Computers, 37(12):1554{1568, December 1988.

[5] A. Bass, S. Steinberg, R. Tabors, and P. DeGenring. A comprehensive study of

supercomputing and its applicability to the utility industry. Technical report,

TASC, Reading, MA, August 1990. Draft Final Report ESEERCO Project EP-

90-10.

[6] R. Belhomme and M. Pavella. A composite electromechanical distance approach

to transient stability. IEEE Transactions on Power Systems, 6(2):622{631, May

1991.

[7] A. R. Bergen. Power Systems Analysis. Prentice Hall, 1986.

[8] F. M. Brasch. Jr., J. E. Van Ness, and S. C. Kang. Simulation of a multiprocessor

network for power system problems. IEEE Transactions on Power Apparatus and

Systems, PAS-101(2):295{301, February 1982.

[9] K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-

Value Problems in Di�erential-Algebraic Equations. Elevier Science, 1989.

27

[10] J. S. Chai, N. Zhu, A. Bose, and D. J. Tylavsky. Parallel newton type methods for

power system stability analysis using local and shared memory multiprocessors.

IEEE Transactions on Power Systems, 6(4):1539{1545, November 1991.

[11] A. T. Chronopoulos. Towards e�cient parallel implementation of the cg method

applied to a class of block tridiagonal linear systems. In Supercomputing '91,

1991.

[12] P. E. Crouch, E. Brady, and D. J. Tylavsky. Frequency domain transient sta-

bility simulation of power systems: Implementation by supercomputer. IEEE

Transactions on Power Systems, 6(1):51{58, February 1991.

[13] M. L. Crow and M. Ilic. The parallel implementation of the waveform relax-

ation methods for transient stability simulations. IEEE Transactions on Power

Systems, 5(3):922{932, August 1990.

[14] I. S. Du�, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.

Oxford University Press, Oxford, 1990.

[15] J. Fong and C. Pottle. Parallel processing of power system analysis problems via

simple parallel microcomputer structures. IEEE Transactions on Power Appa-

ratus and Systems, PAS-97(5):1834{1841, September/October 1978.

[16] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving

Problems on Concurrent Processors. Prentice Hall, 1988.

[17] A. George, M. T. Heath, J. Liu, and E. Ng. Solution of sparse positive de�nite

systems on a shared-memory multiprocessor. International Journal of Parallel

Programming, 15(4):309{328, August 1986.

[18] A. George, M. T. Heath, J. Liu, and E. Ng. Sparse cholesky factorization on a

local-memory multiprocessor. SIAM journal on Scienti�c and Statistical Com-

puting, 9(2):327{340, March 1988.

[19] A. George, M. T. Heath, J. Liu, and E. Ng. Solution of sparse positive de�nite

systems on a hypercube. Journal of Computational and Applied Mathematics,

27:129{156, 1989.

28

[20] G. H. Golub and J. M. Ortega. Scienti�c Computing and Di�erential Equations.

Academic Press, San Diego, CA, 1992.

[21] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II | Sti�

and Di�erential-Algebraic Problems. Springer-Verlag, New York, 1991.

[22] H. H. Happ. Diakoptics - the solution of system problems by tearing. Proceedings

of the IEEE, 62(7):930{940, July 1974.

[23] M. T. Heath, E. Ng, and B. W. Peyton. Parallel algorithms for sparse linear

systems. In Parallel Algorithms for Matrix Computations, pages 83{124. SIAM,

Philadelphia, 1991.

[24] A. Hindmarsch, April 1992. personal correspondence with A. Hindmarsch.

[25] S. Y. Lee, H. D. Chiang, K. G. Lee, and B. Y. Ku. Parallel power system transient

stability analysis on hypercube multiprocessors. IEEE Transactions on Power

Systems, 6(3):1337{1343, August 1991.

[26] R. F. Lucas, T. Blank, and J. J. Tiemann. A parallel solution method for large

sparse systems of equations. IEEE Transactions on Computer-Aided Design,

CAD-6(6):981{991, November 1987.

[27] I. M. Mack. Block Implicit One-Step Methods for Solving Smooth and Discontinu-

ous Systems of Di�erential/Algebraic Equations. PhD thesis, Harvard University,

The Graduate School of Arts and Sciences, 1986.

[28] N. M�uller and V. H. Quintana. A sparse eigenvalue-based approach for parti-

tioning power networks. IEEE Transactions on Power Systems, 7(2):520{527,

May 1992.

[29] C. Siva Ram Murthy. Parallel,iterative solution of large, sparse linear systems

on hypercubes. In IEEE ISCAS '89, 1989.

[30] R. Nath, S. S. Lamba, and K. S. Prakasa Rao. Coherency-based system decom-

position into study and external areas using weak coupling. IEEE Transactions

on Power Apparatus and Systems, PAS-104(6):1443{1449, June 1985.

29

[31] E. C. Ogbuobiri, W. F. Tinney, and J. W. Walker. Sparsity-directed decom-

position for gaussian elimination on matrices. IEEE Transactions on Power

Apparatus and Systems, PAS-89(1):141{150, January 1970.

[32] P. C. Patton. Performance limits for parallel processors. In G. F. Carey, editor,

Parallel Supercomputing: Methods, Algorithms and Applications, chapter 1. John

Wiley & Sons, New York, 1989.

[33] M. La Scala, A. Bose, D. J. Tylavsky, and J. S Chai;. A highly parallel method

for transient stability analysis. IEEE Transactions on Power Systems, 5(4):1439{

1446, November 1990.

[34] M. La Scala, M. Brucoli, F. Torelli, and M. Trovato;. A gauss-jacobi-block-

newton method for parallel transient stability analysis. IEEE Transactions on

Power Systems, 5(4):1168{1177, November 1990.

[35] M. La Scala, R. Sbrizzai, and F. Torelli. A pipelined-in-time parallel algorithm

for transient stability analysis. IEEE Transactions on Power Systems, 6(2):715{

722, May 1991.

[36] J. N. Shadid and R. S. Tuminaro. Sparse iterative algorithm software for large-

scale mimdmachines: an initial discussion and implementation. Technical report,

Sandia National Laboratories, 1991.

[37] A. Skjellum. Concurrent Dynamic Simulation: Multicomputer Algorithms Re-

search Applied to Ordinary Di�erential-Algebraic Process Systems in Chemical

Engineering. PhD thesis, California Institute of Technology, Division of Chem-

istry and Chemical Engineering, Pasadena, CA, 1990.

[38] A. Skjellum and C. Baldwin. The multicomputer toolbox: Scalable parallel

libraries for large-scale concurrent applications. Technical report, Numerical

mathematics Group, Lawrence Livermore National Laboratory, 1991.

[39] H. S. Stone. High-Performance Computer Architecture. Addison Wesley, Read-

ing, MA, second edition edition, 1990.

30

[40] H. Taoka, I. Iyoda, H. Noguchi, N. Sato, and T. Nakazawa. Real-time digital sim-

ulator for power system analysis on a hypercube computer. IEEE Transactions

on Power Systems, 7(1):1{7, February 1992.

[41] D. J. Tylavsky and A. Bose. Parallel processing in power systems computation.

IEEE Transactions on Power Systems, 7(2):629{638, May 1992.

[42] Chairman V. Vittal. Transient stability test systems for direct stability methods.

IEEE Transactions on Power Systems, 7(1):7{43, February 1992.

[43] S. Venugopal and V. K. Naik. E�ects of partitioning and scheduling sparse matrix

factorization on communications and load balance. NASA Contractor Report

189563 ICASE Report No. 91-80, NASA, Langley Research Center, October

1991.

[44] V. Vittal, G. M. Prabhu, and S. L. Lim. A parallel computer implementation of

power system transient stability assessment using the transient energy function

method. IEEE Transactions on Power Systems, 6(1):167{173, February 1991.

[45] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active mes-

sages: a mechanism for integrated communication and computation. Technical

report, Computer Science Division | EECS, University of California, Berkeley,

CA, March 1992. Report No. UCB/CSD 92/#675.

[46] Y. Wallach. Calculations and Programs For Power System Networks. Prentice-

Hall, 1986.

[47] N. Zhu and A. Bose. A dynamic partitioning scheme for parallel transient sta-

bility analysis. IEEE Transactions on Power Systems, 7(2):940{946, May 1992.

[48] M. Zubair and M. Ghose. A performance study of sparse cholesky factorization

on intel ipsc/860. NASA Contractor Report 189634 ICASE Report No. 92-13,

NASA, Langley Research Center, March 1992.

[49] D. Zwillinger. Handbook of Di�erential Equations. Academic Press, Boston,

second edition edition, 1992.

31

